aboutsummaryrefslogtreecommitdiffstats
path: root/src/vhdl/translate/trans.ads
blob: a7968e20e0968ec2a7a8ab8b5cb5d7902c721940 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
--  Iir to ortho translator.
--  Copyright (C) 2002 - 2014 Tristan Gingold
--
--  GHDL is free software; you can redistribute it and/or modify it under
--  the terms of the GNU General Public License as published by the Free
--  Software Foundation; either version 2, or (at your option) any later
--  version.
--
--  GHDL is distributed in the hope that it will be useful, but WITHOUT ANY
--  WARRANTY; without even the implied warranty of MERCHANTABILITY or
--  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
--  for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with GCC; see the file COPYING.  If not, write to the Free
--  Software Foundation, 59 Temple Place - Suite 330, Boston, MA
--  02111-1307, USA.
with Ada.Unchecked_Deallocation;
with Interfaces; use Interfaces;
with Ortho_Nodes; use Ortho_Nodes;
with Ortho_Ident; use Ortho_Ident;
with Iirs; use Iirs;
with Types; use Types;

package Trans is

   --  Ortho type node for STD.BOOLEAN.
   Std_Boolean_Type_Node         : O_Tnode;
   Std_Boolean_True_Node         : O_Cnode;
   Std_Boolean_False_Node        : O_Cnode;
   --  Array of STD.BOOLEAN.
   Std_Boolean_Array_Type        : O_Tnode;
   --  Std_ulogic indexed array of STD.Boolean.
   Std_Ulogic_Boolean_Array_Type : O_Tnode;
   --  Ortho type node for string template pointer.
   Std_String_Ptr_Node           : O_Tnode;
   Std_String_Node               : O_Tnode;

   --  Ortho type for std.standard.integer.
   Std_Integer_Otype : O_Tnode;

   --  Ortho type for std.standard.real.
   Std_Real_Otype : O_Tnode;

   --  Ortho type node for std.standard.time.
   Std_Time_Otype : O_Tnode;

   --  Node for the variable containing the current filename.
   Current_Filename_Node : O_Dnode := O_Dnode_Null;
   Current_Library_Unit  : Iir := Null_Iir;

   --  Global declarations.
   Ghdl_Ptr_Type           : O_Tnode;
   Sizetype                : O_Tnode;
   Ghdl_I32_Type           : O_Tnode;
   Ghdl_I64_Type           : O_Tnode;
   Ghdl_Real_Type          : O_Tnode;
   --  Constant character.
   Char_Type_Node          : O_Tnode;
   --  Array of char.
   Chararray_Type          : O_Tnode;
   --  Pointer to array of char.
   Char_Ptr_Type           : O_Tnode;
   --  Array of char ptr.
   Char_Ptr_Array_Type     : O_Tnode;
   Char_Ptr_Array_Ptr_Type : O_Tnode;

   Ghdl_Index_Type : O_Tnode;
   Ghdl_Index_0    : O_Cnode;
   Ghdl_Index_1    : O_Cnode;
   Ghdl_Index_2    : O_Cnode;
   Ghdl_Index_4    : O_Cnode;
   Ghdl_Index_8    : O_Cnode;
   Ghdl_Index_Ptr_Align  : O_Cnode;  --  Alignment of a pointer

   --  Type for a file (this is in fact a index in a private table).
   Ghdl_File_Index_Type     : O_Tnode;
   Ghdl_File_Index_Ptr_Type : O_Tnode;

   --  Record containing a len and string fields.
   Ghdl_Str_Len_Type_Node       : O_Tnode;
   Ghdl_Str_Len_Type_Len_Field  : O_Fnode;
   Ghdl_Str_Len_Type_Str_Field  : O_Fnode;
   Ghdl_Str_Len_Ptr_Node        : O_Tnode;
   Ghdl_Str_Len_Array_Type_Node : O_Tnode;

   --  Location.
   Ghdl_Location_Type_Node     : O_Tnode;
   Ghdl_Location_Filename_Node : O_Fnode;
   Ghdl_Location_Line_Node     : O_Fnode;
   Ghdl_Location_Col_Node      : O_Fnode;
   Ghdl_Location_Ptr_Node      : O_Tnode;

   --  Allocate memory for a block.
   Ghdl_Alloc_Ptr : O_Dnode;

   --  bool type.
   Ghdl_Bool_Type : O_Tnode;
   type Enode_Boolean_Array is array (Boolean) of O_Cnode;
   Ghdl_Bool_Nodes : Enode_Boolean_Array;
   Ghdl_Bool_False_Node : O_Cnode renames Ghdl_Bool_Nodes (False);
   Ghdl_Bool_True_Node : O_Cnode renames Ghdl_Bool_Nodes (True);

   Ghdl_Bool_Array_Type : O_Tnode;
   Ghdl_Bool_Array_Ptr  : O_Tnode;

   --  Size record
   Ghdl_Sizes_Type : O_Tnode;
   Ghdl_Sizes_Val : O_Fnode;
   Ghdl_Sizes_Sig : O_Fnode;

   --  Access to size.
   Ghdl_Sizes_Ptr : O_Tnode;

   --  Comparaison type.
   Ghdl_Compare_Type : O_Tnode;
   Ghdl_Compare_Lt   : O_Cnode;
   Ghdl_Compare_Eq   : O_Cnode;
   Ghdl_Compare_Gt   : O_Cnode;

   --  Dir type.
   Ghdl_Dir_Type_Node   : O_Tnode;
   Ghdl_Dir_To_Node     : O_Cnode;
   Ghdl_Dir_Downto_Node : O_Cnode;

   --  Signals.
   Ghdl_Scalar_Bytes               : O_Tnode;
   Ghdl_Signal_Type                : O_Tnode;
   Ghdl_Signal_Value_Field         : O_Fnode;
   Ghdl_Signal_Driving_Value_Field : O_Fnode;
   Ghdl_Signal_Last_Value_Field    : O_Fnode;
   Ghdl_Signal_Last_Event_Field    : O_Fnode;
   Ghdl_Signal_Last_Active_Field   : O_Fnode;
   Ghdl_Signal_Event_Field         : O_Fnode;
   Ghdl_Signal_Active_Field        : O_Fnode;
   Ghdl_Signal_Has_Active_Field    : O_Fnode;

   Ghdl_Signal_Ptr     : O_Tnode;
   Ghdl_Signal_Ptr_Ptr : O_Tnode;

   Check_Stack_Allocation_Threshold : O_Cnode;

   type Object_Kind_Type is (Mode_Value, Mode_Signal);

   --  Well known identifiers.
   Wki_This          : O_Ident;
   Wki_Size          : O_Ident;
   Wki_Res           : O_Ident;
   Wki_Dir_To        : O_Ident;
   Wki_Dir_Downto    : O_Ident;
   Wki_Left          : O_Ident;
   Wki_Right         : O_Ident;
   Wki_Dir           : O_Ident;
   Wki_Length        : O_Ident;
   Wki_I             : O_Ident;
   Wki_Instance      : O_Ident;
   Wki_Arch_Instance : O_Ident;
   Wki_Name          : O_Ident;
   Wki_Sig           : O_Ident;
   Wki_Obj           : O_Ident;
   Wki_Rti           : O_Ident;
   Wki_Parent        : O_Ident;
   Wki_Filename      : O_Ident;
   Wki_Line          : O_Ident;
   Wki_Lo            : O_Ident;
   Wki_Hi            : O_Ident;
   Wki_Mid           : O_Ident;
   Wki_Cmp           : O_Ident;
   Wki_Upframe       : O_Ident;
   Wki_Frame         : O_Ident;
   Wki_Val           : O_Ident;
   Wki_L_Len         : O_Ident;
   Wki_R_Len         : O_Ident;
   Wki_Base          : O_Ident;
   Wki_Bounds        : O_Ident;
   Wki_Locvars       : O_Ident;

   --  ALLOCATION_KIND defines the type of memory storage.
   --  ALLOC_STACK means the object is allocated on the local stack and
   --    deallocated at the end of the function.
   --  ALLOC_SYSTEM for object created during design elaboration and whose
   --    life is infinite.
   --  ALLOC_RETURN for unconstrained object returns by function.
   --  ALLOC_HEAP for object created by new.
   type Allocation_Kind is
     (Alloc_Stack, Alloc_Return, Alloc_Heap, Alloc_System);

   --  Sometimes useful to factorize code.  Defines what has to be translated.
   type Subprg_Translate_Kind is
     (Subprg_Translate_Only_Spec,
      Subprg_Translate_Spec_And_Body,
      Subprg_Translate_Only_Body);
   subtype Subprg_Translate_Spec is Subprg_Translate_Kind range
     Subprg_Translate_Only_Spec .. Subprg_Translate_Spec_And_Body;
   subtype Subprg_Translate_Body is Subprg_Translate_Kind range
     Subprg_Translate_Spec_And_Body .. Subprg_Translate_Only_Body;

   --  Return the value of field FIELD of lnode L that is contains
   --   a pointer to a record.
   --  This is equivalent to:
   --  new_value (new_selected_element (new_access_element (new_value (l)),
   --                                   field))
   function New_Value_Selected_Acc_Value (L : O_Lnode; Field : O_Fnode)
                                          return O_Enode;
   function New_Selected_Acc_Value (L : O_Lnode; Field : O_Fnode)
                                    return O_Lnode;

   function New_Indexed_Acc_Value (L : O_Lnode; I : O_Enode) return O_Lnode;

   --  Equivalent to new_access_element (new_value (l))
   function New_Acc_Value (L : O_Lnode) return O_Lnode;

   --  Return PTR + OFFSET as a RES_PTR value.  The offset is the number of
   --  bytes.  RES_PTR must be an access type and the type of PTR must be an
   --  access.
   function Add_Pointer
     (Ptr : O_Enode; Offset : O_Enode; Res_Ptr : O_Tnode) return O_Enode;

   type Elab_Kind is (Elab_Decls, Elab_Stmts);
   type O_Dnode_Elab is array (Elab_Kind) of O_Dnode;

   package Chap10 is
      --  There are three data storage kind: global, local or instance.
      --  For example, a constant can have:
      --  * a global storage when declared inside a package.  This storage
      --    can be accessed from any point.
      --  * a local storage when declared in a subprogram.  This storage
      --    can be accessed from the subprogram, is created when the subprogram
      --    is called and destroy when the subprogram exit.
      --  * an instance storage when declared inside a process.  This storage
      --    can be accessed from the process via an instance pointer, is
      --    created during elaboration.
      --procedure Push_Global_Factory (Storage : O_Storage);
      --procedure Pop_Global_Factory;
      procedure Set_Global_Storage (Storage : O_Storage);

      --  Set the global scope handling.
      Global_Storage : O_Storage;

