1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
|
-- VHDL PSL parser.
-- Copyright (C) 2009 Tristan Gingold
--
-- This program is free software: you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation, either version 2 of the License, or
-- (at your option) any later version.
--
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with this program. If not, see <gnu.org/licenses>.
with Types; use Types;
with Errorout; use Errorout;
with PSL.Nodes; use PSL.Nodes;
with Vhdl.Nodes;
with Vhdl.Scanner; use Vhdl.Scanner;
with PSL.Errors; use PSL.Errors;
with PSL.Priorities; use PSL.Priorities;
with Vhdl.Parse;
package body Vhdl.Parse_Psl is
subtype Vhdl_Node is Vhdl.Nodes.Iir;
procedure Error_Msg_Parse (Msg: String) is
begin
Report_Msg (Msgid_Error, Errorout.Parse, Get_Token_Coord, Msg);
end Error_Msg_Parse;
procedure Error_Msg_Parse
(Loc : Location_Type; Msg: String; Args : Earg_Arr := No_Eargs) is
begin
Report_Msg (Msgid_Error, Errorout.Parse, +Loc, Msg, Args);
end Error_Msg_Parse;
function Create_Node_Loc (K : Nkind) return Node
is
Res : Node;
begin
Res := PSL.Nodes.Create_Node (K);
Set_Location (Res, Get_Token_Location);
return Res;
end Create_Node_Loc;
function Parse_Number return Node
is
Res : Node;
begin
if Current_Token = Tok_Integer then
Res := Create_Node_Loc (N_Number);
-- FIXME: handle overflow.
Set_Value (Res, Uns32 (Current_Iir_Int64));
Scan;
return Res;
elsif Current_Token = Tok_Inf then
-- FIXME: create node
Scan;
return Null_Node;
else
Error_Msg_Parse ("number expected");
return Null_Node;
end if;
end Parse_Number;
procedure Check_Positive_Count (N : Node)
is
Low : constant Uns32 := Get_Value (Get_Low_Bound (N));
High : constant Uns32 := Get_Value (Get_High_Bound (N));
begin
if Low > High then
Error_Msg_Parse
("Low bound of range must be lower than High bound," &
" actual range is:" &
Uns32'Image (Low) & " to" & Uns32'Image (High));
end if;
end Check_Positive_Count;
procedure Parse_Count (N : Node)
is
Hi : Node;
begin
Set_Low_Bound (N, Parse_Number);
if Current_Token = Tok_To then
Scan;
Hi := Parse_Number;
Set_High_Bound (N, Hi);
if Hi /= Null_Node then
Check_Positive_Count (N);
end if;
end if;
end Parse_Count;
function Psl_To_Vhdl (N : Node) return Vhdl_Node;
function Binary_Psl_Operator_To_Vhdl (N : Node; Kind : Vhdl.Nodes.Iir_Kind)
return Vhdl_Node
is
use Vhdl.Nodes;
Res : Iir;
begin
Res := Create_Iir (Kind);
Set_Location (Res, Get_Location (N));
Set_Left (Res, Psl_To_Vhdl (Get_Left (N)));
Set_Right (Res, Psl_To_Vhdl (Get_Right (N)));
return Res;
end Binary_Psl_Operator_To_Vhdl;
function Psl_To_Vhdl (N : Node) return Vhdl_Node
is
use Vhdl.Nodes;
Res : Iir;
begin
case Get_Kind (N) is
when N_HDL_Expr =>
Res := Vhdl_Node (Get_HDL_Node (N));
when N_And_Prop =>
Res := Binary_Psl_Operator_To_Vhdl (N, Iir_Kind_And_Operator);
when N_Or_Prop =>
Res := Binary_Psl_Operator_To_Vhdl (N, Iir_Kind_Or_Operator);
when N_Paren_Prop =>
Res := Create_Iir (Iir_Kind_Parenthesis_Expression);
Set_Location (Res, Get_Location (N));
Set_Expression (Res, Psl_To_Vhdl (Get_Property (N)));
when others =>
Error_Msg_Parse
(+N, "PSL construct not allowed as VHDL expression");
Res := Create_Iir (Iir_Kind_Error);
Set_Location (Res, Get_Location (N));
end case;
Free_Node (N);
return Res;
end Psl_To_Vhdl;
function Vhdl_To_Psl (N : Vhdl_Node) return Node
is
use Vhdl.Nodes;
Res : PSL_Node;
begin
Res := Create_Node_Loc (N_HDL_Expr);
if N /= Null_Iir then
Set_Location (Res, Get_Location (N));
Set_HDL_Node (Res, Int32 (N));
end if;
return Res;
end Vhdl_To_Psl;
function Parse_Psl_Sequence_Or_SERE (Full_Hdl_Expr : Boolean) return Node;
function Parse_FL_Property (Prio : Priority) return Node;
function Parse_Parenthesis_Boolean return Node;
function Parse_Boolean (Parent_Prio : Priority) return Node;
function Parse_Unary_Boolean (Full_Hdl_Expr : Boolean) return Node
is
use Parse;
use Vhdl.Nodes;
Left, Expr : Iir;
Op : Iir_Kind;
begin
if Full_Hdl_Expr then
Expr := Parse_Expression;
else
-- Boolean operators must be parse, *except* and/or that could be at
-- upper layers (FL).
