1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
|
-- Semantic analysis.
-- Copyright (C) 2002, 2003, 2004, 2005 Tristan Gingold
--
-- This program is free software: you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation, either version 2 of the License, or
-- (at your option) any later version.
--
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with this program. If not, see <gnu.org/licenses>.
with Grt.Algos;
with Errorout; use Errorout;
with Name_Table;
with Str_Table;
with Flags; use Flags;
with Vhdl.Std_Package; use Vhdl.Std_Package;
with Vhdl.Errors; use Vhdl.Errors;
with Vhdl.Utils; use Vhdl.Utils;
with Vhdl.Evaluation; use Vhdl.Evaluation;
with Vhdl.Nodes_Utils; use Vhdl.Nodes_Utils;
with Vhdl.Sem_Scopes; use Vhdl.Sem_Scopes;
with Vhdl.Sem_Names; use Vhdl.Sem_Names;
with Vhdl.Sem;
with Vhdl.Sem_Types;
with Vhdl.Sem_Stmts; use Vhdl.Sem_Stmts;
with Vhdl.Sem_Assocs; use Vhdl.Sem_Assocs;
with Vhdl.Sem_Decls;
with Vhdl.Sem_Psl;
with Vhdl.Xrefs; use Vhdl.Xrefs;
with Vhdl.Ieee.Std_Logic_1164;
with Vhdl.Ieee.Numeric;
package body Vhdl.Sem_Expr is
-- Replace type of TARGET by A_TYPE.
-- If TARGET has already a type, it must be an overload list, and in this
-- case, this list is freed, or it must be A_TYPE.
-- A_TYPE can't be an overload list.
--
-- This procedure can be called in the second pass, when the type is known.
procedure Replace_Type (Target: Iir; A_Type: Iir)
is
Old_Type: Iir;
begin
pragma Assert (not Is_Overload_List (A_Type));
Old_Type := Get_Type (Target);
if Old_Type /= Null_Iir then
if Is_Overload_List (Old_Type) then
Free_Iir (Old_Type);
elsif Old_Type = A_Type then
return;
else
-- Cannot replace an existing type by another one.
raise Internal_Error;
end if;
end if;
if A_Type = Null_Iir then
return;
end if;
Set_Type (Target, A_Type);
end Replace_Type;
-- Return true if EXPR is overloaded, ie has several meanings.
function Is_Overloaded (Expr : Iir) return Boolean
is
Expr_Type : constant Iir := Get_Type (Expr);
begin
return Expr_Type = Null_Iir or else Is_Overload_List (Expr_Type);
end Is_Overloaded;
-- Return the common type of base types LEFT and RIGHT.
-- LEFT are RIGHT must be really base types (not subtypes).
-- Roughly speaking, it returns LEFT (= RIGHT) if LEFT = RIGHT (ie, same
-- type), null otherwise.
-- However, it handles implicite conversions of universal types.
function Get_Common_Basetype (Left: Iir; Right: Iir)
return Iir is
begin
if Left = Right then
return Left;
end if;
case Get_Kind (Left) is
when Iir_Kind_Integer_Type_Definition =>
if Right = Convertible_Integer_Type_Definition then
return Left;
elsif Left = Convertible_Integer_Type_Definition
and then Get_Kind (Right) = Iir_Kind_Integer_Type_Definition
then
return Right;
end if;
when Iir_Kind_Floating_Type_Definition =>
if Right = Convertible_Real_Type_Definition then
return Left;
elsif Left = Convertible_Real_Type_Definition
and then Get_Kind (Right) = Iir_Kind_Floating_Type_Definition
then
return Right;
end if;
when others =>
null;
end case;
return Null_Iir;
end Get_Common_Basetype;
-- LEFT are RIGHT must be really a type (not a subtype).
function Are_Basetypes_Compatible (Left: Iir; Right: Iir)
return Compatibility_Level is
begin
if Left = Right then
return Fully_Compatible;
end if;
case Get_Kind (Left) is
when Iir_Kind_Integer_Type_Definition =>
if Right = Convertible_Integer_Type_Definition then
if Left = Universal_Integer_Type_Definition then
return Fully_Compatible;
else
return Via_Conversion;
end if;
elsif Left = Convertible_Integer_Type_Definition
and then Get_Kind (Right) = Iir_Kind_Integer_Type_Definition
then
if Right = Universal_Integer_Type_Definition then
return Fully_Compatible;
else
return Via_Conversion;
end if;
end if;
when Iir_Kind_Floating_Type_Definition =>
if Right = Convertible_Real_Type_Definition then
if Left = Universal_Real_Type_Definition then
return Fully_Compatible;
else
return Via_Conversion;
end if;
elsif Left = Convertible_Real_Type_Definition
and then Get_Kind (Right) = Iir_Kind_Floating_Type_Definition
then
if Right = Universal_Real_Type_Definition then
return Fully_Compatible;
else
return Via_Conversion;
end if;
end if;
when Iir_Kind_Foreign_Vector_Type_Definition =>
declare
use Vhdl.Ieee.Std_Logic_1164;
El_Type : Iir;
begin
if Right = Bit_Type_Definition
or else Right = Boolean_Type_Definition
or else Right = Bit_Vector_Type_Definition
or else Right = Std_Logic_Type
or else Right = Std_Ulogic_Type
then
return Fully_Compatible;
end if;
if Get_Kind (Right) = Iir_Kind_Array_Type_Definition then
El_Type := Get_Base_Type (Get_Element_Subtype (Right));
if El_Type = Std_Logic_Type
or else El_Type = Std_Ulogic_Type
or else El_Type = Bit_Type_Definition
then
return Fully_Compatible;
end if;
end if;
end;
when others =>
null;
end case;
return Not_Compatible;
end Are_Basetypes_Compatible;
function Are_Types_Compatible (Left: Iir; Right: Iir)
return Compatibility_Level is
begin
return Are_Basetypes_Compatible (Get_Base_Type (Left),
Get_Base_Type (Right));
end Are_Types_Compatible;
function Are_Nodes_Compatible (Left: Iir; Right: Iir)
return Compatibility_Level is
begin
return Are_Types_Compatible (Get_Type (Left), Get_Type (Right));
end Are_Nodes_Compatible;
-- Return TRUE iif LEFT_TYPE and RIGHT_TYPES are compatible. RIGHT_TYPES
-- may be an overload list.
function Compatibility_Types1 (Left_Type : Iir; Right_Types : Iir)
return Compatibility_Level
is
El : Iir;
Right_List : Iir_List;
It : List_Iterator;
Level : Compatibility_Level;
begin
pragma Assert (not Is_Overload_List (Left_Type));
if Is_Overload_List (Right_Types) then
Right_List := Get_Overload_List (Right_Types);
Level := Not_Compatible;
It := List_Iterate (Right_List);
while Is_Valid (It) loop
El := Get_Element (It);
Level := Compatibility_Level'Max
(Level, Are_Types_Compatible (Left_Type, El));
if Level = Fully_Compatible then
return Fully_Compatible;
end if;
Next (It);
end loop;
return Level;
else
return Are_Types_Compatible (Left_Type, Right_Types);
end if;
end Compatibility_Types1;
-- Return compatibility for nodes LEFT and RIGHT.