      --  Scope for variables.  This is used both to build instances (so it
      --  contains the record type that contains objects declared in that
      --  scope) and to use instances (it contains the path to access to these
      --  objects).
      type Var_Scope_Type is private;

      type Var_Scope_Acc is access all Var_Scope_Type;
      for Var_Scope_Acc'Storage_Size use 0;

      Null_Var_Scope : constant Var_Scope_Type;

      type Var_Type is private;
      Null_Var : constant Var_Type;

      --  Return the record type for SCOPE.
      function Get_Scope_Type (Scope : Var_Scope_Type) return O_Tnode;

      --  Return the size for instances of SCOPE.
      function Get_Scope_Size (Scope : Var_Scope_Type) return O_Cnode;

      --  Return True iff SCOPE is defined.
      function Has_Scope_Type (Scope : Var_Scope_Type) return Boolean;

      --  Create an empty and incomplete scope type for SCOPE using NAME.
      procedure Predeclare_Scope_Type
        (Scope : in out Var_Scope_Type; Name : O_Ident);

      --  Declare a pointer PTR_TYPE with NAME to scope type SCOPE.
      procedure Declare_Scope_Acc
        (Scope : Var_Scope_Type; Name : O_Ident; Ptr_Type : out O_Tnode);

      --  Start to build an instance.
      --  If INSTANCE_TYPE is not O_TNODE_NULL, it must be an uncompleted
      --  record type, that will be completed.
      procedure Push_Instance_Factory (Scope : Var_Scope_Acc);

      --  Likewise but for a frame.
      procedure Push_Frame_Factory (Scope : Var_Scope_Acc;
                                    Persistant : Boolean);

      --  Manually add a field to the current instance being built.
      function Add_Instance_Factory_Field (Name : O_Ident; Ftype : O_Tnode)
                                           return O_Fnode;

      --  In the scope being built, add a field NAME that contain sub-scope
      --  CHILD.  CHILD is modified so that accesses to CHILD objects is done
      --  via SCOPE.
      procedure Add_Scope_Field
        (Name : O_Ident; Child : in out Var_Scope_Type);

      --  Return the offset of field for CHILD in its parent scope.
      function Get_Scope_Offset (Child : Var_Scope_Type; Otype : O_Tnode)
                                 return O_Cnode;

      --  Finish the building of the current instance and return the type
      --  built.
      procedure Pop_Instance_Factory (Scope : Var_Scope_Acc);
      procedure Pop_Frame_Factory (Scope : Var_Scope_Acc);

      --  Create a new scope, in which variable are created locally
      --  (ie, on the stack).  Always created unlocked.
      procedure Push_Local_Factory;

      --  Destroy a local scope.
      procedure Pop_Local_Factory;

      --  Create a special scope for declarations in statements.  The scope
      --  structure is opaque (typically a union).
      procedure Create_Union_Scope
        (Scope : out Var_Scope_Type; Stype : O_Tnode);

      --  Set_Scope defines how to access to variables of SCOPE.
      --  Variables defined in SCOPE can be accessed via field SCOPE_FIELD
      --  of scope SCOPE_PARENT.
      procedure Set_Scope_Via_Field
        (Scope       : in out Var_Scope_Type;
         Scope_Field : O_Fnode; Scope_Parent : Var_Scope_Acc);

      --  Variables defined in SCOPE can be accessed by dereferencing
      --  field SCOPE_FIELD defined in SCOPE_PARENT.
      procedure Set_Scope_Via_Field_Ptr
        (Scope       : in out Var_Scope_Type;
         Scope_Field : O_Fnode; Scope_Parent : Var_Scope_Acc);

      --  Variables/scopes defined in SCOPE can be accessed via
      --  dereference of parameter SCOPE_PARAM.
      procedure Set_Scope_Via_Param_Ptr
        (Scope : in out Var_Scope_Type; Scope_Param : O_Dnode);

      --  Variables/scopes defined in SCOPE can be accessed via DECL.
      procedure Set_Scope_Via_Decl
        (Scope : in out Var_Scope_Type; Decl : O_Dnode);

      --  Variables/scopes defined in SCOPE can be accessed by derefencing
      --  VAR.
      procedure Set_Scope_Via_Var_Ptr
        (Scope : in out Var_Scope_Type; Var : Var_Type);

      --  Variables/scopes defined in SCOPE can be accesses through VAR.
      procedure Set_Scope_Via_Var
        (Scope : in out Var_Scope_Type; Var : Var_Type);

      --  No more accesses to SCOPE_TYPE are allowed.  Scopes must be cleared
      --  before being set.
      procedure Clear_Scope (Scope : in out Var_Scope_Type);

      --  True if SCOPE is a null-scope (eg. was cleared).
      function Is_Null (Scope : Var_Scope_Type) return Boolean;

      --  Reset the identifier.
      type Id_Mark_Type is limited private;
      type Local_Identifier_Type is private;

      procedure Reset_Identifier_Prefix;
      procedure Push_Identifier_Prefix (Mark : out Id_Mark_Type;
                                        Name : String;
                                        Val  : Iir_Int32 := 0);
      procedure Push_Identifier_Prefix (Mark : out Id_Mark_Type;
                                        Name : Name_Id;
                                        Val  : Iir_Int32 := 0);
      procedure Push_Identifier_Prefix_Uniq (Mark : out Id_Mark_Type);
      procedure Pop_Identifier_Prefix (Mark : in Id_Mark_Type);

      --  Save/restore the local identifier number; this is used by package
      --  body, which has the same prefix as the package declaration, so it
      --  must continue local identifiers numbers.
      --  This is used by subprogram bodies too.
      procedure Save_Local_Identifier (Id : out Local_Identifier_Type);
      procedure Restore_Local_Identifier (Id : Local_Identifier_Type);

      --  Create an identifier from IIR node ID without the prefix.
      function Create_Identifier_Without_Prefix (Id : Iir) return O_Ident;
      function Create_Identifier_Without_Prefix
        (Id : Iir; Str : String) return O_Ident;
      function Create_Identifier_Without_Prefix
        (Id : Name_Id; Str : String) return O_Ident;

      --  Create an identifier from the current prefix.
      function Create_Identifier return O_Ident;

      --  Create an identifier from IIR node ID with prefix.
      function Create_Identifier (Id : Iir; Str : String := "")
                                  return O_Ident;
      function Create_Identifier
        (Id : Iir; Val : Iir_Int32; Str : String := "")
         return O_Ident;
      function Create_Identifier (Id : Name_Id; Str : String := "")
                                  return O_Ident;
      --  Create a prefixed identifier from a string.
      function Create_Identifier (Str : String) return O_Ident;

      --  Create an identifier for an elaboration procedure.
      function Create_Elab_Identifier (Kind : Elab_Kind) return O_Ident;

      --  Create an identifier for a variable.
      --  IE, if the variable is global, prepend the prefix,
      --   if the variable belong to an instance, no prefix is added.
      type Var_Ident_Type is private;
      function Create_Var_Identifier (Id : Iir) return Var_Ident_Type;
      function Create_Var_Identifier (Id : String) return Var_Ident_Type;
      function Create_Var_Identifier (Id : Iir; Str : String; Val : Natural)
                                      return Var_Ident_Type;
      function Create_Uniq_Identifier return Var_Ident_Type;

      --  Create variable NAME of type VTYPE in the current scope.
      --  If the current scope is the global scope, then a variable is
      --   created at the top level (using decl_global_storage).
      --  If the current scope is not the global scope, then a field is added
      --   to the current scope.
      function Create_Var
        (Name    : Var_Ident_Type;
         Vtype   : O_Tnode;
         Storage : O_Storage := Global_Storage)
         return Var_Type;

      --  Create a global variable.
      function Create_Global_Var
        (Name : O_Ident; Vtype : O_Tnode; Storage : O_Storage)
         return Var_Type;

      --  Create a global constant and initialize it to INITIAL_VALUE.
      function Create_Global_Const
        (Name          : O_Ident;
         Vtype         : O_Tnode;
         Storage       : O_Storage;
         Initial_Value : O_Cnode)
         return Var_Type;
      procedure Define_Global_Const (Const : in out Var_Type; Val : O_Cnode);

      --  Return the (real) reference to a variable created by Create_Var.
      function Get_Var (Var : Var_Type) return O_Lnode;

      --  Return a reference to the instance of type ITYPE.
      function Get_Instance_Ref (Scope : Var_Scope_Type) return O_Lnode;

      --  Return the address of the instance for block BLOCK.
      function Get_Instance_Access (Block : Iir) return O_Enode;

      --  Return the storage for the variable VAR.
      function Get_Alloc_Kind_For_Var (Var : Var_Type) return Allocation_Kind;

      --  Return TRUE iff VAR is stable, ie get_var (VAR) can be referenced
      --  several times.
      function Is_Var_Stable (Var : Var_Type) return Boolean;

      --  Used only to generate RTI.
      function Is_Var_Field (Var : Var_Type) return Boolean;
      function Get_Var_Offset (Var : Var_Type; Otype : O_Tnode) return O_Cnode;
      function Get_Var_Label (Var : Var_Type) return O_Dnode;

      --  For package instantiation.

      --  Associate INST_SCOPE as the instantiated scope for ORIG_SCOPE.
      procedure Push_Instantiate_Var_Scope
        (Inst_Scope : Var_Scope_Acc; Orig_Scope : Var_Scope_Acc);

      --  Remove the association for INST_SCOPE.
      procedure Pop_Instantiate_Var_Scope
        (Inst_Scope : Var_Scope_Acc);

      --  Get the associated instantiated scope for SCOPE.
      function Instantiated_Var_Scope (Scope : Var_Scope_Acc)
                                       return Var_Scope_Acc;

      --  Create a copy of VAR using instantiated scope (if needed).
      function Instantiate_Var (Var : Var_Type) return Var_Type;

      --  Create a copy of SCOPE using instantiated scope (if needed).
      function Instantiate_Var_Scope (Scope : Var_Scope_Type)
                                     return Var_Scope_Type;

      --  Utility function: convert identifier of N to a string, encoding
      --  extended characters in extended identifiers (this is different from
      --  image_identifier that simply returns the identifier, without special
      --  handling of extended identifiers).
      function Identifier_To_String (N : Iir) return String;
   private
      type Local_Identifier_Type is new Natural;
      type Id_Mark_Type is record
         Len      : Natural;
         Local_Id : Local_Identifier_Type;
      end record;

      type Var_Ident_Type is record
         Id : O_Ident;
      end record;

      --  An instance contains all the data (variable, signals, constant...)
      --  which are declared by an entity and an architecture.
      --  (An architecture inherits the data of its entity).
      --
      --  The processes and implicit guard signals of an entity/architecture
      --  are translated into functions.  The first argument of these functions
      --  is a pointer to the instance.

      type Inst_Build_Kind_Type is
        (
         --  Variables are declared locally.
         Local,