Expr := Parse_Expression (Prio_Relation);
loop
case Current_Token is
when Tok_Xor =>
Op := Iir_Kind_Xor_Operator;
when Tok_Nand =>
Op := Iir_Kind_Nand_Operator;
when Tok_Nor =>
Op := Iir_Kind_Nor_Operator;
when Tok_Xnor =>
Op := Iir_Kind_Xnor_Operator;
when others =>
exit;
end case;
Left := Expr;
Expr := Create_Iir (Op);
Set_Location (Expr, Get_Token_Location);
Set_Left (Expr, Left);
-- Skip operator.
Scan;
Set_Right (Expr, Parse_Expression (Prio_Relation));
end loop;
end if;
return Vhdl_To_Psl (Expr);
end Parse_Unary_Boolean;
function Parse_Boolean_Rhs (Parent_Prio : Priority; Left : Node) return Node
is
Kind : Nkind;
Prio : Priority;
Res : Node;
Tmp : Node;
begin
Res := Left;
loop
case Current_Token is
when Tok_And =>
Kind := N_And_Bool;
Prio := Prio_Seq_And;
when Tok_Or =>
Kind := N_Or_Bool;
Prio := Prio_Seq_Or;
when others =>
return Res;
end case;
if Parent_Prio >= Prio then
return Res;
end if;
Tmp := Create_Node_Loc (Kind);
Scan;
Set_Left (Tmp, Res);
Res := Tmp;
Tmp := Parse_Boolean (Prio);
Set_Right (Res, Tmp);
end loop;
end Parse_Boolean_Rhs;
function Parse_Boolean (Parent_Prio : Priority) return Node
is
begin
return Parse_Boolean_Rhs (Parent_Prio, Parse_Unary_Boolean (False));
end Parse_Boolean;
function Parse_Psl_Boolean return PSL_Node is
begin
return Parse_Boolean (Prio_Lowest);
end Parse_Psl_Boolean;
function Parse_Parenthesis_Boolean return Node is
Res : Node;
begin
if Current_Token /= Tok_Left_Paren then
Error_Msg_Parse ("'(' expected before boolean expression");
return Null_Node;
else
Scan;
Res := Parse_Psl_Boolean;
if Current_Token = Tok_Right_Paren then
Scan;
else
Error_Msg_Parse ("missing matching ')' for boolean expression");
end if;
return Res;
end if;
end Parse_Parenthesis_Boolean;
-- A.4.5 Sequential Extended Regular Expressions (SEREs)
-- SERE ::=
-- Boolean
-- | Sequence
-- | SERE ; SERE
-- | SERE : SERE
-- | Compound_SERE
function Parse_SERE (Prio : Priority) return Node
is
Left, Res : Node;
Kind : Nkind;
Op_Prio : Priority;
begin
Left := Parse_Psl_Sequence_Or_SERE (True);
loop
case Current_Token is
when Tok_Semi_Colon =>
Kind := N_Concat_SERE;
Op_Prio := Prio_Seq_Concat;
when Tok_Colon =>
Kind := N_Fusion_SERE;
Op_Prio := Prio_Seq_Fusion;
when Tok_Within =>
Kind := N_Within_SERE;
Op_Prio := Prio_Seq_Within;
when Tok_Ampersand =>
-- For non-length matching and, the operator is '&'.