-- LEFT is expected to be an interface of a function definition.
-- Type of RIGHT can be an overload_list
-- RIGHT might be implicitly converted to LEFT.
function Compatibility_Nodes (Left : Iir; Right : Iir)
return Compatibility_Level
is
Left_Type : constant Iir := Get_Base_Type (Get_Type (Left));
Right_Type : constant Iir := Get_Type (Right);
begin
-- Check.
case Get_Kind (Left_Type) is
when Iir_Kind_Floating_Type_Definition
| Iir_Kind_Enumeration_Type_Definition
| Iir_Kind_Integer_Type_Definition
| Iir_Kind_Record_Type_Definition
| Iir_Kind_File_Type_Definition
| Iir_Kind_Physical_Type_Definition
| Iir_Kind_Access_Type_Definition
| Iir_Kind_Array_Type_Definition =>
null;
when others =>
Error_Kind ("compatibility_nodes", Left_Type);
end case;
return Compatibility_Types1 (Left_Type, Right_Type);
end Compatibility_Nodes;
function Is_String_Type (A_Type : Iir) return Boolean
is
Base_Type : constant Iir := Get_Base_Type (A_Type);
El_Bt : Iir;
begin
-- LRM 7.3.1
-- [...] the type of the literal must be a one-dimensional array ...
if not Is_One_Dimensional_Array_Type (Base_Type) then
return False;
end if;
-- LRM 7.3.1
-- ... of a character type ...
El_Bt := Get_Base_Type (Get_Element_Subtype (Base_Type));
if Get_Kind (El_Bt) /= Iir_Kind_Enumeration_Type_Definition then
return False;
end if;
if not Get_Is_Character_Type (El_Bt) then
return False;
end if;
return True;
end Is_String_Type;
-- Return TRUE iff A_TYPE can be the type of string or bit string literal
-- EXPR. EXPR is needed to distinguish between string and bit string
-- for VHDL87 rule about the type of a bit string.
function Is_String_Literal_Type (A_Type : Iir; Expr : Iir) return Boolean
is
El_Bt : Iir;
begin
if not Is_String_Type (A_Type) then
return False;
end if;
El_Bt := Get_Base_Type (Get_Element_Subtype (A_Type));
-- LRM87 7.3.1
-- ... (for string literals) or of type BIT (for bit string literals).
if Flags.Vhdl_Std = Vhdl_87
and then Get_Bit_String_Base (Expr) /= Base_None
and then El_Bt /= Bit_Type_Definition
then
return False;
end if;
return True;
end Is_String_Literal_Type;
-- Return TRUE iff A_TYPE can be the type of an aggregate.
function Is_Aggregate_Type (A_Type : Iir) return Boolean is
begin
-- LRM 7.3.2 Aggregates
-- [...] the type of the aggregate must be a composite type.
case Get_Kind (Get_Base_Type (A_Type)) is
when Iir_Kind_Array_Type_Definition
| Iir_Kind_Record_Type_Definition =>
return True;
when others =>
return False;
end case;
end Is_Aggregate_Type;
-- Return TRUE iff A_TYPE can be the type of a null literal.
function Is_Null_Literal_Type (A_Type : Iir) return Boolean is
begin
-- LRM 7.3.1 Literals
-- The literal NULL represents the null access value for any access
-- type.
return
Get_Kind (Get_Base_Type (A_Type)) = Iir_Kind_Access_Type_Definition;
end Is_Null_Literal_Type;
-- Return TRUE iff A_TYPE can be the type of allocator EXPR. Note that
-- the allocator must have been analyzed.
function Is_Allocator_Type (A_Type : Iir; Expr : Iir) return Boolean
is
Base_Type : constant Iir := Get_Base_Type (A_Type);
Designated_Type : Iir;
begin
-- LRM 7.3.6 Allocators
-- [...] the value returned is of an access type having the named
-- designated type.
if Get_Kind (Base_Type) /= Iir_Kind_Access_Type_Definition then
return False;
end if;
Designated_Type := Get_Allocator_Designated_Type (Expr);
pragma Assert (Designated_Type /= Null_Iir);
-- Cheat: there is no allocators on universal types.
return Get_Base_Type (Get_Designated_Type (Base_Type))
= Get_Base_Type (Designated_Type);
end Is_Allocator_Type;
-- Return TRUE iff the type of EXPR is compatible with A_TYPE
function Is_Expr_Compatible (A_Type : Iir; Expr : Iir)
return Compatibility_Level
is
Expr_Type : constant Iir := Get_Type (Expr);
Is_Compatible : Boolean;
begin
if Expr_Type /= Null_Iir then
return Compatibility_Types1 (A_Type, Expr_Type);
end if;
case Get_Kind (Expr) is
when Iir_Kind_Aggregate =>
Is_Compatible := Is_Aggregate_Type (A_Type);
when Iir_Kind_String_Literal8 =>
Is_Compatible := Is_String_Literal_Type (A_Type, Expr);
when Iir_Kind_Null_Literal =>
Is_Compatible := Is_Null_Literal_Type (A_Type);
when Iir_Kind_Allocator_By_Expression
| Iir_Kind_Allocator_By_Subtype =>
Is_Compatible := Is_Allocator_Type (A_Type, Expr);
when Iir_Kind_Parenthesis_Expression =>
return Is_Expr_Compatible (A_Type, Get_Expression (Expr));
when others =>
-- Error while EXPR was typed. FIXME: should create an ERROR
-- node?