         --  Variables are global.
         Global,

         --  A record frame is created, whose lifetime is the lifetime of the
         --  subprogram.  Variables become fields of the record frame, and
         --  dynamic memory is allocated from the stack.
         Stack_Frame,

         --  A record frame is created, whose lifetime is longer than the
         --  lifetime of the subprogram (for subprogram with suspension).
         --  Variables become fields, and dynamic memory is allocated from the
         --  secondary stack.
         Persistant_Frame,

         --  An instance record is created, which is never free.  Dynamic
         --  memory is allocated from the heap.
         Instance);

      type Inst_Build_Type (Kind : Inst_Build_Kind_Type);
      type Inst_Build_Acc is access Inst_Build_Type;
      type Inst_Build_Type (Kind : Inst_Build_Kind_Type) is record
         Prev          : Inst_Build_Acc;
         Prev_Id_Start : Natural;
         case Kind is
            when Local =>
               --  Previous global storage.
               Prev_Global_Storage : O_Storage;
            when Global =>
               null;
            when Instance | Stack_Frame | Persistant_Frame =>
               Scope               : Var_Scope_Acc;
               Elements            : O_Element_List;
         end case;
      end record;

      --  Kind of variable:
      --  VAR_NONE: the variable doesn't exist.
      --  VAR_GLOBAL: the variable is a global variable (static or not).
      --  VAR_LOCAL: the variable is on the stack.
      --  VAR_SCOPE: the variable is in the instance record.
      type Var_Kind is (Var_None, Var_Global, Var_Local, Var_Scope);

      type Var_Type (Kind : Var_Kind := Var_None) is record
         case Kind is
            when Var_None =>
               null;
            when Var_Global
               | Var_Local =>
               E       : O_Dnode;
            when Var_Scope =>
               --  To remember allocator for this variable.
               I_Build_Kind : Inst_Build_Kind_Type;

               I_Field : O_Fnode;
               I_Scope : Var_Scope_Acc;
         end case;
      end record;

      Null_Var : constant Var_Type := (Kind => Var_None);

      type Var_Scope_Kind is (Var_Scope_None,
                              Var_Scope_Ptr,
                              Var_Scope_Decl,
                              Var_Scope_Field,
                              Var_Scope_Field_Ptr);

      type Var_Scope_Type (Kind : Var_Scope_Kind := Var_Scope_None) is record
         Scope_Type : O_Tnode := O_Tnode_Null;

         case Kind is
            when Var_Scope_None =>
               --  Not set, cannot be referenced.
               null;
            when Var_Scope_Ptr
               | Var_Scope_Decl =>
               --  Instance for entity, architecture, component, subprogram,
               --  resolver, process, guard function, PSL directive, PSL cover,
               --  PSL assert, component instantiation elaborator
               D       : O_Dnode;
            when Var_Scope_Field
               | Var_Scope_Field_Ptr =>
               --  For an entity: the architecture.
               --  For an architecture: ptr to a generate subblock.
               --  For a subprogram: parent frame
               Field   : O_Fnode;
               Up_Link : Var_Scope_Acc;
         end case;
      end record;

      Null_Var_Scope : constant Var_Scope_Type := (Scope_Type => O_Tnode_Null,
                                                   Kind => Var_Scope_None);

   end Chap10;
   use Chap10;

   package Subprgs is
      --  Subprograms instances.
      --
      --  Subprograms declared inside entities, architecture, blocks
      --   or processes (but not inside packages) may access to data declared
      --   outside the subprogram (and this with a life longer than the
      --   subprogram life).  These data correspond to constants, variables,
      --   files, signals or types.  However these data are not shared between
      --   instances of the same entity, architecture...  Subprograms instances
      --   is the way subprograms access to these data.
      --  One subprogram instance corresponds to a record.

      --  Type to save an old instance builder.  Subprograms may have at most
      --  one instance.  If they need severals (for example a protected
      --  subprogram), the most recent one will have a reference to the
      --  previous one.
      type Subprg_Instance_Stack is limited private;

      --  Declare an instance to be added for subprograms.
      --  SCOPE is the scope to pass to the subprogram.
      --  PTR_TYPE is a pointer to SCOPE.
      --  IDENT is an identifier for the interface.
      --  The previous instance is stored to PREV.  It must be restored with
      --  Pop_Subprg_Instance.
      --  Add_Subprg_Instance_Interfaces will add an interface of name IDENT
      --   and type PTR_TYPE for every instance declared by
      --   Push_Subprg_Instance.
      procedure Push_Subprg_Instance (Scope    : Var_Scope_Acc;
                                      Ptr_Type : O_Tnode;
                                      Ident    : O_Ident;
                                      Prev     : out Subprg_Instance_Stack);

      --  Since local subprograms has a direct access to its father interfaces,
      --  they do not required instances interfaces.
      --  These procedures are provided to temporarly disable the addition of
      --  instances interfaces. Use Pop_Subpg_Instance to restore to the
      --  previous state.
      procedure Clear_Subprg_Instance (Prev : out Subprg_Instance_Stack);

      --  Revert of the previous subprogram.
      --  Instances must be removed in opposite order they are added.
      procedure Pop_Subprg_Instance (Ident : O_Ident;
                                     Prev  : Subprg_Instance_Stack);

      --  True iff there is currently a subprogram instance.
      function Has_Current_Subprg_Instance return Boolean;

      --  Contains the subprogram interface for the instance.
      type Subprg_Instance_Type is private;
      Null_Subprg_Instance : constant Subprg_Instance_Type;

      --  Add interfaces during the creation of a subprogram.
      procedure Add_Subprg_Instance_Interfaces
        (Interfaces : in out O_Inter_List; Vars : out Subprg_Instance_Type);

      --  Add a field in the current factory that reference the current
      --  instance.
      procedure Add_Subprg_Instance_Field
        (Field : out O_Fnode; Prev_Scope : out Var_Scope_Acc);

      --  Associate values to the instance interface during invocation of a
      --  subprogram.
      procedure Add_Subprg_Instance_Assoc
        (Assocs : in out O_Assoc_List; Vars : Subprg_Instance_Type);

      --  Get the value to be associated to the instance interface.
      function Get_Subprg_Instance (Vars : Subprg_Instance_Type)
                                    return O_Enode;

      --  True iff VARS is associated with an instance.
      function Has_Subprg_Instance (Vars : Subprg_Instance_Type)
                                    return Boolean;

      --  Assign the instance field FIELD of VAR.
      procedure Set_Subprg_Instance_Field
        (Var : O_Dnode; Field : O_Fnode; Vars : Subprg_Instance_Type);

      --  To be called at the beginning and end of a subprogram body creation.
      --  Call PUSH_SCOPE for the subprogram intances.
      procedure Start_Subprg_Instance_Use (Vars : Subprg_Instance_Type);
      procedure Finish_Subprg_Instance_Use (Vars : Subprg_Instance_Type);

      --  Call Push_Scope to reference instance from FIELD.
      procedure Start_Prev_Subprg_Instance_Use_Via_Field
        (Prev_Scope : Var_Scope_Acc; Field : O_Fnode);
      procedure Finish_Prev_Subprg_Instance_Use_Via_Field
        (Prev_Scope : Var_Scope_Acc; Field : O_Fnode);

      --  Same as above, but for IIR.
      procedure Create_Subprg_Instance (Interfaces : in out O_Inter_List;
                                        Subprg     : Iir);

      procedure Start_Subprg_Instance_Use (Subprg : Iir);
      procedure Finish_Subprg_Instance_Use (Subprg : Iir);

      function Instantiate_Subprg_Instance (Inst : Subprg_Instance_Type)
                                            return Subprg_Instance_Type;
   private
      type Subprg_Instance_Type is record
         Inter      : O_Dnode;
         Inter_Type : O_Tnode;
         Scope      : Var_Scope_Acc;
      end record;
      Null_Subprg_Instance : constant Subprg_Instance_Type :=
        (O_Dnode_Null, O_Tnode_Null, null);

      type Subprg_Instance_Stack is record
         Scope    : Var_Scope_Acc;
         Ptr_Type : O_Tnode;
         Ident    : O_Ident;
      end record;

      Null_Subprg_Instance_Stack : constant Subprg_Instance_Stack :=
        (null, O_Tnode_Null, O_Ident_Nul);

      Current_Subprg_Instance : Subprg_Instance_Stack :=
        Null_Subprg_Instance_Stack;
   end Subprgs;

   type Ortho_Info_Kind is
     (
      Kind_Type,
      Kind_Incomplete_Type,
      Kind_Index,
      Kind_Enum_Lit,
      Kind_Subprg,
      Kind_Operator,
      Kind_Call,
      Kind_Call_Assoc,
      Kind_Object,
      Kind_Signal,
      Kind_Alias,
      Kind_Iterator,
      Kind_Interface,
      Kind_Disconnect,
      Kind_Process,
      Kind_Psl_Directive,
      Kind_Loop,
      Kind_Loop_State,
      Kind_Locvar_State,
      Kind_Block,
      Kind_Generate,
      Kind_Component,
      Kind_Field,
      Kind_Package,
      Kind_Package_Instance,
      Kind_Config,
      Kind_Assoc,
      Kind_Design_File,
      Kind_Library,
      Kind_Expr_Eval
     );

   type Ortho_Info_Type_Kind is
     (
      Kind_Type_Scalar,
      Kind_Type_Array,
      Kind_Type_Record,
      Kind_Type_File,
      Kind_Type_Protected
     );
   type O_Tnode_Array is array (Object_Kind_Type) of O_Tnode;
   type O_Fnode_Array is array (Object_Kind_Type) of O_Fnode;
   type O_Dnode_Array is array (Object_Kind_Type) of O_Dnode;
   type Var_Type_Array is array (Object_Kind_Type) of Var_Type;

   type Rti_Depth_Type is new Natural range 0 .. 255;

   --  Additional info for complex types.
   type Complex_Type_Info is record
      --  Parameters for type builders.
      --  NOTE: this is only set for types (and *not* for subtypes).
      Builder_Instance     : Subprgs.Subprg_Instance_Type;
      Builder_Layout_Param : O_Dnode;
      Builder_Proc         : O_Dnode := O_Dnode_Null;
   end record;
   type Complex_Type_Arr_Info is array (Object_Kind_Type) of Complex_Type_Info;