Kind := N_And_Seq;
Op_Prio := Prio_Seq_And;
when Tok_And_And =>
Kind := N_Match_And_Seq;
Op_Prio := Prio_Seq_And;
when Tok_Bar =>
Kind := N_Or_Seq;
Op_Prio := Prio_Seq_Or;
-- when Tok_Bar_Bar =>
-- Res := Create_Node_Loc (N_Or_Bool);
-- Scan;
-- Set_Left (Res, Left);
-- Set_Right (Res, Parse_Boolean (Prio_Seq_Or));
-- return Res;
when others =>
return Left;
end case;
if Prio >= Op_Prio then
return Left;
end if;
Res := Create_Node_Loc (Kind);
Scan;
Set_Left (Res, Left);
Set_Right (Res, Parse_SERE (Op_Prio));
Left := Res;
end loop;
end Parse_SERE;
-- A.4.7 Sequences
-- Braced_SERE ::=
-- { SERE }
--
-- precond : '{'
-- postcond: next token after '}'
function Parse_Braced_SERE return Node is
Res : Node;
begin
pragma Assert (Current_Token = Tok_Left_Curly);
Res := Create_Node_Loc (N_Braced_SERE);
-- Skip '{'
Scan;
Set_SERE (Res, Parse_SERE (Prio_Lowest));
if Current_Token /= Tok_Right_Curly then
Error_Msg_Parse ("missing '}' after braced SERE");
else
-- Skip '}'
Scan;
end if;
return Res;
end Parse_Braced_SERE;
-- Parse [ Count ] ']'
function Parse_Brack_Star (Seq : Node) return Node
is
Res : Node;
begin
Res := Create_Node_Loc (N_Star_Repeat_Seq);
Set_Sequence (Res, Seq);
-- Skip '[->'
Scan;
if Current_Token /= Tok_Right_Bracket then
Parse_Count (Res);
end if;
if Current_Token /= Tok_Right_Bracket then
Error_Msg_Parse ("missing ']'");
else
Scan;
end if;
return Res;
end Parse_Brack_Star;
procedure Parse_Bracket_Range (N : Node) is
begin
if Current_Token /= Tok_Left_Bracket then
Error_Msg_Parse ("'[' expected");
else
Scan;
Set_Low_Bound (N, Parse_Number);
if Current_Token /= Tok_To then
Error_Msg_Parse ("'to' expected in range after left bound");
else
Scan;
Set_High_Bound (N, Parse_Number);
end if;
if Current_Token /= Tok_Right_Bracket then
Error_Msg_Parse ("']' expected after range");
else
Scan;
end if;
Check_Positive_Count(N);
end if;
end Parse_Bracket_Range;
function Parse_Bracket_Number return Node
is
Res : Node;
begin
if Current_Token /= Tok_Left_Bracket then
Error_Msg_Parse ("'[' expected");
return Null_Node;
else
Scan;
Res := Parse_Number;
if Current_Token /= Tok_Right_Bracket then
Error_Msg_Parse ("']' expected after range");
else
Scan;
end if;
return Res;
end if;
end Parse_Bracket_Number;
function Parse_Brack_Equal (Left : Node) return Node
is
Res : Node;
begin
Res := Create_Node_Loc (N_Equal_Repeat_Seq);
Set_Boolean (Res, Left);
-- Skip '[='
Scan;
Parse_Count (Res);
if Current_Token /= Tok_Right_Bracket then
Error_Msg_Parse ("missing ']'");
else
Scan;
end if;
return Res;
end Parse_Brack_Equal;
function Parse_Brack_Arrow (Left : Node) return Node
is
Res : Node;
begin
Res := Create_Node_Loc (N_Goto_Repeat_Seq);
Set_Boolean (Res, Left);
-- Skip '[->'
Scan;
if Current_Token /= Tok_Right_Bracket then
Parse_Count (Res);
end if;
if Current_Token /= Tok_Right_Bracket then
Error_Msg_Parse ("missing ']'");
else
Scan;
end if;
return Res;
end Parse_Brack_Arrow;
-- Parse:
-- Boolean [= Count ]
-- | Boolean [-> [ positive_Count ] ]
-- | Boolean
-- Where LEFT is the boolean expression
function Parse_Boolean_Repeated_Sequence (Left : Node) return Node is
begin
case Current_Token is
when Tok_Brack_Equal =>
return Parse_Brack_Equal (Left);
when Tok_Brack_Arrow =>