Is_Compatible := False;
end case;
if Is_Compatible then
return Fully_Compatible;
else
return Not_Compatible;
end if;
end Is_Expr_Compatible;
function Is_Expression (Expr : Iir) return Boolean is
begin
if Expr = Null_Iir then
return True;
end if;
case Get_Kind (Expr) is
when Iir_Kind_Type_Declaration
| Iir_Kind_Subtype_Declaration
| Iir_Kinds_Subtype_Definition
| Iir_Kind_Design_Unit
| Iir_Kind_Architecture_Body
| Iir_Kind_Configuration_Declaration
| Iir_Kind_Entity_Declaration
| Iir_Kind_Package_Declaration
| Iir_Kind_Package_Instantiation_Declaration
| Iir_Kinds_Concurrent_Statement
| Iir_Kinds_Sequential_Statement
| Iir_Kind_Library_Declaration
| Iir_Kind_Library_Clause
| Iir_Kind_Component_Declaration
| Iir_Kind_Procedure_Declaration
| Iir_Kind_Range_Array_Attribute
| Iir_Kind_Reverse_Range_Array_Attribute
| Iir_Kind_Subtype_Attribute
| Iir_Kind_Element_Attribute
| Iir_Kind_Element_Declaration
| Iir_Kind_Attribute_Declaration
| Iir_Kind_Psl_Declaration
| Iir_Kind_Signature
| Iir_Kind_Interface_Terminal_Declaration
| Iir_Kind_Terminal_Declaration =>
return False;
when Iir_Kind_Function_Declaration =>
return True;
when Iir_Kind_Overload_List =>
return True;
when Iir_Kinds_Literal
| Iir_Kind_Character_Literal
| Iir_Kind_Simple_Aggregate
| Iir_Kind_Unit_Declaration
| Iir_Kind_Enumeration_Literal =>
return True;
when Iir_Kinds_External_Name =>
return True;
when Iir_Kinds_Object_Declaration
| Iir_Kind_Aggregate
| Iir_Kind_Allocator_By_Expression
| Iir_Kind_Allocator_By_Subtype
| Iir_Kind_Qualified_Expression
| Iir_Kind_Overflow_Literal =>
return True;
when Iir_Kinds_Dyadic_Operator
| Iir_Kinds_Monadic_Operator =>
return True;
when Iir_Kind_Slice_Name
| Iir_Kind_Indexed_Name
| Iir_Kind_Selected_Element
| Iir_Kind_Dereference
| Iir_Kind_Implicit_Dereference
| Iir_Kinds_Expression_Attribute
| Iir_Kind_Attribute_Value
| Iir_Kind_Parenthesis_Expression
| Iir_Kind_Type_Conversion
| Iir_Kind_Function_Call =>
return True;
when Iir_Kind_Psl_Endpoint_Declaration
| Iir_Kind_Psl_Boolean_Parameter
| Iir_Kind_Psl_Prev
| Iir_Kind_Psl_Stable
| Iir_Kind_Psl_Rose
| Iir_Kind_Psl_Fell
| Iir_Kind_Psl_Onehot
| Iir_Kind_Psl_Onehot0 =>
return True;
when Iir_Kind_Simple_Name
| Iir_Kind_Parenthesis_Name
| Iir_Kind_Attribute_Name
| Iir_Kind_Selected_Name
| Iir_Kind_Selected_By_All_Name =>
return True;
when Iir_Kind_Error =>
return True;
when others =>
Error_Kind ("is_expression", Expr);
end case;
end Is_Expression;
function Check_Is_Expression (Expr : Iir; Loc : Iir) return Iir is
begin
if Expr = Null_Iir then
return Null_Iir;
end if;
if Is_Expression (Expr) then
return Expr;
else
Error_Msg_Sem (+Loc, "%n not allowed in an expression", +Expr);
return Null_Iir;
end if;
end Check_Is_Expression;
-- Find a type compatible with A_TYPE in TYPE_LIST (which can be an
-- overload list or a simple type) and return it.
-- In case of failure, return null.
function Search_Overloaded_Type (Type_List: Iir; A_Type: Iir)
return Iir
is
Type_List_List : Iir_List;
It : List_Iterator;
El: Iir;
Com : Iir;
Res : Iir;
begin
if not Is_Overload_List (Type_List) then
return Get_Common_Basetype (Get_Base_Type (Type_List),
Get_Base_Type (A_Type));
else
Type_List_List := Get_Overload_List (Type_List);
Res := Null_Iir;
It := List_Iterate (Type_List_List);
while Is_Valid (It) loop
El := Get_Element (It);
Com := Get_Common_Basetype (Get_Base_Type (El),
Get_Base_Type (A_Type));
if Com /= Null_Iir then
if Res = Null_Iir then
Res := Com;
else
-- Several compatible types.
return Null_Iir;
end if;
end if;
Next (It);
end loop;
return Res;
end if;
end Search_Overloaded_Type;
-- LIST1, LIST2 are either a type node or an overload list of types.
-- Return THE type which is compatible with LIST1 are LIST2.
-- Return null_iir if there is no such type or if there are several types.
function Search_Compatible_Type (List1, List2 : Iir) return Iir
is
List1_List : Iir_List;
It : List_Iterator;
Res : Iir;
El : Iir;
Tmp : Iir;
begin
if Is_Overload_List (List1) then
List1_List := Get_Overload_List (List1);
Res := Null_Iir;
It := List_Iterate (List1_List);
while Is_Valid (It) loop
El := Get_Element (It);
Tmp := Search_Overloaded_Type (List2, El);
if Tmp /= Null_Iir then
if Res = Null_Iir then
Res := Tmp;
else
-- Several types match.
return Null_Iir;
end if;
end if;
Next (It);
end loop;
return Res;
else
return Search_Overloaded_Type (List2, List1);
end if;
end Search_Compatible_Type;
-- Analyze the range expression EXPR.
-- If A_TYPE is not null_iir, EXPR is expected to be of type A_TYPE.
-- LRM93 3.2.1.1
-- FIXME: avoid to run it on an already analyzed node, be careful
-- with range_type_expr.
function Sem_Simple_Range_Expression
(Expr: Iir_Range_Expression; A_Type: Iir) return Iir_Range_Expression
is
Base_Type: Iir;
Left, Right: Iir;
Left_Type, Right_Type : Iir;
Expr_Type : Iir;
begin
Expr_Type := Get_Type (Expr);
Left := Get_Left_Limit_Expr (Expr);
Right := Get_Right_Limit_Expr (Expr);
if Expr_Type = Null_Iir then
-- Pass 1.
if A_Type = Null_Iir then
Base_Type := Null_Iir;
else
Base_Type := Get_Base_Type (A_Type);
end if;
-- Analyze left and right bounds.