   --  Alignment of a type.
   --  This is only for Mode_Value (for Mode_Signal, the alignment is
   --  Align_Ptr).
   --  The size of complex types is determined at run-time, and the code to
   --  compute it is generated by translation.  But to know the size, the
   --  alignment must also be known.  It is assumed that allocators (malloc or
   --  alloca) always return a pointer with the maximum alignment.
   --  Eg:  type cpl_rec is record
   --         b : boolean;
   --         v : integer_array (1 to n);  -- n is a non-locally constant.
   --       end record;
   --  The static part contains only field 'b'.  The whole size is of cpl_rec
   --  is:  sizeof (b) + align(v) + n * sizeof(integer) + align(cpl_rec).
   --  This makes a lot of suppositions about the ABI:
   --    * elementary types (including doubles) are always naturally aligned
   --    * fields are aligned as their type
   --    * records are aligned to their maximum field
   --    * pointers have the same size
   --    * finally, pointers are either 32 or 64 bits.
   --  Note: deviation from the ABI may result in incorrect code as an object
   --   that is statically constrained may be viewed as a complex/unbounded
   --   object too.
   --  Note: These suppositions are true on x86-64, on windows32.
   --        but not for double on linux-x86!!
   type Alignment_Type is
     (
      --  When alignment is not known.
      Align_Undef,

      --  For enumerations, integers, physical types.
      Align_8, Align_16, Align_32,

      --  For an access.  We suppose that pointers are either 32 or 64 bits.
      --  So Align_Ptr >= Align_32 but Align_64 >= Align_Ptr
      Align_Ptr,

      --  For float64 (floating point types), large integers or large physical
      --  types.
      Align_64);

   function Align_Val (Algn : Alignment_Type) return O_Cnode;

   type Ortho_Info_Basetype_Type
     (Kind : Ortho_Info_Type_Kind := Kind_Type_Scalar) is record
      --  For all types:
      --  This is the maximum depth of RTI, that is the max of the depth of
      --  the type itself and every types it depends on.
      Rti_Max_Depth : Rti_Depth_Type;

      Align : Alignment_Type;

      case Kind is
         when Kind_Type_Scalar =>
            --  For scalar types:
            --  Ortho type for the range record type.
            Range_Type : O_Tnode;

            --  Ortho type for an access to the range record type.
            Range_Ptr_Type : O_Tnode;

            --  Fields of TYPE_RANGE_TYPE.
            Range_Left   : O_Fnode;
            Range_Right  : O_Fnode;
            Range_Dir    : O_Fnode;
            Range_Length : O_Fnode;

         when Kind_Type_Array
           | Kind_Type_Record =>
            --  For unbounded types:
            --  The base type.
            Base_Type       : O_Tnode_Array;
            Base_Ptr_Type   : O_Tnode_Array;
            --  The dope vector.
            --  For arrays:
            --    range of indexes
            --    layout of element (if element is unbounded)
            --  For record:
            --    offsets of complex elements
            --    layout of unbounded elements
            Bounds_Type     : O_Tnode;
            Bounds_Ptr_Type : O_Tnode;

            --  For arrays with unbounded element, the layout field of the
            --  bounds type.
            Bounds_El       : O_Fnode;

            --  Size + bounds.
            --  Always created for arrays, created for unbounded and complex
            --  records.
            Layout_Type     : O_Tnode;
            Layout_Ptr_Type : O_Tnode;

            --  Size and bounds fields of the layout type.
            Layout_Size     : O_Fnode;
            Layout_Bounds   : O_Fnode;

            --  The ortho type is a fat pointer to the base and the bounds.
            --  These are the fields of the fat pointer.
            Base_Field   : O_Fnode_Array;
            Bounds_Field : O_Fnode_Array;

            --  Parameters for type builders.
            --  NOTE: this is only set for types (and *not* for subtypes).
            Builder      : Complex_Type_Arr_Info;

         when Kind_Type_File =>
            --  Constant containing the signature of the file.
            File_Signature : O_Dnode;

         when Kind_Type_Protected =>
            Prot_Scope : aliased Var_Scope_Type;
            Prot_Prev_Scope : Var_Scope_Acc;

            --  Init procedure for the protected type.
            Prot_Init_Subprg           : O_Dnode;
            Prot_Init_Instance         : Subprgs.Subprg_Instance_Type;
            --  Final procedure.
            Prot_Final_Subprg          : O_Dnode;
            Prot_Final_Instance        : Subprgs.Subprg_Instance_Type;
            --  The outer instance, if any.
            Prot_Subprg_Instance_Field : O_Fnode;
            --  The LOCK field in the object type
            Prot_Lock_Field            : O_Fnode;
      end case;
   end record;

   type Ortho_Info_Subtype_Type
     (Kind : Ortho_Info_Type_Kind := Kind_Type_Scalar) is record
      case Kind is
         when Kind_Type_Scalar =>
            --  For scalar types:
            --  True if no need to check against low/high bound.
            Nocheck_Low : Boolean := False;
            Nocheck_Hi  : Boolean := False;

            --  For scalar types:
            --  Range_Var is the same as its type mark (there is no need to
            --  create a new range var if the range is the same).
            Same_Range : Boolean := False;

            --  Tree for the range record declaration.
            Range_Var : Var_Type := Null_Var;

         when Kind_Type_Array
           | Kind_Type_Record =>
            --  Variable containing the layout for a constrained type.
            Composite_Layout : Var_Type;

            --  For a locally constrained record subtype whose base type has
            --  unbounded elements: the field containing the base record.
            Box_Field : O_Fnode_Array;

         when Kind_Type_File =>
            null;

         when Kind_Type_Protected =>
            null;
      end case;
   end record;

   --    Ortho_Info_Type_Scalar_Init : constant Ortho_Info_Type_Type :=
   --      (Kind => Kind_Type_Scalar,
   --       Range_Type => O_Tnode_Null,
   --       Range_Ptr_Type => O_Tnode_Null,
   --       Range_Var => null,
   --       Range_Left => O_Fnode_Null,
   --       Range_Right => O_Fnode_Null,
   --       Range_Dir => O_Fnode_Null,
   --       Range_Length => O_Fnode_Null);

   Ortho_Info_Basetype_Array_Init : constant Ortho_Info_Basetype_Type :=
     (Kind => Kind_Type_Array,
      Rti_Max_Depth => 0,
      Align => Align_Undef,
      Base_Type => (O_Tnode_Null, O_Tnode_Null),
      Base_Ptr_Type => (O_Tnode_Null, O_Tnode_Null),
      Bounds_Type => O_Tnode_Null,
      Bounds_Ptr_Type => O_Tnode_Null,
      Bounds_El => O_Fnode_Null,
      Layout_Type => O_Tnode_Null,
      Layout_Ptr_Type => O_Tnode_Null,
      Layout_Size => O_Fnode_Null,
      Layout_Bounds => O_Fnode_Null,
      Base_Field => (O_Fnode_Null, O_Fnode_Null),
      Bounds_Field => (O_Fnode_Null, O_Fnode_Null),
      Builder => (others => (Builder_Instance => Subprgs.Null_Subprg_Instance,
                             Builder_Layout_Param => O_Dnode_Null,
                             Builder_Proc => O_Dnode_Null)));

   Ortho_Info_Subtype_Array_Init : constant Ortho_Info_Subtype_Type :=
     (Kind => Kind_Type_Array,
      Composite_Layout => Null_Var,
      Box_Field => (O_Fnode_Null, O_Fnode_Null));

   Ortho_Info_Basetype_Record_Init : constant Ortho_Info_Basetype_Type :=
     (Kind => Kind_Type_Record,
      Rti_Max_Depth => 0,
      Align => Align_Undef,
      Base_Type => (O_Tnode_Null, O_Tnode_Null),
      Base_Ptr_Type => (O_Tnode_Null, O_Tnode_Null),
      Bounds_Type => O_Tnode_Null,
      Bounds_Ptr_Type => O_Tnode_Null,
      Bounds_El => O_Fnode_Null,
      Layout_Type => O_Tnode_Null,
      Layout_Ptr_Type => O_Tnode_Null,
      Layout_Size => O_Fnode_Null,
      Layout_Bounds => O_Fnode_Null,
      Base_Field => (O_Fnode_Null, O_Fnode_Null),
      Bounds_Field => (O_Fnode_Null, O_Fnode_Null),
      Builder => (others => (Builder_Instance => Subprgs.Null_Subprg_Instance,
                             Builder_Layout_Param => O_Dnode_Null,
                             Builder_Proc => O_Dnode_Null)));

   Ortho_Info_Subtype_Record_Init : constant Ortho_Info_Subtype_Type :=
     (Kind => Kind_Type_Record,
      Composite_Layout => Null_Var,
      Box_Field => (O_Fnode_Null, O_Fnode_Null));

   Ortho_Info_Basetype_File_Init : constant Ortho_Info_Basetype_Type :=
     (Kind => Kind_Type_File,
      Rti_Max_Depth => 0,
      Align => Align_Undef,
      File_Signature => O_Dnode_Null);

   Ortho_Info_Basetype_Prot_Init : constant Ortho_Info_Basetype_Type :=
     (Kind => Kind_Type_Protected,
      Rti_Max_Depth => 0,
      Align => Align_Undef,
      Prot_Scope => Null_Var_Scope,
      Prot_Prev_Scope => null,
      Prot_Init_Subprg => O_Dnode_Null,
      Prot_Init_Instance => Subprgs.Null_Subprg_Instance,
      Prot_Final_Subprg => O_Dnode_Null,
      Prot_Subprg_Instance_Field => O_Fnode_Null,
      Prot_Final_Instance => Subprgs.Null_Subprg_Instance,
      Prot_Lock_Field => O_Fnode_Null);

   --  Mode of the type; roughly speaking, this corresponds to its size
   --  (for scalars) or its layout (for composite types).
   --  Used to select library subprograms for signals.
   type Type_Mode_Type is
     (
      --  Unknown mode.
      Type_Mode_Unknown,

      --  Boolean type, with 2 elements.
      Type_Mode_B1,
      --  Enumeration with at most 256 elements.
      Type_Mode_E8,
      --  Enumeration with more than 256 elements.
      Type_Mode_E32,
      --  Integer types.
      Type_Mode_I32,
      Type_Mode_I64,
      --  Physical types.
      Type_Mode_P32,
      Type_Mode_P64,
      --  Floating point type.
      Type_Mode_F64,
      --  File type.
      Type_Mode_File,
      --  Thin access.
      Type_Mode_Acc,

      --  Access to an unbounded type (this is a thin pointer to bounds
      --  followed by values).
      Type_Mode_Bounds_Acc,

      --  Record whose size is known at compile-time.  Can be a boxed record
      --  if the base type is unbounded.
      Type_Mode_Static_Record,
      --  Constrained record, but size is not known at compile time.  Can be
      --  a boxed record if the base type is unbounded.
      Type_Mode_Complex_Record,
      --  Record with unbounded component(s).
      Type_Mode_Unbounded_Record,

      --  Unbounded array type (used for unconstrained arrays).
      Type_Mode_Unbounded_Array,
      --  Constrainted array type, with size known at compile-time.
      Type_Mode_Static_Array,
      --  Constrained array type (for constrained arrays), but size is
      --  not known at compile time.
      Type_Mode_Complex_Array,
      --  Protected type (always handled as a complex type).
      Type_Mode_Protected);