return Parse_Brack_Arrow (Left);
when others =>
return Left;
end case;
end Parse_Boolean_Repeated_Sequence;
-- Parse:
-- Boolean [* [ Count ] ]
-- | Sequence [* [ Count ] ]
-- | Boolean [+]
-- | Sequence [+]
-- Where LEFT is a boolean expression or a sequence
function Parse_Sequence_Repeated_Sequence (Left : Node) return Node
is
Res : Node;
N : Node;
begin
Res := Left;
loop
case Current_Token is
when Tok_Brack_Star =>
Res := Parse_Brack_Star (Res);
when Tok_Brack_Plus_Brack =>
N := Create_Node_Loc (N_Plus_Repeat_Seq);
Set_Sequence (N, Res);
-- Skip '[+]'
Scan;
Res := N;
when Tok_Brack_Arrow =>
Error_Msg_Parse ("'[->' not allowed on a SERE");
Res := Parse_Brack_Arrow (Res);
when Tok_Brack_Equal =>
Error_Msg_Parse ("'[=' not allowed on a SERE");
Res := Parse_Brack_Equal (Res);
when others =>
exit;
end case;
end loop;
return Res;
end Parse_Sequence_Repeated_Sequence;
function Parse_Psl_Sequence_Or_SERE (Full_Hdl_Expr : Boolean) return Node
is
Res, N : Node;
begin
case Current_Token is
when Tok_Left_Curly =>
Res := Parse_Braced_SERE;
if Current_Token = Tok_Arobase then
N := Create_Node_Loc (N_Clocked_SERE);
Set_SERE (N, Res);
-- Skip '@'
Scan;
Set_Boolean (N, Parse_Psl_Boolean);
Res := N;
end if;
when Tok_Brack_Star =>
return Parse_Brack_Star (Null_Node);
when Tok_Left_Paren =>
if Parse.Flag_Parse_Parenthesis then
Res := Create_Node_Loc (N_Paren_Bool);
-- Skip '('.
Scan;
Set_Boolean (Res, Parse_Psl_Boolean);
if Current_Token = Tok_Right_Paren then
Scan;
else
Error_Msg_Parse ("missing matching ')'");
end if;
else
Res := Parse_Parenthesis_Boolean;
end if;
if Current_Token = Tok_Or
or else Current_Token = Tok_And
then
Res := Parse_Boolean_Rhs (Prio_Lowest, Res);
end if;
when Tok_Brack_Plus_Brack =>
Res := Create_Node_Loc (N_Plus_Repeat_Seq);
Scan;
return Res;
when others =>
-- Repeated_SERE
Res := Parse_Unary_Boolean (Full_Hdl_Expr);
Res := Parse_Boolean_Repeated_Sequence (Res);
end case;
Res := Parse_Sequence_Repeated_Sequence (Res);
return Res;
end Parse_Psl_Sequence_Or_SERE;
-- IEEE1850 A.4.7 Sequences
-- Sequence ::=
-- Sequence_Instance
-- | Repeated_SERE
-- | Braced_SERE
-- | Clocked_SERE
function Parse_Psl_Sequence return Node
is
Res : Node;
begin
Res := Parse_Psl_Sequence_Or_SERE (True);
-- May not be a sequence!
-- This test is also performed in sem_psl in order to fully handle
-- sequence_instance.
case Get_Kind (Res) is
when N_Star_Repeat_Seq
| N_Goto_Repeat_Seq
| N_Plus_Repeat_Seq
| N_Equal_Repeat_Seq
| N_Braced_SERE
| N_Clocked_SERE =>
null;
when N_HDL_Expr =>
-- Need to be checked later: can be a sequence instance or a
-- boolean.
null;
when others =>
Error_Msg_Parse ("sequence expected here");
end case;
return Res;
end Parse_Psl_Sequence;
-- precond: '('
-- postcond: next token
function Parse_Parenthesis_FL_Property return Node
is
Prop : Node;
Res : Node;
Loc : Location_Type;
begin
Loc := Get_Token_Location;
if Current_Token /= Tok_Left_Paren then
Error_Msg_Parse ("'(' expected around property");
return Parse_FL_Property (Prio_Lowest);
else
if Parse.Flag_Parse_Parenthesis then
Res := Create_Node_Loc (N_Paren_Prop);
end if;
-- Skip '('.
Scan;
Prop := Parse_FL_Property (Prio_Lowest);
if Current_Token = Tok_Right_Paren then
-- Skip ')'.