Right := Sem_Expression_Ov (Right, Base_Type);
Left := Sem_Expression_Ov (Left, Base_Type);
if Left = Null_Iir or else Right = Null_Iir then
if A_Type /= Null_Iir then
-- Can continue with the error.
if Left = Null_Iir then
Left := Create_Error_Expr
(Get_Left_Limit_Expr (Expr), A_Type);
end if;
if Right = Null_Iir then
Right := Create_Error_Expr
(Get_Right_Limit_Expr (Expr), A_Type);
end if;
else
-- Error.
return Null_Iir;
end if;
end if;
Left_Type := Get_Type (Left);
Right_Type := Get_Type (Right);
-- Check for string or aggregate literals
-- FIXME: improve error message
if Left_Type = Null_Iir then
Error_Msg_Sem (+Left, "bad expression for a scalar");
return Null_Iir;
end if;
if Right_Type = Null_Iir then
Error_Msg_Sem (+Right, "bad expression for a scalar");
return Null_Iir;
end if;
if Is_Overload_List (Left_Type)
or else Is_Overload_List (Right_Type)
then
if Base_Type /= Null_Iir then
-- Cannot happen, since sem_expression_ov should resolve
-- ambiguties if a type is given.
raise Internal_Error;
end if;
-- Try to find a common type.
Expr_Type := Search_Compatible_Type (Left_Type, Right_Type);
if Expr_Type = Null_Iir then
if Compatibility_Types1 (Universal_Integer_Type_Definition,
Left_Type) /= Not_Compatible
and then
Compatibility_Types1 (Universal_Integer_Type_Definition,
Right_Type) /= Not_Compatible
then
Expr_Type := Universal_Integer_Type_Definition;
elsif Compatibility_Types1 (Universal_Real_Type_Definition,
Left_Type) /= Not_Compatible
and then
Compatibility_Types1 (Universal_Real_Type_Definition,
Right_Type) /= Not_Compatible
then
Expr_Type := Universal_Real_Type_Definition;
else
-- FIXME: handle overload
Error_Msg_Sem
(+Expr,
"left and right expressions of range are not compatible");
return Null_Iir;
end if;
end if;
Left := Sem_Expression (Left, Expr_Type);
Right := Sem_Expression (Right, Expr_Type);
if Left = Null_Iir or else Right = Null_Iir then
return Null_Iir;
end if;
else
Expr_Type := Get_Common_Basetype (Get_Base_Type (Left_Type),
Get_Base_Type (Right_Type));
if Expr_Type = Null_Iir then
Error_Msg_Sem
(+Expr,
"left and right expressions of range are not compatible");
return Null_Iir;
end if;
end if;
-- The type of the range is known, finish analysis.
else
-- Second call.
pragma Assert (A_Type /= Null_Iir);
if Is_Overload_List (Expr_Type) then
-- FIXME: resolve overload
raise Internal_Error;
else
if Are_Types_Compatible (Expr_Type, A_Type) = Not_Compatible then
Error_Msg_Sem
(+Expr, "type of range doesn't match expected type");
return Null_Iir;
end if;
return Expr;
end if;
end if;
Check_Read (Left);
Check_Read (Right);
Left := Eval_Expr_If_Static (Left);
Right := Eval_Expr_If_Static (Right);
Set_Left_Limit_Expr (Expr, Left);
Set_Right_Limit_Expr (Expr, Right);
Set_Left_Limit (Expr, Left);
Set_Right_Limit (Expr, Right);
Set_Expr_Staticness (Expr, Min (Get_Expr_Staticness (Left),
Get_Expr_Staticness (Right)));
if A_Type /= Null_Iir then
if Are_Types_Compatible (Expr_Type, A_Type) = Not_Compatible then
Error_Msg_Sem (+Expr, "type of range doesn't match expected type");
return Null_Iir;
end if;
-- Use A_TYPE for the type of the expression.
Expr_Type := A_Type;
end if;
Set_Type (Expr, Expr_Type);
if Get_Kind (Expr_Type)
not in Iir_Kinds_Scalar_Type_And_Subtype_Definition
then
Error_Msg_Sem (+Expr, "type of range is not a scalar type");
return Null_Iir;
end if;
return Expr;
end Sem_Simple_Range_Expression;
-- The result can be:
-- a subtype definition
-- a range attribute
-- a range type definition
-- LRM93 3.2.1.1
-- FIXME: avoid to run it on an already analyzed node, be careful
-- with range_type_expr.
function Sem_Range_Expression (Expr: Iir; A_Type: Iir) return Iir
is
Res : Iir;
Res_Type : Iir;
begin
case Get_Kind (Expr) is
when Iir_Kind_Range_Expression =>
Res := Sem_Simple_Range_Expression (Expr, A_Type);
return Res;
when Iir_Kinds_Denoting_Name
| Iir_Kind_Attribute_Name
| Iir_Kind_Parenthesis_Name =>
if Get_Named_Entity (Expr) = Null_Iir then
Sem_Name (Expr);
end if;
Res := Name_To_Range (Expr);
if Is_Error (Res) then
return Null_Iir;
end if;
case Get_Kind (Res) is
when Iir_Kind_Simple_Name
| Iir_Kind_Selected_Name =>
pragma Assert (Get_Kind (Get_Named_Entity (Res))
in Iir_Kinds_Type_Declaration);
Res_Type := Get_Type (Get_Named_Entity (Res));
when Iir_Kind_Range_Array_Attribute
| Iir_Kind_Reverse_Range_Array_Attribute =>
Res_Type := Get_Type (Res);
when others =>
Error_Msg_Sem (+Expr, "name must denote a range");
return Null_Iir;
end case;
if A_Type /= Null_Iir
and then Get_Base_Type (Res_Type) /= Get_Base_Type (A_Type)
then
Error_Not_Match (Expr, A_Type);
return Null_Iir;
end if;
when others =>
Error_Msg_Sem (+Expr, "range expression required");
return Null_Iir;
end case;
if Get_Kind (Res_Type)
not in Iir_Kinds_Scalar_Type_And_Subtype_Definition
then
Error_Msg_Sem (+Expr, "%n is not a range type", +Res);
return Null_Iir;
end if;
return Eval_Range_If_Static (Res);
end Sem_Range_Expression;
function Sem_Discrete_Range (Expr: Iir; A_Type: Iir) return Iir
is
Res : Iir;
Res_Type : Iir;
begin
if Get_Kind (Expr) = Iir_Kind_Subtype_Definition then
Res := Sem_Types.Sem_Subtype_Indication (Expr);
if Res = Null_Iir then
return Null_Iir;
end if;
Res_Type := Res;
if A_Type /= Null_Iir
and then (Are_Types_Compatible
(A_Type, Get_Type_Of_Subtype_Indication (Res))
= Not_Compatible)
then
-- A_TYPE is known when analyzing an index_constraint within
-- a subtype indication.