   --  For backward source compatibility, to be removed (TODO).
   Type_Mode_Fat_Array : constant Type_Mode_Type := Type_Mode_Unbounded_Array;

   subtype Type_Mode_Valid is Type_Mode_Type range
     Type_Mode_B1 .. Type_Mode_Type'Last;

   subtype Type_Mode_Scalar is Type_Mode_Type range
     Type_Mode_B1 .. Type_Mode_F64;

   subtype Type_Mode_Integers is Type_Mode_Type range
     Type_Mode_I32 .. Type_Mode_I64;

   --  Composite types, with the vhdl meaning: record and arrays.
   subtype Type_Mode_Composite is Type_Mode_Type range
     Type_Mode_Static_Record .. Type_Mode_Protected;

   subtype Type_Mode_Non_Composite is Type_Mode_Type range
     Type_Mode_B1 .. Type_Mode_Bounds_Acc;

   --  Array types.
   subtype Type_Mode_Arrays is Type_Mode_Type range
     Type_Mode_Unbounded_Array .. Type_Mode_Complex_Array;

   subtype Type_Mode_Bounded_Arrays is Type_Mode_Type range
     Type_Mode_Static_Array .. Type_Mode_Complex_Array;

   --  Record types.
   subtype Type_Mode_Records is Type_Mode_Type range
     Type_Mode_Static_Record .. Type_Mode_Unbounded_Record;

   subtype Type_Mode_Bounded_Records is Type_Mode_Type range
     Type_Mode_Static_Record .. Type_Mode_Complex_Record;

   --  Thin types, ie types whose length is a scalar.
   subtype Type_Mode_Thin is Type_Mode_Type range
     Type_Mode_B1 .. Type_Mode_Bounds_Acc;

   --  Aggregate types, ie types whose length is longer than a scalar.
   subtype Type_Mode_Aggregate is Type_Mode_Type range
     Type_Mode_Static_Record .. Type_Mode_Protected;
   subtype Type_Mode_Fat is Type_Mode_Aggregate;

   subtype Type_Mode_Unbounded is Type_Mode_Type range
     Type_Mode_Unbounded_Record .. Type_Mode_Unbounded_Array;

   --  Subprogram call argument mechanism.
   --  In VHDL, the evaluation is strict: actual parameters are evaluated
   --  before the call.  This is the usual strategy of most compiled languages
   --  (the main exception being Algol-68 call by name).
   --
   --  Call semantic is described in
   --  LRM08 4.2.2.2 Constant and variable parameters.
   --
   --  At the semantic (and LRM level), there are two call convention: either
   --  call by value or call by reference.  That vocabulary should be used in
   --  trans for the semantic level: call convention and call-by.  According to
   --  the LRM, all scalars use the call by value convention.  It is possible
   --  to change the actual after the call for inout parameters, using
   --  pass-by value mechanism and copy-in/copy-out.
   --
   --  At the low-level (generated code), there are two mechanisms: either
   --  pass by copy or pass by address.  Again, that vocabulary should be used
   --  in trans for the low-level: mechanism and pass-by.
   --
   --  A call by reference is always passed by address; while a call by value
   --  can use a pass-by address to a copy of the value.  The later being
   --  used for fat accesses.  With Ortho, only scalars and pointers can be
   --  passed by copy.

   --  In GHDL, all non-composite types use the call-by value convention, and
   --  composite types use the call-by reference convention.  For fat accesses,
   --  a copy of the value is passed by address.

   type Call_Mechanism is (Pass_By_Copy, Pass_By_Address);
   type Call_Mechanism_Array is array (Object_Kind_Type) of Call_Mechanism;

   --  These parameters are passed by copy, ie the argument of the subprogram
   --  is the value of the object.
   subtype Type_Mode_Pass_By_Copy is Type_Mode_Thin;

   --  The parameters are passed by address, ie the argument of the
   --  subprogram is an address to the object.
   subtype Type_Mode_Pass_By_Address is Type_Mode_Aggregate;

   --  Call conventions.
   subtype Type_Mode_Call_By_Value is Type_Mode_Non_Composite;
   subtype Type_Mode_Call_By_Reference is Type_Mode_Composite;

   --  Additional informations for a resolving function.
   type Subprg_Resolv_Info is record
      Resolv_Func  : O_Dnode;
      --  Parameter nodes.
      Var_Instance : Subprgs.Subprg_Instance_Type;

      --  Signals
      Var_Vals      : O_Dnode;
      --  Driving vector.
      Var_Vec       : O_Dnode;
      --  Length of Vector.
      Var_Vlen      : O_Dnode;
      Var_Nbr_Drv   : O_Dnode;
      Var_Nbr_Ports : O_Dnode;
   end record;
   type Subprg_Resolv_Info_Acc is access Subprg_Resolv_Info;

   --  In order to support resume feature of non-sensitized processes and
   --  procedure, a state variable is added to encode vertices of the control
   --  flow graph (only suspendable vertices are considered: an inner loop
   --  that doesn't suspend is not decomposed by this mechanism).
   type State_Type is new Nat32;

   --  Translation of types.
   --  (Where you understand that VHDL is more complex than C...)
   --
   --  1) For scalar types (integers, physical types, enumeration, floating
   --     point types) and pointers, the type is fully known during analysis
   --     and translation:
   --     a) for integers and physical types, the size is defined by the range.
   --        GHDL uses either 32-bit or 64-bit types.
   --     b) for enumeration, the size is defined by the number of literals.
   --        GHDL uses either 8-bit or 32-bit types.
   --     c) for floating-point type, GHDL always uses 64-bit types (Float64).
   --     d) for access types, GHDL uses pointers.  This is slightly more
   --        complex as sometimes it can be a fat pointer, which is a record
   --        of two pointers.  But in all cases, the size is known.
   --
   --  For composite subtypes (arrays and records), there are several cases:
   --
   --  2) Composite types whose sub-elements are statically constrained.
   --     Eg:  subtype byte is bit_vector (7 downto 0);
   --     Eg:  subtype word is std_logic_vector (31 downto 0);
   --     Eg:  type my_bus is record
   --             req: bit;
   --             ack: bit;
   --             data: byte;
   --          end record;
   --     This still corresponds to C: sizes and offsets are known during
   --     translation.
   --     However, for arrays a bound variable is created.  This variable
   --     contains the bounds of the array (left, right and direction) and the
   --     length of each bound.  This is used both for 'introspection' and for
   --     conversion to fat pointers.
   --
   --  3) Unbounded types.  This is quite usual for parameters.
   --     Eg:  procedure disp_hex (v : std_logic_vector);
   --     The bounds of an unbounded types are only known during execution, and
   --     thus must be passed with the argument.
   --     This is not the same case as an object declared with an unbounded
   --     type; in that case the bounds are computed during elaboration (or
   --     dynamic elaboration).
   --     Eg: constant c : std_logic_vector := xxx;
   --
   --     For these unbounded types, the interface is translated as a fat
   --     pointer, which is a structure containing a base pointer and a bound
   --     pointer.  The base pointer points to the data while the bound pointer
   --     points to the bounds.
   --
   --     In some case, we need to convert from a bounded representation to an
   --     unbounded representation.  This happens while calling a subprogram
   --     with a bounded object (and corresponds to a subtype conversion in
   --     VHDL terms).  In that case a fat pointer is created, using the object
   --     as data and the bounds variable as the bounds.  The opposite
   --     conversion can also happen and we just need to check that the bounds
   --     are matching and to keep only the data part.
   --
   --  4) Complex types.  Complex is a word used only by GHDL (not defined by
   --     VHDL).  You need to realize that VHDL types are more powerful than C
   --     types as you can declare a type whose size is not known by the
   --     compiler.
   --     Eg:  constant length : natural := call_to_a_complex_function(5);
   --          subtype my_word is std_logic_vector (1 to length);
   --          type my_bus is record
   --             d : my_word;
   --             req : std_logic_vector;
   --          end record;
   --     Clearly, LENGTH is not known during analysis.  In many cases it
   --     could be known during elaboration but this is not enough as such a
   --     construct could also be used within subprograms using a parameter to
   --     define a bound.
   --
   --     Because the size of these objects is not known during compilation,
   --     the objects are allocated dynamically (either on the heap or on the
   --     stack) during (dynamic) elaboration.  They also comes with a bound
   --     variable.
   --
   --     For arrays, the bound variable describes the index of the array and
   --     the bounds of the elements (if the element is unbounded).
   --
   --     For records, the bound variable describes the offset and the bounds
   --     of the non-static elements.
   --

   --  OLD:
   --  Complex types.
   --
   --  A complex type is not a VHDL notion, but a translation notion.
   --  A complex type is a composite type whose size is not known at compile
   --  type. This happends in VHDL because a bound can be globally static.
   --  Therefore, the length of an array may not be known at compile type,
   --  and this propagates to composite types (record and array) if they
   --  have such an element. This is different from unconstrained arrays.
   --
   --  This occurs frequently in VHDL, and could even happen within
   --  subprograms.
   --
   --  Such types are always dynamically allocated (on the stack or on the
   --  heap). They must be continuous in memory so that they could be copied
   --  via memcpy/memmove.
   --
   --  At runtime, the size of such type is computed. A builder procedure
   --  is also created to setup inner pointers. This builder procedure should
   --  be called at initialization, but also after a copy.
   --
   --  Example:
   --  1) subtype bv_type is bit_vector (l to h);
   --     variable a : bv_type
   --
   --     This is represented by a pointer to an array of bit. No need for
   --     builder procedure, as the element type is not complex. But there
   --     is a size variable for the size of bv_type
   --
   --  2) type rec1_type is record
   --       f1 : integer;
   --       f2 : bv_type;
   --     end record;
   --
   --     This is represented by a pointer to a record. The 'f2' field is
   --     an offset to an array of bit. The size of the object is the size
   --     of the record (with f2 as a pointer) + the size of bv_type.
   --     The alinment of the object is the maximum alignment of its sub-
   --     objects: rec1 and bv_type.
   --     A builder procedure is needed to initialize the 'f2' field.
   --     The memory layout is:
   --     +--------------+
   --     | rec1:     f1 |
   --     |           f2 |---+
   --     +--------------+   |
   --     | bv_type      |<--+
   --     | ...          |
   --     +--------------+
   --
   --  3) type rec2_type is record
   --      g1: rec1_type;
   --      g2: bv_type;
   --      g3: bv_type;
   --    end record;
   --
   --    This is represented by a pointer to a record.  All the three fields
   --    are offset (relative to rec2). Alignment is the maximum alignment of
   --    the sub-objects (rec2, rec1, bv_type x 3).
   --     The memory layout is:
   --     +--------------+
   --     | rec2:     g1 |---+
   --     |           g2 |---|---+
   --     |           g3 |---|---|---+
   --     +--------------+   |   |   |
   --     | rec1:     f1 |<--+   |   |
   --     |           f2 |---+   |   |
   --     +--------------+   |   |   |
   --     | bv_type (f2) |<--+   |   |
   --     | ...          |       |   |
   --     +--------------+       |   |
   --     | bv_type (g2) |<------+   |
   --     | ...          |           |
   --     +--------------+           |
   --     | bv_type (g3) |<----------+
   --     | ...          |
   --     +--------------+
   --
   --  4) type bv_arr_type is array (natural range <>) of bv_type;
   --     arr2 : bv_arr_type (1 to 4)
   --
   --     This should be represented by a pointer to bv_type.
   --     The memory layout is:
   --     +--------------+
   --     | bv_type  (1) |
   --     | ...          |
   --     +--------------+
   --     | bv_type  (2) |
   --     | ...          |
   --     +--------------+
   --     | bv_type  (3) |
   --     | ...          |
   --     +--------------+
   --     | bv_type  (4) |
   --     | ...          |
   --     +--------------+