Scan;
else
Error_Msg_Parse ("missing matching ')' for '(' at line "
& Image (Loc, False));
end if;
if Get_Kind (Prop) = N_HDL_Expr then
declare
N : Vhdl_Node;
begin
N := Psl_To_Vhdl (Prop);
N := Parse.Parse_Binary_Expression (N, Parse.Prio_Expression);
Prop := Vhdl_To_Psl (N);
end;
end if;
if Parse.Flag_Parse_Parenthesis then
Set_Property (Res, Prop);
return Res;
else
return Prop;
end if;
end if;
end Parse_Parenthesis_FL_Property;
-- Parse '[' finite_Range ']' '(' FL_Property ')'
function Parse_Range_Property (K : Nkind; Strong : Boolean) return Node
is
Res : Node;
begin
Res := Create_Node_Loc (K);
Set_Strong_Flag (Res, Strong);
Scan;
Parse_Bracket_Range (Res);
Set_Property (Res, Parse_Parenthesis_FL_Property);
return Res;
end Parse_Range_Property;
-- Parse '(' Boolean ')' '[' Range ']' '(' FL_Property ')'
function Parse_Boolean_Range_Property (K : Nkind; Strong : Boolean)
return Node
is
Res : Node;
begin
Res := Create_Node_Loc (K);
Set_Strong_Flag (Res, Strong);
Scan;
Set_Boolean (Res, Parse_Parenthesis_Boolean);
Parse_Bracket_Range (Res);
Set_Property (Res, Parse_Parenthesis_FL_Property);
return Res;
end Parse_Boolean_Range_Property;
function Parse_FL_Property_1 return Node
is
Res : Node;
Tmp : Node;
begin
case Current_Token is
when Tok_Always =>
Res := Create_Node_Loc (N_Always);
Scan;
Set_Property (Res, Parse_FL_Property (Prio_FL_Invariance));
when Tok_Never =>
Res := Create_Node_Loc (N_Never);
Scan;
Set_Property (Res, Parse_FL_Property (Prio_FL_Invariance));
when Tok_Eventually_Em =>
Res := Create_Node_Loc (N_Eventually);
Scan;
Set_Property (Res, Parse_FL_Property (Prio_FL_Occurence));
when Tok_Next =>
Res := Create_Node_Loc (N_Next);
Scan;
if Current_Token = Tok_Left_Bracket then
Set_Number (Res, Parse_Bracket_Number);
Set_Property (Res, Parse_Parenthesis_FL_Property);
else
Set_Property (Res, Parse_FL_Property (Prio_FL_Occurence));
end if;
when Tok_Next_A =>
Res := Parse_Range_Property (N_Next_A, False);
when Tok_Next_A_Em =>
Res := Parse_Range_Property (N_Next_A, True);
when Tok_Next_E =>
Res := Parse_Range_Property (N_Next_E, False);
when Tok_Next_E_Em =>
Res := Parse_Range_Property (N_Next_E, True);
when Tok_Next_Event =>
Res := Create_Node_Loc (N_Next_Event);
Scan;
Set_Boolean (Res, Parse_Parenthesis_Boolean);
if Current_Token = Tok_Left_Bracket then
Set_Number (Res, Parse_Bracket_Number);
end if;
Set_Property (Res, Parse_Parenthesis_FL_Property);
when Tok_Next_Event_A =>
Res := Parse_Boolean_Range_Property (N_Next_Event_A, False);
when Tok_Next_Event_A_Em =>
Res := Parse_Boolean_Range_Property (N_Next_Event_A, True);
when Tok_Next_Event_E =>
Res := Parse_Boolean_Range_Property (N_Next_Event_E, False);
when Tok_Next_Event_E_Em =>
Res := Parse_Boolean_Range_Property (N_Next_Event_E, True);
when Tok_Left_Paren =>
Res := Parse_Parenthesis_FL_Property;
if Get_Kind (Res) = N_HDL_Expr then
-- Might be a boolean expression followed by a SERE repeatition
Res := Parse_Boolean_Repeated_Sequence (Res);
Res := Parse_Sequence_Repeated_Sequence (Res);
-- TODO: can be then a SERE (: ; | & && within)
end if;
when Tok_Left_Curly =>
Res := Parse_Psl_Sequence_Or_SERE (True);
if Get_Kind (Res) = N_Braced_SERE
and then Current_Token = Tok_Left_Paren
then
-- FIXME: must check that RES is really a sequence
-- (and not a SERE).