Error_Msg_Sem (+Expr, "subtype %n doesn't match expected type %n",
(+Res, +A_Type));
-- FIXME: override type of RES ?
end if;
else
Res := Sem_Range_Expression (Expr, A_Type);
if Res = Null_Iir then
return Null_Iir;
end if;
Res_Type := Get_Type (Res);
end if;
-- Check the type is discrete.
if Get_Kind (Res_Type) not in Iir_Kinds_Discrete_Type_Definition then
if Get_Kind (Res_Type) /= Iir_Kind_Error then
-- FIXME: avoid that test with error.
if Get_Kind (Res) not in Iir_Kinds_Denoting_Name then
Error_Msg_Sem (+Res, "range is not discrete");
else
Error_Msg_Sem
(+Expr, "%n is not a discrete range type", +Res);
end if;
end if;
return Null_Iir;
end if;
return Res;
end Sem_Discrete_Range;
function Sem_Discrete_Range_Integer (Expr: Iir) return Iir
is
Res : Iir;
Range_Type : Iir;
begin
Res := Sem_Discrete_Range (Expr, Null_Iir);
if Res = Null_Iir then
return Null_Iir;
end if;
if Get_Kind (Expr) /= Iir_Kind_Range_Expression then
return Res;
end if;
Range_Type := Get_Type (Res);
if Range_Type = Convertible_Integer_Type_Definition then
-- LRM 3.2.1.1 Index constraints and discrete ranges
-- For a discrete range used in a constrained array
-- definition and defined by a range, an implicit
-- conversion to the predefined type INTEGER is assumed
-- if each bound is either a numeric literal or an
-- attribute, and the type of both bounds (prior to the
-- implicit conversion) is the type universal_integer.
-- FIXME: catch phys/phys.
Set_Type (Res, Integer_Type_Definition);
if Get_Expr_Staticness (Res) = Locally then
Check_Range_Compatibility (Res, Integer_Subtype_Definition);
end if;
elsif Range_Type = Universal_Integer_Type_Definition then
if Vhdl_Std >= Vhdl_08 then
-- LRM08 5.3.2.2
-- For a discrete range used in a constrained array definition
-- and defined by a range, an implicit conversion to the
-- predefined type INTEGER is assumed if the type of both bounds
-- (prior the implicit conversion) is the type universal_integer.
null;
elsif Flag_Relaxed_Rules then
null;
elsif Vhdl_Std /= Vhdl_93 then
-- GHDL: this is not allowed, however often used:
-- eg: for i in 0 to v'length + 1 loop
-- eg: for i in -1 to 1 loop
-- Be tolerant.
Warning_Msg_Sem (Warnid_Universal, +Res,
"universal integer bound must be numeric literal "
& "or attribute");
else
Error_Msg_Sem (+Res, "universal integer bound must be numeric "
& "literal or attribute");
end if;
Set_Type (Res, Integer_Type_Definition);
if Get_Expr_Staticness (Res) = Locally then
Check_Range_Compatibility (Res, Integer_Subtype_Definition);
end if;
end if;
return Res;
end Sem_Discrete_Range_Integer;
function Is_Ieee_Operation (Imp : Iir) return Boolean
is
pragma Assert (Get_Kind (Imp) = Iir_Kind_Function_Declaration);
Parent : constant Iir := Get_Parent (Imp);
begin
-- TODO: numeric_bit, numeric_bit_unsigned, numeric_std_unsigned.
return Parent = Vhdl.Ieee.Numeric.Numeric_Std_Pkg
or Parent = Vhdl.Ieee.Std_Logic_1164.Std_Logic_1164_Pkg;
end Is_Ieee_Operation;
procedure Set_Function_Call_Staticness (Expr : Iir; Imp : Iir)
is
Staticness : Iir_Staticness;
begin
-- LRM93 7.4.1 (Locally Static Primaries)
-- 4. a function call whose function name denotes an implicitly
-- defined operator, and whose actual parameters are each
-- locally static expressions;
--
-- LRM93 7.4.2 (Globally Static Primaries)
-- 9. a function call whose function name denotes a pure function,
-- and whose actual parameters are each globally static
-- expressions.
--
-- LRM08 9.4.2 Locally statuc primaries
-- [...] if every operator in the expression denotes [...] an operator
-- defined in one of the packages STD_LOGIC_1164, NUMERIC_BIT,
-- NUMERIC_STD, NUMERIC_BIT_UNSIGNED or NUMERIC_STD_UNSIGNED in library
-- IEEE, and if every primary in the expression is a locally static
-- primary, where a locally static primary is defined to be one of the
-- following:
-- [...]
-- e) A function call whose function name denotes an implicitely
-- defined operation or an operation defined in one of the packages
-- STD_LOGIC_1164, NUMERIC_BIT, NUMERIC_STD, NUMERIC_BIT_UNSIGNED,
-- or NUMERIC_STD_UNSIGNED in library IEEE and whose actual
-- parameters are each locally static expressions.
--
-- GHDL note: operation is defined in:
-- LRM08 5 Types
-- The set of operations of a type includes the explicitly declared
-- subprograms that have a parameter of result of the type. The
-- remaining operations of a type are the basic operations and the
-- predefined operations.
case Get_Kind (Expr) is
when Iir_Kinds_Monadic_Operator =>
Staticness := Get_Expr_Staticness (Get_Operand (Expr));
when Iir_Kinds_Dyadic_Operator =>
Staticness := Min (Get_Expr_Staticness (Get_Left (Expr)),
Get_Expr_Staticness (Get_Right (Expr)));
when Iir_Kind_Function_Call =>
Staticness := Locally;
declare
Assoc : Iir;
begin
Assoc := Get_Parameter_Association_Chain (Expr);
while Assoc /= Null_Iir loop
if Get_Kind (Assoc)
= Iir_Kind_Association_Element_By_Expression
then
Staticness := Min
(Get_Expr_Staticness (Get_Actual (Assoc)),
Staticness);
end if;
Assoc := Get_Chain (Assoc);
end loop;
end;
when Iir_Kind_Procedure_Call =>
return;
when others =>
Error_Kind ("set_function_call_staticness (1)", Expr);
end case;
-- Staticness.
case Get_Kind (Imp) is
when Iir_Kind_Function_Declaration =>
case Get_Implicit_Definition (Imp) is
when Iir_Predefined_Error =>
raise Internal_Error;
when Iir_Predefined_Pure_Functions =>
null;
when Iir_Predefined_Impure_Functions =>
-- Predefined functions such as Now, Endfile are not static.