   type Assoc_Conv_Info is record
      --  The subprogram created to do the conversion.
      Subprg              : O_Dnode;
      --  The local base block
      Instance_Block      : Iir;
      --   and its address.
      Instance_Field      : O_Fnode;
      --  The instantiated entity (if any).
      Instantiated_Entity : Iir;
      --   and its address.
      Instantiated_Field  : O_Fnode;
      --  The object if the subprogram is a method
      Method_Object       : O_Fnode;
      In_Sig_Field        : O_Fnode;
      In_Val_Field        : O_Fnode;
      Out_Sig_Field       : O_Fnode;
      Out_Val_Field       : O_Fnode;
      Record_Type         : O_Tnode;
      Record_Ptr_Type     : O_Tnode;
   end record;

   type Direct_Driver_Type is record
      Sig : Iir;
      Var : Var_Type;
   end record;
   type Direct_Driver_Arr is array (Natural range <>) of Direct_Driver_Type;
   type Direct_Drivers_Acc is access Direct_Driver_Arr;

   type Ortho_Info_Type (Kind : Ortho_Info_Kind);
   type Ortho_Info_Acc is access Ortho_Info_Type;

   subtype Type_Info_Acc is Ortho_Info_Acc (Kind_Type);
   subtype Incomplete_Type_Info_Acc is Ortho_Info_Acc (Kind_Incomplete_Type);
   subtype Index_Info_Acc is Ortho_Info_Acc (Kind_Index);
   subtype Subprg_Info_Acc is Ortho_Info_Acc (Kind_Subprg);
   subtype Operator_Info_Acc is Ortho_Info_Acc (Kind_Operator);
   subtype Interface_Info_Acc is Ortho_Info_Acc (Kind_Interface);
   subtype Call_Info_Acc is Ortho_Info_Acc (Kind_Call);
   subtype Call_Assoc_Info_Acc is Ortho_Info_Acc (Kind_Call_Assoc);
   subtype Object_Info_Acc is Ortho_Info_Acc (Kind_Object);
   subtype Signal_Info_Acc is Ortho_Info_Acc (Kind_Signal);
   subtype Alias_Info_Acc is Ortho_Info_Acc (Kind_Alias);
   subtype Proc_Info_Acc is Ortho_Info_Acc (Kind_Process);
   subtype Psl_Info_Acc is Ortho_Info_Acc (Kind_Psl_Directive);
   subtype Loop_Info_Acc is Ortho_Info_Acc (Kind_Loop);
   subtype Loop_State_Info_Acc is Ortho_Info_Acc (Kind_Loop_State);
   subtype Block_Info_Acc is Ortho_Info_Acc (Kind_Block);
   subtype Generate_Info_Acc is Ortho_Info_Acc (Kind_Generate);
   subtype Comp_Info_Acc is Ortho_Info_Acc (Kind_Component);
   subtype Field_Info_Acc is Ortho_Info_Acc (Kind_Field);
   subtype Config_Info_Acc is Ortho_Info_Acc (Kind_Config);
   subtype Assoc_Info_Acc is Ortho_Info_Acc (Kind_Assoc);
   subtype Inter_Info_Acc is Ortho_Info_Acc (Kind_Interface);
   subtype Design_File_Info_Acc is Ortho_Info_Acc (Kind_Design_File);
   subtype Library_Info_Acc is Ortho_Info_Acc (Kind_Library);

   procedure Init_Node_Infos;
   procedure Update_Node_Infos;
   procedure Free_Node_Infos;

   procedure Set_Info (Target : Iir; Info : Ortho_Info_Acc);

   procedure Clear_Info (Target : Iir);

   function Get_Info (Target : Iir) return Ortho_Info_Acc;
   pragma Inline (Get_Info);

   --  Create an ortho_info field of kind KIND for iir node TARGET, and
   --  return it.
   function Add_Info (Target : Iir; Kind : Ortho_Info_Kind)
                      return Ortho_Info_Acc;

   procedure Free_Info (Target : Iir);

   procedure Free_Type_Info (Info : in out Type_Info_Acc);

   function Get_Ortho_Literal (Target : Iir) return O_Cnode;

   function Get_Ortho_Type (Target : Iir; Is_Sig : Object_Kind_Type)
                            return O_Tnode;

   --  Return true is INFO is a type info for a composite type, ie:
   --  * a record
   --  * an array (fat or thin)
   --  * a fat pointer.
   function Is_Composite (Info : Type_Info_Acc) return Boolean;
   pragma Inline (Is_Composite);

   --  Type is bounded but layout and size are known only during elaboration.
   function Is_Complex_Type (Tinfo : Type_Info_Acc) return Boolean;

   --  Type size is known at compile-time.
   function Is_Static_Type (Tinfo : Type_Info_Acc) return Boolean;

   --  True iff TINFO is base + bounds.
   function Is_Unbounded_Type (Tinfo : Type_Info_Acc) return Boolean;
   pragma Inline (Is_Unbounded_Type);

   type Hexstr_Type is array (Integer range 0 .. 15) of Character;
   N2hex : constant Hexstr_Type := "0123456789abcdef";

   --  In order to unify and have a common handling of Enode/Lnode/Dnode,
   --  let's introduce Mnode (yes, another node).
   --
   --  Mnodes can be converted to Enode/Lnode via the M2xx functions.  If
   --  an Mnode are referenced more than once, they must be stabilized (this
   --  will create a new variable if needed as Enode and Lnode can be
   --  referenced only once).
   --
   --  An Mnode is a typed union, containing either an Lnode or a Enode.
   --  See Mstate for a description of the union.
   --  The real data is contained insisde a record, so that the discriminant
   --  can be changed.
   type Mnode;

   --  State of an Mmode.
   type Mstate is
     (
      --  The Mnode contains an Enode, which can be either a value or a
      --  pointer.
      --  This Mnode can be used only once.
      Mstate_E,

      --  The Mnode contains an Lnode representing a value.
      --  This Lnode can be used only once.
      Mstate_Lv,

      --  The Mnode contains an Lnode representing a pointer.
      --  This Lnode can be used only once.
      Mstate_Lp,

      --  The Mnode contains an Dnode for a variable representing a value.
      --  This Dnode may be used several times.
      Mstate_Dv,

      --  The Mnode contains an Dnode for a variable representing a pointer.
      --  This Dnode may be used several times.
      Mstate_Dp,

      --  Null Mnode.
      Mstate_Null,

      --  The Mnode is invalid (such as already used).
      Mstate_Bad);

   type Mnode1 (State : Mstate := Mstate_Bad) is record
      --  Additionnal informations about the objects: kind and type.
      K : Object_Kind_Type;
      T : Type_Info_Acc;

      --  Ortho type of the object.
      Vtype : O_Tnode;

      --  Type for a pointer to the object.
      Ptype : O_Tnode;

      case State is
         when Mstate_E =>
            E  : O_Enode;
         when Mstate_Lv =>
            Lv : O_Lnode;
         when Mstate_Lp =>
            Lp : O_Lnode;
         when Mstate_Dv =>
            Dv : O_Dnode;
         when Mstate_Dp =>
            Dp : O_Dnode;
         when Mstate_Bad
            | Mstate_Null =>
            null;
      end case;
   end record;
   --pragma Pack (Mnode1);

   type Mnode is record
      M1 : Mnode1;
   end record;

   --  Null Mnode.
   Mnode_Null : constant Mnode := Mnode'(M1 => (State => Mstate_Null,
                                                K => Mode_Value,
                                                Ptype => O_Tnode_Null,
                                                Vtype => O_Tnode_Null,
                                                T => null));

   type Mnode_Array is array (Object_Kind_Type) of Mnode;

   --  Object kind of a Mnode
   function Get_Object_Kind (M : Mnode) return Object_Kind_Type;

   --  Transform VAR to Mnode.
   function Get_Var
     (Var : Var_Type; Vtype : Type_Info_Acc; Mode : Object_Kind_Type)
     return Mnode;

   --  Likewise, but VAR is a pointer to the value.
   function Get_Varp
     (Var : Var_Type; Vtype : Type_Info_Acc; Mode : Object_Kind_Type)
     return Mnode;

   --  Return a stabilized node for M.
   --  The former M is not usuable anymore.
   function Stabilize (M : Mnode; Can_Copy : Boolean := False) return Mnode;

   --  Stabilize M.
   procedure Stabilize (M : in out Mnode);

   --  If M is not stable, create a variable containing the value of M.
   --  M must be scalar (or access).
   function Stabilize_Value (M : Mnode) return Mnode;

   --  Create a temporary of type INFO and kind KIND.
   function Create_Temp (Info : Type_Info_Acc;
                         Kind : Object_Kind_Type := Mode_Value)
                         return Mnode;

   function Get_Type_Info (M : Mnode) return Type_Info_Acc;
   pragma Inline (Get_Type_Info);

   --  Creation of Mnodes.

   function E2M (E : O_Enode; T : Type_Info_Acc; Kind : Object_Kind_Type)
                return Mnode;
   function E2M (E : O_Enode;
                 T : Type_Info_Acc;
                 Kind  : Object_Kind_Type;
                 Vtype : O_Tnode;
                 Ptype : O_Tnode)
                return Mnode;

   --  From a Lnode, general form (can be used for ranges, bounds, base...)
   function Lv2M (L     : O_Lnode;
                  T     : Type_Info_Acc;
                  Kind  : Object_Kind_Type;
                  Vtype : O_Tnode;
                  Ptype : O_Tnode)
                 return Mnode;

   --  From a Lnode, only for values.
   function Lv2M (L : O_Lnode; T : Type_Info_Acc; Kind : Object_Kind_Type)
                 return Mnode;