Tmp := Create_Node_Loc (N_Overlap_Imp_Seq);
Set_Sequence (Tmp, Res);
Set_Property (Tmp, Parse_Parenthesis_FL_Property);
Res := Tmp;
end if;
when others =>
Res := Parse_Psl_Sequence_Or_SERE (False);
end case;
return Res;
end Parse_FL_Property_1;
function Parse_St_Binary_FL_Property
(K : Nkind; Left : Node; Strong : Boolean; Inclusive : Boolean)
return Node
is
Res : Node;
begin
Res := Create_Node_Loc (K);
Set_Strong_Flag (Res, Strong);
Set_Inclusive_Flag (Res, Inclusive);
Scan;
Set_Left (Res, Left);
Set_Right (Res, Parse_FL_Property (Prio_FL_Bounding));
return Res;
end Parse_St_Binary_FL_Property;
function Parse_Binary_FL_Property (K : Nkind; Left : Node; Prio : Priority)
return Node
is
Res : Node;
begin
Res := Create_Node_Loc (K);
Scan;
Set_Left (Res, Left);
Set_Right (Res, Parse_FL_Property (Prio));
return Res;
end Parse_Binary_FL_Property;
-- During LR parsing, phrases before |-> and |=> are parsed as properties,
-- but they are in fact sequences. Convert them (in particular the
-- boolean operators need to be rewritten).
function Property_To_Sequence (N : Node) return Node
is
procedure Rewrite_Binary (Res : Node; N : Node) is
begin
Set_Location (Res, Get_Location (N));
Set_Left (Res, Property_To_Sequence (Get_Left (N)));
Set_Right (Res, Property_To_Sequence (Get_Right (N)));
Free_Node (N);
end Rewrite_Binary;
Res : Node;
begin
case Get_Kind (N) is
when N_Sequence_Instance
| N_Star_Repeat_Seq
| N_Plus_Repeat_Seq
| N_Equal_Repeat_Seq
| N_Goto_Repeat_Seq
| N_Braced_SERE
| N_Clocked_SERE =>
return N;
when N_And_Prop =>
Res := Create_Node (N_And_Seq);
Rewrite_Binary (Res, N);
return Res;
when N_Or_Prop =>
Res := Create_Node (N_Or_Seq);
Rewrite_Binary (Res, N);
return Res;
when N_Before =>
Set_Left (N, Property_To_Sequence (Get_Left (N)));
Set_Right (N, Property_To_Sequence (Get_Right (N)));
return N;
when N_Clock_Event
| N_Always
| N_Never
| N_Eventually
| N_Until
| N_Property_Parameter
| N_Property_Instance
| N_Endpoint_Instance
| N_Strong
| N_Abort
| N_Next_Event_E
| N_Next_Event_A
| N_Next_Event
| N_Next_E
| N_Next_A
| N_Next
| N_Log_Imp_Prop
| N_Log_Equiv_Prop
| N_Paren_Prop =>
Error_Msg_Parse (+N, "construct not allowed in sequences");
return N;
when N_Const_Parameter
| N_Boolean_Parameter
| N_Sequence_Parameter
| N_Actual
| N_And_Seq
| N_Or_Seq
| N_Imp_Seq
| N_Equiv_Bool
| N_Overlap_Imp_Seq
| N_Match_And_Seq
| N_Imp_Bool
| N_Or_Bool
| N_And_Bool
| N_Not_Bool
| N_Paren_Bool
| N_Fusion_SERE
| N_HDL_Expr
| N_HDL_Bool
| N_Hdl_Mod_Name
| N_Concat_SERE
| N_Within_SERE
| N_False
| N_True
| N_Number
| N_Name_Decl
| N_Name
| N_EOS
| N_Error =>
return N;
when N_Vmode
| N_Vunit
| N_Vprop
| N_Assert_Directive
| N_Property_Declaration
| N_Sequence_Declaration
| N_Endpoint_Declaration =>
raise Internal_Error;
end case;
end Property_To_Sequence;
-- A.4.4 PSL properties
-- FL_Property::=
-- Boolean
-- | ( FL_Property )
-- | Sequence [ ! ]
-- | FL_property_name [ ( Actual_Parameter_List ) ]
-- | FL_Property @ Clock_Expression
-- | FL_Property abort Boolean
-- | FL_Property async_abort Boolean
-- | FL_Property sync_abort Boolean
-- | Parameterized_Property
-- | NOT_OP FL_Property
-- | FL_Property AND_OP FL_Property
-- | FL_Property OR_OP FL_Property
-- | FL_Property -> FL_Property
-- | FL_Property <-> FL_Property
-- | always FL_Property
-- | never FL_Property
-- | next FL_Property
-- | next! FL_Property
-- | eventually! FL_Property
-- | FL_Property until! FL_Property