Staticness := None;
when Iir_Predefined_Explicit =>
if Vhdl_Std >= Vhdl_08
and then Is_Ieee_Operation (Imp)
then
null;
elsif Get_Pure_Flag (Imp) then
Staticness := Min (Staticness, Globally);
else
Staticness := None;
end if;
end case;
when Iir_Kind_Interface_Function_Declaration =>
Staticness := None;
when others =>
Error_Kind ("set_function_call_staticness", Imp);
end case;
Set_Expr_Staticness (Expr, Staticness);
end Set_Function_Call_Staticness;
-- Add CALLEE in the callees list of SUBPRG (which must be a subprg decl).
procedure Add_In_Callees_List (Subprg : Iir; Callee : Iir)
is
Holder : constant Iir := Get_Callees_List_Holder (Subprg);
List : Iir_List;
begin
List := Get_Callees_List (Holder);
if List = Null_Iir_List then
List := Create_Iir_List;
Set_Callees_List (Holder, List);
end if;
-- FIXME: May use a flag in IMP to speed up the
-- add operation.
Add_Element (List, Callee);
end Add_In_Callees_List;
-- Check purity rules when SUBPRG calls CALLEE.
-- Both SUBPRG and CALLEE are subprogram declarations.
-- Update purity_state/impure_depth of SUBPRG if it is a procedure.
procedure Sem_Call_Purity_Check (Subprg : Iir; Callee : Iir; Loc : Iir) is
begin
if Callee = Subprg then
return;
end if;
-- Handle easy cases.
case Get_Kind (Subprg) is
when Iir_Kind_Function_Declaration =>
if not Get_Pure_Flag (Subprg) then
return;
end if;
when Iir_Kind_Procedure_Declaration =>
if Get_Purity_State (Subprg) = Impure then
return;
end if;
when Iir_Kinds_Process_Statement =>
return;
when others =>
Error_Kind ("sem_call_purity_check(0)", Subprg);
end case;
case Get_Kind (Callee) is
when Iir_Kind_Function_Declaration
| Iir_Kind_Interface_Function_Declaration =>
if Get_Pure_Flag (Callee) then
-- Pure functions may be called anywhere.
return;
end if;
-- CALLEE is impure.
case Get_Kind (Subprg) is
when Iir_Kind_Function_Declaration =>
Error_Pure (Semantic, Subprg, Callee, Loc);
when Iir_Kind_Procedure_Declaration =>
Set_Purity_State (Subprg, Impure);
when others =>
Error_Kind ("sem_call_purity_check(1)", Subprg);
end case;
when Iir_Kind_Procedure_Declaration =>
declare
Depth : Iir_Int32;
Callee_Body : constant Iir := Get_Subprogram_Body (Callee);
Subprg_Body : constant Iir := Get_Subprogram_Body (Subprg);
begin
-- Get purity depth of callee, if possible.
case Get_Purity_State (Callee) is
when Pure =>
return;
when Impure =>
Depth := Iir_Depth_Impure;
when Maybe_Impure =>
if Callee_Body = Null_Iir then
-- Cannot be 'maybe_impure' if no body!
raise Internal_Error;
end if;
Depth := Get_Impure_Depth (Callee_Body);
when Unknown =>
-- Add in list.
Add_In_Callees_List (Subprg, Callee);
if Callee_Body /= Null_Iir then
Depth := Get_Impure_Depth (Callee_Body);
else
return;
end if;
end case;
case Get_Kind (Subprg) is
when Iir_Kind_Function_Declaration =>
if Depth = Iir_Depth_Impure then
Error_Pure (Semantic, Subprg, Callee, Loc);
else
if Depth < Get_Subprogram_Depth (Subprg) then
Error_Pure (Semantic, Subprg, Callee, Loc);
end if;
end if;
when Iir_Kind_Procedure_Declaration =>
if Depth = Iir_Depth_Impure then
Set_Purity_State (Subprg, Impure);
-- FIXME: free callee list ? (wait state).
else
-- Set depth to the worst.
if Depth < Get_Impure_Depth (Subprg_Body) then
Set_Impure_Depth (Subprg_Body, Depth);
end if;
end if;
when others =>
Error_Kind ("sem_call_purity_check(2)", Subprg);
end case;
end;
when Iir_Kind_Interface_Procedure_Declaration =>
-- We have no idea about this procedure.
null;
when others =>
Error_Kind ("sem_call_purity_check", Callee);
end case;
end Sem_Call_Purity_Check;
procedure Sem_Call_Wait_Check (Subprg : Iir; Callee : Iir; Loc : Iir)
is
procedure Error_Wait is
begin
Report_Start_Group;
Error_Msg_Sem
(+Loc, "%n must not contain wait statement, but calls",
(1 => +Subprg));
Error_Msg_Sem
(+Callee, "%n which has (indirectly) a wait statement", +Callee);
Report_End_Group;
end Error_Wait;
begin
pragma Assert (Get_Kind (Callee) = Iir_Kind_Procedure_Declaration);
case Get_Wait_State (Callee) is
when False =>
return;
when True =>
null;
when Unknown =>
Add_In_Callees_List (Subprg, Callee);
return;
end case;
-- LRM 8.1
-- It is an error if a wait statement appears [...] in a procedure that
-- has a parent that is a function subprogram.
--
-- Furthermore, it is an error if a wait statement appears [...] in a
-- procedure that has a parent that is such a process statement.
case Get_Kind (Subprg) is
when Iir_Kind_Sensitized_Process_Statement =>
Error_Wait;
return;
when Iir_Kind_Process_Statement =>
return;
when Iir_Kind_Function_Declaration =>
Error_Wait;
return;
when Iir_Kind_Procedure_Declaration =>
if Is_Subprogram_Method (Subprg) then
Error_Wait;
else
Set_Wait_State (Subprg, True);
end if;
when others =>
Error_Kind ("sem_call_wait_check", Subprg);
end case;
end Sem_Call_Wait_Check;
procedure Sem_Call_All_Sensitized_Check
(Subprg : Iir; Callee : Iir; Loc : Iir)
is
begin
-- No need to deal with 'process (all)' if standard predates it.
if Vhdl_Std < Vhdl_08 then
return;
end if;
-- If subprogram called is pure, then there is no signals reference.