   --  From a Lnode that designates a pointer, general form.
   function Lp2M (L     : O_Lnode;
                  T     : Type_Info_Acc;
                  Kind  : Object_Kind_Type;
                  Vtype : O_Tnode;
                  Ptype : O_Tnode)
                 return Mnode;

   --  From a Lnode that designates a pointer to a value.
   function Lp2M (L : O_Lnode; T : Type_Info_Acc; Kind : Object_Kind_Type)
                 return Mnode;

   --  From a variable declaration, general form.
   function Dv2M (D     : O_Dnode;
                  T     : Type_Info_Acc;
                  Kind  : Object_Kind_Type;
                  Vtype : O_Tnode;
                  Ptype : O_Tnode)
                  return Mnode;

   --  From a variable for a value.
   function Dv2M (D : O_Dnode; T : Type_Info_Acc; Kind : Object_Kind_Type)
                 return Mnode;

   --  From a pointer variable, general form.
   function Dp2M (D     : O_Dnode;
                  T     : Type_Info_Acc;
                  Kind  : Object_Kind_Type;
                  Vtype : O_Tnode;
                  Ptype : O_Tnode)
                  return Mnode;

   --  From a pointer to a value variable.
   function Dp2M (D : O_Dnode; T : Type_Info_Acc; Kind : Object_Kind_Type)
                 return Mnode;

   function M2Lv (M : Mnode) return O_Lnode;

   function M2Lp (M : Mnode) return O_Lnode;

   function M2Dp (M : Mnode) return O_Dnode;

   function M2Dv (M : Mnode) return O_Dnode;

   function T2M (Atype : Iir; Kind : Object_Kind_Type) return Mnode;

   function M2E (M : Mnode) return O_Enode;

   function M2Addr (M : Mnode) return O_Enode;

   --    function Is_Null (M : Mnode) return Boolean is
   --    begin
   --       return M.M1.State = Mstate_Null;
   --    end Is_Null;

   function Is_Stable (M : Mnode) return Boolean;

   function Varv2M (Var      : Var_Type;
                    Var_Type : Type_Info_Acc;
                    Mode     : Object_Kind_Type;
                    Vtype    : O_Tnode;
                    Ptype    : O_Tnode)
                    return Mnode;

   --  Convert a Lnode for a sub object to an MNODE.
   function Lo2M (L : O_Lnode; Vtype : Type_Info_Acc; Mode : Object_Kind_Type)
                  return Mnode;

   function Lo2M (D : O_Dnode; Vtype : Type_Info_Acc; Mode : Object_Kind_Type)
                  return Mnode;

   type Ortho_Info_Type (Kind : Ortho_Info_Kind) is record
      --  For a simple memory management: use mark and sweep to free all infos.
      Mark : Boolean := False;

      case Kind is
         when Kind_Type =>
            --  Mode of the type.
            Type_Mode : Type_Mode_Type := Type_Mode_Unknown;

            --  If true, the type is (still) incomplete.
            Type_Incomplete : Boolean := False;

            --  For array only.  True if the type is constrained with locally
            --  static bounds.  May have non locally-static bounds in some
            --  of its sub-element (ie being a complex type).
            Type_Locally_Constrained : Boolean := False;

            --  Ortho node which represents the type.
            --  Type                             -> Ortho type
            --   scalar                          ->  scalar
            --   bounded record (complex or not) ->  record
            --   constrained non-complex array   ->  constrained array
            --   constrained complex array       ->  the element
            --   unboubded array or record       ->  fat pointer
            --   access to unconstrained array   ->  fat pointer
            --   access (others)                 ->  access
            --   file                            ->  file_index_type
            --   protected                       ->  instance
            Ortho_Type : O_Tnode_Array;

            --  Ortho pointer to the type.  This is always an access to the
            --  ortho_type.
            Ortho_Ptr_Type : O_Tnode_Array;

            --  More info according to the type.
            B : Ortho_Info_Basetype_Type;
            S : Ortho_Info_Subtype_Type;

            --  Run-time information.
            Type_Rti : O_Dnode := O_Dnode_Null;

         when Kind_Incomplete_Type =>
            --  The declaration of the incomplete type.
            Incomplete_Type  : Iir;

         when Kind_Index =>
            --  For index_subtype_declaration, the field containing
            --  the bounds of that index, in the array bounds record.
            Index_Field : O_Fnode;

         when Kind_Field =>
            --  For element whose type is static: field in the record.
            --  For element whose type is not static: offset field in the
            --    bounds.
            Field_Node : O_Fnode_Array := (O_Fnode_Null, O_Fnode_Null);

            --  The field in the layout record for the layout of the
            --  element (for unbounded element).
            Field_Bound : O_Fnode := O_Fnode_Null;

         when Kind_Enum_Lit =>
            --  Ortho tree which represents the expression, used for
            --  enumeration literals.
            Lit_Node : O_Cnode;

         when Kind_Subprg =>
            --  True if the function can return a value stored in the secondary
            --  stack.  In this case, the caller must deallocate the area
            --  allocated by the callee when the value was used.
            Use_Stack2 : Boolean := False;

            --  Subprogram declaration node.
            Subprg_Node : O_Dnode;

            --  For a function:
            --    If the return value is not composite, then this field
            --      must be O_DNODE_NULL.
            --    If the return value is a composite type, then the caller must
            --    give to the callee an area to put the result.  This area is
            --    given via an (hidden to the user) interface.  Furthermore,
            --    the function is translated into a procedure.
            --  For a procedure:
            --    Interface for parameters.
            Res_Interface : O_Dnode := O_Dnode_Null;

            --  Field in the frame for a pointer to the PARAMS structure.  This
            --  is necessary when nested subprograms need to access to
            --  paramters. of this subprogram.
            Subprg_Params_Var : Var_Type := Null_Var;

            --  For a procedure, record containing the parameters.
            Subprg_Params_Type : O_Tnode := O_Tnode_Null;
            Subprg_Params_Ptr  : O_Tnode := O_Tnode_Null;

            --  Field in the parameter struct for the suspend state. Also the
            --  suspend state is not a parameter, it is initialized by the
            --  caller.
            Subprg_State_Field : O_Fnode := O_Fnode_Null;

            --  Field in the parameter struct for local variables.
            Subprg_Locvars_Field : O_Fnode := O_Fnode_Null;
            Subprg_Locvars_Scope : aliased Var_Scope_Type;

            --  Access to the declarations within this subprogram.
            Subprg_Frame_Scope : aliased Var_Scope_Type;

            --  Instances for the subprograms.
            Subprg_Instance : Subprgs.Subprg_Instance_Type :=
              Subprgs.Null_Subprg_Instance;

            Subprg_Resolv : Subprg_Resolv_Info_Acc := null;

            --  Local identifier number, set by spec, continued by body.
            Subprg_Local_Id : Local_Identifier_Type;

            --  If set, return should be converted into exit out of the
            --  SUBPRG_EXIT loop and the value should be assigned to
            --  SUBPRG_RESULT, if any.
            Subprg_Exit   : O_Snode := O_Snode_Null;
            Subprg_Result : O_Dnode := O_Dnode_Null;

         when Kind_Operator =>
            --  For an implicit subprogram like type operators or file
            --  subprograms.

            --  Use secondary stack (not referenced).
            Operator_Stack2 : Boolean := False;

            --  True if the body was generated.  Many operators share the same
            --  subprogram.
            Operator_Body : Boolean := False;

            --  Subprogram declaration node.
            Operator_Node : O_Dnode;

            --  Instances for the subprograms.
            Operator_Instance : Subprgs.Subprg_Instance_Type :=
              Subprgs.Null_Subprg_Instance;

            --  Parameters
            Operator_Left, Operator_Right : O_Dnode;
            Operator_Res : O_Dnode;

         when Kind_Call =>
            Call_State_Scope : aliased Var_Scope_Type;
            Call_State_Mark : Var_Type := Null_Var;
            Call_Params_Var : Var_Type := Null_Var;

         when Kind_Call_Assoc =>
            --  Variable containing a reference to the actual, for scalar
            --  copyout.  The value is passed in the parameter.
            Call_Assoc_Ref : Var_Type := Null_Var;

            --  Variable containing the value, the bounds and the fat vector.
            Call_Assoc_Value : Var_Type_Array := (others => Null_Var);
            Call_Assoc_Bounds : Var_Type := Null_Var;
            Call_Assoc_Fat : Var_Type_Array := (others => Null_Var);

         when Kind_Object =>
            --  For constants: set when the object is defined as a constant.
            Object_Static   : Boolean;
            --  The object itself.
            Object_Var      : Var_Type;
            --  RTI constant for the object.
            Object_Rti      : O_Dnode := O_Dnode_Null;

         when Kind_Signal =>
            --  The current value of the signal.
            --  Also the initial value of collapsed ports.
            Signal_Val      : Var_Type := Null_Var;
            --  Pointer to the value, for ports.
            Signal_Valp     : Var_Type := Null_Var;
            --  A pointer to the signal (contains meta data).
            Signal_Sig      : Var_Type;
            --  Direct driver for signal (if any).
            Signal_Driver   : Var_Type := Null_Var;
            --  RTI constant for the object.
            Signal_Rti      : O_Dnode := O_Dnode_Null;
            --  Function to compute the value of object (used for implicit
            --   guard signal declaration).
            Signal_Function : O_Dnode := O_Dnode_Null;

         when Kind_Alias =>
            Alias_Var  : Var_Type_Array;
            Alias_Kind : Object_Kind_Type;

         when Kind_Iterator =>
            --  True if the range should be copied as it may change during
            --  the loop.
            Iterator_Range_Copy : Boolean;
            --  Iterator variable.
            Iterator_Var : Var_Type;
            --  Iterator right bound (used only if the iterator is a range
            --  expression).
            Iterator_Right : Var_Type;
            --  Iterator range pointer (used only if the iterator is not a
            --  range expression).
            Iterator_Range : Var_Type;

         when Kind_Interface =>
            --  Call mechanism (by copy or by address) for the interface.
            Interface_Mechanism : Call_Mechanism_Array;

            --  Ortho declaration for the interface. If not null, there is
            --  a corresponding ortho parameter for the interface. While
            --  translating nested subprograms (that are unnested),
            --  Interface_Field may be set to the corresponding field in the
            --  FRAME record. So:
            --   Decl: not null, Field:     null: parameter
            --   Decl: not null, Field: not null: parameter with a copy in
            --                                    the FRAME record.
            --   Decl: null,     Field:     null: not possible
            --   Decl: null,     Field: not null: field in RESULT record
            Interface_Decl  : O_Dnode_Array := (others => O_Dnode_Null);
            --  Field of the PARAMS record for arguments of procedure.
            --  In that case, Interface_Node must be null.
            Interface_Field : O_Fnode_Array := (others => O_Fnode_Null);

         when Kind_Expr_Eval =>
            --  Result of an evaluation.
            Expr_Eval : Mnode;

         when Kind_Disconnect =>
            --  Variable which contains the time_expression of the
            --  disconnection specification
            Disconnect_Var : Var_Type;

         when Kind_Process =>
            Process_Scope : aliased Var_Scope_Type;