-- | FL_Property until FL_Property
-- | FL_Property until!_ FL_Property
-- | FL_Property until_ FL_Property
-- | FL_Property before! FL_Property
-- | FL_Property before FL_Property
-- | FL_Property before!_ FL_Property
-- | FL_Property before_ FL_Property
-- | next [ Number ] ( FL_Property )
-- | next! [ Number ] ( FL_Property )
-- | next_a [ finite_Range ] ( FL_Property )
-- | next_a! [ finite_Range ] ( FL_Property )
-- | next_e [ finite_Range ] ( FL_Property )
-- | next_e! [ finite_Range ] ( FL_Property )
-- | next_event! ( Boolean ) ( FL_Property )
-- | next_event ( Boolean ) ( FL_Property )
-- | next_event! ( Boolean ) [ positive_Number ] ( FL_Property )
-- | next_event ( Boolean ) [ positive_Number ] ( FL_Property )
-- | next_event_a! ( Boolean ) [ finite_positive_Range ] ( FL_Property )
-- | next_event_a ( Boolean ) [ finite_positive_Range ] ( FL_Property )
-- | next_event_e! ( Boolean ) [ finite_positive_Range ] ( FL_Property )
-- | next_event_e ( Boolean ) [ finite_positive_Range ] ( FL_Property )
-- | { SERE } ( FL_Property )
-- | Sequence |-> FL_Property
-- | Sequence |=> FL_Property
function Parse_FL_Property (Prio : Priority) return Node
is
Res : Node;
N : Node;
begin
Res := Parse_FL_Property_1;
loop
case Current_Token is
when Tok_Minus_Greater =>
-- ->
if Prio > Prio_Bool_Imp then
return Res;
end if;
N := Create_Node_Loc (N_Log_Imp_Prop);
Set_Left (N, Res);
Scan;
Set_Right (N, Parse_FL_Property (Prio_Bool_Imp));
Res := N;
when Tok_Equiv_Arrow =>
if Prio > Prio_Bool_Imp then
return Res;
end if;
N := Create_Node_Loc (N_Log_Equiv_Prop);
Set_Left (N, Res);
Scan;
Set_Right (N, Parse_FL_Property (Prio_Bool_Imp));
Res := N;
when Tok_Bar_Arrow =>
if Prio > Prio_Seq_Imp then
return Res;
end if;
N := Create_Node_Loc (N_Overlap_Imp_Seq);
Set_Sequence (N, Property_To_Sequence (Res));
Scan;
Set_Property (N, Parse_FL_Property (Prio_Seq_Imp));
Res := N;
when Tok_Bar_Double_Arrow =>
if Prio > Prio_Seq_Imp then
return Res;
end if;
N := Create_Node_Loc (N_Imp_Seq);
Set_Sequence (N, Property_To_Sequence (Res));
Scan;
Set_Property (N, Parse_FL_Property (Prio_Seq_Imp));
Res := N;
when Tok_Abort =>
if Prio > Prio_FL_Abort then
return Res;
end if;
N := Create_Node_Loc (N_Abort);
Set_Property (N, Res);
Scan;
Set_Boolean (N, Parse_Boolean (Prio_Lowest));
-- Left associative.
return N;
when Tok_Exclam_Mark =>
N := Create_Node_Loc (N_Strong);
Set_Property (N, Res);
Scan;
Res := N;
when Tok_Until =>
if Prio > Prio_FL_Bounding then
return Res;
end if;
Res := Parse_St_Binary_FL_Property (N_Until, Res, False, False);
when Tok_Until_Em =>
if Prio > Prio_FL_Bounding then
return Res;
end if;
Res := Parse_St_Binary_FL_Property (N_Until, Res, True, False);
when Tok_Until_Un =>
if Prio > Prio_FL_Bounding then
return Res;
end if;
Res := Parse_St_Binary_FL_Property (N_Until, Res, False, True);
when Tok_Until_Em_Un =>
if Prio > Prio_FL_Bounding then
return Res;
end if;
Res := Parse_St_Binary_FL_Property (N_Until, Res, True, True);
when Tok_Before =>
if Prio > Prio_FL_Bounding then
return Res;
end if;
Res := Parse_St_Binary_FL_Property
(N_Before, Res, False, False);
when Tok_Before_Em =>
if Prio > Prio_FL_Bounding then
return Res;
end if;
Res := Parse_St_Binary_FL_Property (N_Before, Res, True, False);
when Tok_Before_Un =>
if Prio > Prio_FL_Bounding then
return Res;
end if;
Res := Parse_St_Binary_FL_Property (N_Before, Res, False, True);
when Tok_Before_Em_Un =>
if Prio > Prio_FL_Bounding then