case Get_Kind (Callee) is
when Iir_Kind_Function_Declaration =>
if Get_Pure_Flag (Callee) then
return;
end if;
when Iir_Kind_Procedure_Declaration =>
if Get_Purity_State (Callee) = Pure then
return;
end if;
when Iir_Kind_Interface_Function_Declaration
| Iir_Kind_Interface_Procedure_Declaration =>
-- FIXME: how to compute sensitivity ? Recurse ?
return;
when others =>
Error_Kind ("sem_call_all_sensitized_check", Callee);
end case;
case Get_All_Sensitized_State (Callee) is
when Invalid_Signal =>
case Get_Kind (Subprg) is
when Iir_Kind_Sensitized_Process_Statement =>
if Get_Sensitivity_List (Subprg) = Iir_List_All then
-- LRM08 11.3
--
-- It is an error if a process statement with the
-- reserved word ALL as its process sensitivity list
-- is the parent of a subprogram declared in a design
-- unit other than that containing the process statement
-- and the subprogram reads an explicitly declared
-- signal that is not a formal signal parameter or
-- member of a formal signal parameter of the
-- subprogram or of any of its parents. Similarly,
-- it is an error if such subprogram reads an implicit
-- signal whose explicit ancestor is not a formal signal
-- parameter or member of a formal parameter of
-- the subprogram or of any of its parents.
Report_Start_Group;
Error_Msg_Sem (+Loc, "all-sensitized %n can't call %n",
(+Subprg, +Callee));
Error_Msg_Sem
(+Loc,
" (as this subprogram reads (indirectly) a signal)");
Report_End_Group;
end if;
when Iir_Kind_Process_Statement =>
return;
when Iir_Kind_Function_Declaration
| Iir_Kind_Procedure_Declaration =>
Set_All_Sensitized_State (Subprg, Invalid_Signal);
when others =>
Error_Kind ("sem_call_all_sensitized_check", Subprg);
end case;
when Read_Signal =>
-- Put this subprogram in callees list as it may read a signal.
-- Used by canon to build the sensitivity list.
Add_In_Callees_List (Subprg, Callee);
if Get_Kind (Subprg) in Iir_Kinds_Subprogram_Declaration then
if Get_All_Sensitized_State (Subprg) < Read_Signal then
Set_All_Sensitized_State (Subprg, Read_Signal);
end if;
end if;
when Unknown =>
-- Put this subprogram in callees list as it may read a signal.
-- Used by canon to build the sensitivity list.
Add_In_Callees_List (Subprg, Callee);
when No_Signal =>
null;
end case;
end Sem_Call_All_Sensitized_Check;
-- Set IMP as the implementation to being called by EXPR.
-- If the context is a subprogram or a process (ie, if current_subprogram
-- is not NULL), then mark IMP as callee of current_subprogram, and
-- update states.
procedure Sem_Subprogram_Call_Finish (Expr : Iir; Imp : Iir)
is
Subprg : constant Iir := Get_Current_Subprogram;
begin
Set_Function_Call_Staticness (Expr, Imp);
Sem_Decls.Mark_Subprogram_Used (Imp);
-- Check the subprogram is not called before its elaboration.
if not Unelaborated_Use_Allowed
and then Get_Kind (Imp) in Iir_Kinds_Subprogram_Declaration
and then not Get_Elaborated_Flag (Imp)
then
Warning_Msg_Sem (Warnid_Elaboration, +Expr,
"%n is called before elaborated of its body", +Imp);
end if;
-- Check purity/wait/passive.
if Subprg = Null_Iir then
-- Not inside a suprogram or a process.
return;
end if;
if Subprg = Imp then
-- Recursive call.
return;
end if;
if Is_Implicit_Subprogram (Imp) then
-- FIXME: impure predefined functions.
null;
else
Sem_Call_Purity_Check (Subprg, Imp, Expr);
Sem_Call_All_Sensitized_Check (Subprg, Imp, Expr);
if Get_Kind (Imp) = Iir_Kind_Procedure_Declaration then
Sem_Call_Wait_Check (Subprg, Imp, Expr);
-- Check passive.
if Get_Passive_Flag (Imp) = False then
case Get_Kind (Subprg) is
when Iir_Kinds_Process_Statement =>
if Get_Passive_Flag (Subprg) then
Error_Msg_Sem
(+Expr, "%n is passive, but calls non-passive %n",
(+Subprg, +Imp));
end if;
when others =>
null;
end case;
end if;
end if;
end if;
end Sem_Subprogram_Call_Finish;
-- EXPR is a function or procedure call.
function Sem_Subprogram_Call_Stage1
(Expr : Iir; A_Type : Iir; Is_Func_Call : Boolean) return Iir
is
Imp : Iir;
A_Func: Iir;
Imp_List: Iir_List;
New_List : Iir_List;
Assoc_Chain: Iir;
Inter_Chain : Iir;
Res_Type: Iir_List;
Imp_It : List_Iterator;
Inter: Iir;
Match : Compatibility_Level;
Match_Max : Compatibility_Level;
begin
-- Sem_Name has gathered all the possible names for the prefix of this
-- call. Reduce this list to only names that match the types.
Imp := Get_Implementation (Expr);
Imp_List := Get_Overload_List (Imp);
Assoc_Chain := Get_Parameter_Association_Chain (Expr);
Match_Max := Via_Conversion;
New_List := Create_Iir_List;
Imp_It := List_Iterate (Imp_List);
while Is_Valid (Imp_It) loop
A_Func := Get_Element (Imp_It);
case Get_Kind (A_Func) is
when Iir_Kinds_Functions_And_Literals
| Iir_Kind_Interface_Function_Declaration =>
if not Is_Func_Call then
-- The identifier of a function call must be a function or
-- an enumeration literal.
goto Continue;
end if;
when Iir_Kind_Procedure_Declaration
| Iir_Kind_Interface_Procedure_Declaration =>
if Is_Func_Call then
-- The identifier of a procedure call must be a procedure.
goto Continue;
end if;
when others =>
Error_Kind ("sem_subprogram_call_stage1", A_Func);
end case;
-- Keep this interpretation only if compatible.
if A_Type = Null_Iir
or else (Compatibility_Nodes (A_Type, Get_Return_Type (A_Func))
/= Not_Compatible)
then
Sem_Association_Chain
(Get_Interface_Declaration_Chain (A_Func),
Assoc_Chain, False, Missing_Parameter, Expr, Match);
if Match >= Match_Max then
-- Only previous interpretations were only Via_Conversion
-- compatible, and this one is fully compatible, discard
-- previous and future Via_Conversion interpretations.
if Match > Match_Max then
Destroy_Iir_List (New_List);
New_List := Create_Iir_List;
Match_Max := Match;
end if;
Append_Element (New_List, A_Func);
end if;
end if;
<< Continue >> null;
Next (Imp_It);
end loop;
Destroy_Iir_List (Imp_List);
Imp_List := New_List;
Set_Overload_List (Imp, Imp_List);
-- Set_Implementation (Expr, Inter_List);
-- A set of possible functions to call is in INTER_LIST.