            --  Subprogram for the process.
            Process_Subprg : O_Dnode;

            --  Variable (in the frame) containing the current state (a
            --  number) used to resume the process.
            Process_State : Var_Type := Null_Var;

            --  Union containing local declarations for statements.
            Process_Locvar_Scope : aliased Var_Scope_Type;

            --  List of drivers if Flag_Direct_Drivers.
            Process_Drivers : Direct_Drivers_Acc := null;

            --  RTI for the process.
            Process_Rti_Const : O_Dnode := O_Dnode_Null;

         when Kind_Psl_Directive =>
            Psl_Scope : aliased Var_Scope_Type;

            --  Procedure for the state machine.
            Psl_Proc_Subprg       : O_Dnode;
            --  Procedure for finalization.  Handles EOS.
            Psl_Proc_Final_Subprg : O_Dnode;

            --  Type of the state vector.
            Psl_Vect_Type : O_Tnode;

            --  State vector variable.
            Psl_Vect_Var : Var_Type;

            --  Counter variable (nbr of failures or coverage)
            Psl_Count_Var : Var_Type;

            --  RTI for the process.
            Psl_Rti_Const : O_Dnode := O_Dnode_Null;

         when Kind_Loop =>
            --  Labels for the loop.
            --  Used for exit/next from while-loop, and to exit from for-loop.
            Label_Exit : O_Snode;
            --  Used to next from for-loop, with an exit statment.
            Label_Next : O_Snode;

         when Kind_Loop_State =>
            --  Likewise but for a suspendable loop.
            --  State next: evaluate condition for a while-loop, update
            --  iterator for a for-loop.
            Loop_State_Next : State_Type;
            --  Body of a for-loop, not used for a while-loop.
            Loop_State_Body: State_Type;
            --  State after the loop.
            Loop_State_Exit  : State_Type;
            --  Access to declarations of the iterator.
            Loop_State_Scope : aliased Var_Scope_Type;
            Loop_Locvar_Scope : aliased Var_Scope_Type;

         when Kind_Locvar_State =>
            Locvar_Scope : aliased Var_Scope_Type;

         when Kind_Block =>
            --  Access to declarations of this block.
            Block_Scope : aliased Var_Scope_Type;

            --  Instance type (ortho record) for declarations contained in the
            --  block/entity/architecture.
            Block_Decls_Ptr_Type : O_Tnode;

            --  For Entity: field in the instance type containing link to
            --              parent.
            --  For an instantiation: link in the parent block to the instance.
            Block_Link_Field : O_Fnode;

            --  For an entity: must be o_fnode_null.
            --  For an architecture: the entity field.
            --  For a block, a component or a generate block: field in the
            --    parent instance which contains the declarations for this
            --    block.
            Block_Parent_Field : O_Fnode;

            --  For a generate block: field in the block providing a chain to
            --  the previous block (note: this may not be the parent, but
            --  is a parent).
            Block_Origin_Field     : O_Fnode;
            --  For an iterative block: boolean field set when the block
            --  is configured.  This is used to check if the block was already
            --  configured since index and slice are not compelled to be
            --  locally static.
            Block_Configured_Field : O_Fnode;

            --  For iterative generate block: array of instances.
            Block_Decls_Array_Type     : O_Tnode;
            Block_Decls_Array_Ptr_Type : O_Tnode;

            --  For if-generate generate statement body: the identifier of the
            --  body.  Used to know which block_configuration applies to the
            --  block.
            Block_Id : Nat32;

            --  Subprogram which elaborates the block (for entity or arch).
            Block_Elab_Subprg   : O_Dnode_Elab;

            --  Size of the block instance.
            Block_Instance_Size : O_Dnode;

            --  Only for an entity: procedure that elaborate the packages this
            --  units depend on.  That must be done before elaborating the
            --  entity and before evaluating default expressions in generics.
            Block_Elab_Pkg_Subprg : O_Dnode;

            --  RTI constant for the block.
            Block_Rti_Const : O_Dnode := O_Dnode_Null;

         when Kind_Generate =>
            --  Like Block_Parent_Field: field in the instance for the
            --  sub-block.  Always a Ghdl_Ptr_Type, as there are many possible
            --  types for the sub-block instance (if/case generate).
            Generate_Parent_Field : O_Fnode;

            --  Identifier number of the generate statement body.  Used for
            --  configuring sub-block, and for grt to index the rti.
            Generate_Body_Id : O_Fnode;

            --  RTI for the generate statement.
            Generate_Rti_Const : O_Dnode := O_Dnode_Null;

         when Kind_Component =>
            --  How to access to component interfaces.
            Comp_Scope : aliased Var_Scope_Type;

            --  Instance for the component.
            Comp_Ptr_Type  : O_Tnode;
            --  Field containing a pointer to the instance link.
            Comp_Link      : O_Fnode;
            --  RTI for the component.
            Comp_Rti_Const : O_Dnode;

         when Kind_Config =>
            --  Subprogram that configure the block.
            Config_Subprg : O_Dnode;
            Config_Instance : O_Dnode;

         when Kind_Package =>
            --  Subprogram which elaborate the package spec/body.
            --  External units should call the body elaborator.
            --  The spec elaborator is called only from the body elaborator.
            Package_Elab_Spec_Subprg : O_Dnode;
            Package_Elab_Body_Subprg : O_Dnode;

            --  Instance for the elaborators.
            Package_Elab_Spec_Instance : Subprgs.Subprg_Instance_Type;
            Package_Elab_Body_Instance : Subprgs.Subprg_Instance_Type;

            --  Variable set to true when the package is elaborated.
            Package_Elab_Var : Var_Type;

            --  RTI constant for the package.
            Package_Rti_Const : O_Dnode;

            --  Access to declarations of the spec.
            Package_Spec_Scope : aliased Var_Scope_Type;

            --  Instance type for uninstantiated package
            Package_Spec_Ptr_Type : O_Tnode;

            Package_Body_Scope    : aliased Var_Scope_Type;
            Package_Body_Ptr_Type : O_Tnode;

            --  Field to the spec within the body.
            Package_Spec_Field : O_Fnode;

            --  Local id, set by package declaration, continued by package
            --  body.
            Package_Local_Id : Local_Identifier_Type;

         when Kind_Package_Instance =>
            --  The variables containing the instance.  There are two variables
            --  for interface package: one for the spec, one for the body.
            --  For package instantiation, only the variable for the body is
            --  used.  The variable for spec is added so that packages with
            --  package interfaces don't need to know the body of their
            --  interfaces.
            Package_Instance_Spec_Var : Var_Type;
            Package_Instance_Body_Var : Var_Type;

            --  Elaboration procedure for the instance.
            Package_Instance_Elab_Subprg : O_Dnode;

            Package_Instance_Spec_Scope : aliased Var_Scope_Type;
            Package_Instance_Body_Scope : aliased Var_Scope_Type;

         when Kind_Assoc =>
            --  Association informations.
            Assoc_In  : Assoc_Conv_Info;
            Assoc_Out : Assoc_Conv_Info;

         when Kind_Design_File =>
            Design_Filename : O_Dnode;

         when Kind_Library =>
            Library_Rti_Const : O_Dnode;
      end case;
   end record;

   procedure Unchecked_Deallocation is new Ada.Unchecked_Deallocation
     (Name => Ortho_Info_Acc, Object => Ortho_Info_Type);

   package Helpers is
      --  Generate code to initialize a ghdl_index_type variable V to 0.
      procedure Init_Var (V : O_Dnode);

      --  Generate code to increment/decrement a ghdl_index_type variable V.
      procedure Inc_Var (V : O_Dnode);
      procedure Dec_Var (V : O_Dnode);

      --  Generate code to exit from loop LABEL iff COND is true.
      procedure Gen_Exit_When (Label : O_Snode; Cond : O_Enode);

      --  Low-level stack2 mark and release.
      procedure Set_Stack2_Mark (Var : O_Lnode);
      procedure Release_Stack2 (Var : O_Lnode);

      --  Create a region for temporary variables.  The region is only created
      --  on demand (at the first Create_Temp*), so you must be careful not
      --  to nest with control statement.  For example, the following
      --  sequence is not correct:
      --    Open_Temp
      --    Start_If_Stmt
      --    ... Create_Temp ...
      --    Finish_If_Stmt
      --    Close_Temp
      --  Because the first Create_Temp is within the if statement, the
      --  declare block will be created within the if statement, and must
      --  have been closed before the end of the if statement.
      procedure Open_Temp;

      --  Create a temporary variable.
      function Create_Temp (Atype : O_Tnode) return O_Dnode;
      --  Create a temporary variable of ATYPE and initialize it with VALUE.
      function Create_Temp_Init (Atype : O_Tnode; Value : O_Enode)
                                 return O_Dnode;
      --  Create a temporary variable of ATYPE and initialize it with the
      --  address of NAME.
      function Create_Temp_Ptr (Atype : O_Tnode; Name : O_Lnode)
                               return O_Dnode;

      function Create_Temp_Bounds (Tinfo : Type_Info_Acc) return Mnode;

      --  Create a mark in the temporary region for the stack2.
      --  FIXME: maybe a flag must be added to CLOSE_TEMP where it is known
      --   stack2 can be released.
      procedure Create_Temp_Stack2_Mark;

      --  Close the temporary region.
      procedure Close_Temp;

      --  Like Open_Temp, but will never create a declare region. To be used
      --  only within a subprogram, to use the declare region of the
      --  subprogram.
      procedure Open_Local_Temp;
      procedure Close_Local_Temp;

      --  Return TRUE if stack2 will be released.  Used for fine-tuning only
      --  (return statement).
      function Has_Stack2_Mark return Boolean;
      --  Manually release stack2.  Used for fine-tuning only.
      procedure Stack2_Release;

      --  Used only in procedure calls to disable the release of stack2, as
      --  it might be part of the state of the call.  Must be called just after
      --  Open_Temp.
      procedure Disable_Stack2_Release;

      --  Free all old temp.
      --  Used only to free memory.
      procedure Free_Old_Temp;

      --  Return a ghdl_index_type literal for NUM.
      function New_Index_Lit (Num : Unsigned_64) return O_Cnode;

      --  Create a uniq identifier.
      subtype Uniq_Identifier_String is String (1 .. 11);
      function Create_Uniq_Identifier return Uniq_Identifier_String;
      function Create_Uniq_Identifier return O_Ident;
   end Helpers;
end Trans;