return Res;
end if;
Res := Parse_St_Binary_FL_Property (N_Before, Res, True, True);
when Tok_Or =>
if Prio > Prio_Seq_Or then
return Res;
end if;
Res := Parse_Binary_FL_Property (N_Or_Prop, Res, Prio_Seq_Or);
when Tok_And =>
if Prio > Prio_Seq_And then
return Res;
end if;
Res := Parse_Binary_FL_Property (N_And_Prop, Res, Prio_Seq_And);
when Token_Relational_Operator_Type =>
return Vhdl_To_Psl
(Parse.Parse_Binary_Expression
(Psl_To_Vhdl (Res), Parse.Prio_Relation));
when Tok_Colon
| Tok_Bar
| Tok_Ampersand
| Tok_And_And =>
Error_Msg_Parse ("SERE operator '" & Image (Current_Token)
& "' is not allowed in property");
Scan;
N := Parse_FL_Property (Prio_Lowest);
return Res;
when Tok_Arobase =>
if Prio > Prio_Clock_Event then
return Res;
end if;
N := Create_Node_Loc (N_Clock_Event);
Set_Property (N, Res);
Scan;
Set_Boolean (N, Parse_Boolean (Prio_Clock_Event));
Res := N;
when others =>
return Res;
end case;
end loop;
end Parse_FL_Property;
-- A.4.4 PSL properties
-- Property ::=
-- FL_Property
-- | ...
function Parse_Psl_Property return PSL_Node is
begin
return Parse_FL_Property (Prio_Lowest);
end Parse_Psl_Property;
-- precond: identifier
-- postcond: ';'
--
-- 6.2.4.1 Property declaration
--
-- Property_Declaration ::=
-- PROPERTY psl_identifier [ ( Formal_Parameter_List ) ] DEF_SYM
-- property ;
function Parse_Psl_Declaration (Tok : Token_Type) return PSL_Node
is
Res : Node;
Param : Node;
Last_Param : Node;
Pkind : Nkind;
Kind : Nkind;
begin
case Tok is
when Tok_Property =>
Kind := N_Property_Declaration;
when Tok_Sequence =>
Kind := N_Sequence_Declaration;
when Tok_Psl_Endpoint =>
Kind := N_Endpoint_Declaration;
when others =>
raise Internal_Error;
end case;
Res := Create_Node_Loc (Kind);
if Current_Token = Tok_Identifier then
Set_Identifier (Res, Current_Identifier);
Scan;
end if;
-- Formal parameter list.
if Current_Token = Tok_Left_Paren then
Last_Param := Null_Node;
loop
-- precond: '(' or ';'.
Scan;
case Current_Token is
when Tok_Psl_Const =>
Pkind := N_Const_Parameter;
when Tok_Psl_Boolean =>
Pkind := N_Boolean_Parameter;
when Tok_Property =>
Pkind := N_Property_Parameter;
when Tok_Sequence =>
Pkind := N_Sequence_Parameter;
when others =>
Error_Msg_Parse ("parameter type expected");
end case;
-- Formal parameters.
loop
-- precond: parameter_type or ','
Scan;
Param := Create_Node_Loc (Pkind);
if Current_Token /= Tok_Identifier then
Error_Msg_Parse ("identifier for parameter expected");
else
Set_Identifier (Param, Current_Identifier);
end if;
if Last_Param = Null_Node then
Set_Parameter_List (Res, Param);
else
Set_Chain (Last_Param, Param);
end if;
Last_Param := Param;
Scan;
exit when Current_Token /= Tok_Comma;
end loop;
exit when Current_Token = Tok_Right_Paren;
if Current_Token /= Tok_Semi_Colon then
Error_Msg_Parse ("';' expected between formal parameter");
end if;
end loop;
Scan;
end if;
if Current_Token /= Tok_Is then
Error_Msg_Parse ("'is' expected after identifier");
else
-- Skip 'is'.
Scan;
end if;
case Kind is
when N_Property_Declaration =>
Set_Property (Res, Parse_Psl_Property);
when N_Sequence_Declaration
| N_Endpoint_Declaration =>
Set_Sequence (Res, Parse_Psl_Sequence);
when others =>
raise Internal_Error;
end case;
return Res;
end Parse_Psl_Declaration;
function Is_Instantiated_Declaration (N : PSL_Node) return Boolean is
begin
return Get_Parameter_List (N) = Null_Node;
end Is_Instantiated_Declaration;
end Vhdl.Parse_Psl;
|