-- Create a set of possible return type in RES_TYPE.
case Get_Nbr_Elements (Imp_List) is
when 0 =>
-- FIXME: display subprogram name.
Error_Msg_Sem
(+Expr, "cannot resolve overloading for subprogram call");
return Null_Iir;
when 1 =>
-- Simple case: no overloading.
Inter := Get_First_Element (Imp_List);
Free_Overload_List (Imp);
Set_Implementation (Expr, Inter);
if Is_Func_Call then
Set_Type (Expr, Get_Return_Type (Inter));
end if;
Inter_Chain := Get_Interface_Declaration_Chain (Inter);
Sem_Association_Chain
(Inter_Chain, Assoc_Chain,
True, Missing_Parameter, Expr, Match);
Set_Parameter_Association_Chain (Expr, Assoc_Chain);
pragma Assert (Match /= Not_Compatible);
Check_Subprogram_Associations (Inter_Chain, Assoc_Chain);
Sem_Subprogram_Call_Finish (Expr, Inter);
return Expr;
when others =>
if Is_Func_Call then
if A_Type /= Null_Iir then
-- Cannot find a single interpretation for a given
-- type.
Report_Start_Group;
Error_Overload (Expr);
Disp_Overload_List (Imp_List, Expr);
Report_End_Group;
return Null_Iir;
end if;
-- Create the list of types for the result.
Res_Type := Create_Iir_List;
Imp_It := List_Iterate (Imp_List);
while Is_Valid (Imp_It) loop
Add_Element
(Res_Type, Get_Return_Type (Get_Element (Imp_It)));
Next (Imp_It);
end loop;
if Get_Nbr_Elements (Res_Type) = 1 then
-- several implementations but one profile.
Report_Start_Group;
Error_Overload (Expr);
Disp_Overload_List (Imp_List, Expr);
Report_End_Group;
return Null_Iir;
end if;
Set_Type (Expr, Create_Overload_List (Res_Type));
else
-- For a procedure call, the context does't help to resolve
-- overload.
Report_Start_Group;
Error_Overload (Expr);
Disp_Overload_List (Imp_List, Expr);
Report_End_Group;
end if;
return Expr;
end case;
end Sem_Subprogram_Call_Stage1;
-- For a procedure call, A_TYPE must be null.
-- Associations must have already been analyzed by sem_association_list.
function Sem_Subprogram_Call (Expr: Iir; A_Type: Iir) return Iir
is
Is_Func: constant Boolean := Get_Kind (Expr) = Iir_Kind_Function_Call;
Res_Type: Iir;
Res: Iir;
Inter_List: Iir;
Param_Chain : Iir;
Inter: Iir;
Assoc_Chain : Iir;
Match : Compatibility_Level;
Overload_List : Iir_List;
Overload_It : List_Iterator;
begin
if Is_Func then
Res_Type := Get_Type (Expr);
end if;
if not Is_Func or else Res_Type = Null_Iir then
-- First call to sem_subprogram_call.
-- Create the list of possible implementations and possible
-- return types, according to arguments and A_TYPE.
-- Select possible interpretations among all interpretations.
-- NOTE: the list of possible implementations was already created
-- during the transformation of iir_kind_parenthesis_name to
-- iir_kind_function_call.
Inter_List := Get_Implementation (Expr);
if Is_Error (Inter_List) then
return Null_Iir;
elsif Is_Overload_List (Inter_List) then
-- Subprogram name is overloaded.
return Sem_Subprogram_Call_Stage1 (Expr, A_Type, Is_Func);
else
-- Only one interpretation for the subprogram name.
if Is_Func then
if not Is_Function_Declaration (Inter_List) then
Report_Start_Group;
Error_Msg_Sem (+Expr, "name does not designate a function");
Error_Msg_Sem (+Expr, "name is %n defined at %l",
(+Inter_List, +Inter_List));
Report_End_Group;
return Null_Iir;
end if;
else
if not Is_Procedure_Declaration (Inter_List) then
Report_Start_Group;
Error_Msg_Sem (+Expr, "name does not designate a procedure");
Error_Msg_Sem (+Expr, "name is %n defined at %l",
(+Inter_List, +Inter_List));
Report_End_Group;
return Null_Iir;
end if;
end if;
Assoc_Chain := Get_Parameter_Association_Chain (Expr);
Param_Chain := Get_Interface_Declaration_Chain (Inter_List);
Sem_Association_Chain
(Param_Chain, Assoc_Chain,
True, Missing_Parameter, Expr, Match);
Set_Parameter_Association_Chain (Expr, Assoc_Chain);
if Match = Not_Compatible then
-- No need to disp an error message, this is done by
-- sem_subprogram_arguments.
return Null_Iir;
end if;
if Is_Func then
Set_Type (Expr, Get_Return_Type (Inter_List));
end if;
Check_Subprogram_Associations (Param_Chain, Assoc_Chain);
Set_Implementation (Expr, Inter_List);
Sem_Subprogram_Call_Finish (Expr, Inter_List);
return Expr;
end if;
end if;
-- Second call to Sem_Function_Call (only for functions).
pragma Assert (Is_Func);
pragma Assert (A_Type /= Null_Iir);
-- The implementation list was set.
-- The return type was set.
-- A_TYPE is not null, A_TYPE is *the* return type.
Inter_List := Get_Implementation (Expr);
-- Find a single implementation.
Res := Null_Iir;
if Is_Overload_List (Inter_List) then
-- INTER_LIST is a list of possible declaration to call.
-- Find one, based on the return type A_TYPE.
Overload_List := Get_Overload_List (Inter_List);
Overload_It := List_Iterate (Overload_List);
while Is_Valid (Overload_It) loop
Inter := Get_Element (Overload_It);
if Are_Basetypes_Compatible
(A_Type, Get_Base_Type (Get_Return_Type (Inter)))
/= Not_Compatible
then
if Res /= Null_Iir then
Report_Start_Group;
Error_Overload (Expr);
Disp_Overload_List (Overload_List, Expr);
Report_End_Group;
return Null_Iir;
else
Res := Inter;
end if;
end if;
Next (Overload_It);
end loop;
else
if Are_Basetypes_Compatible
(A_Type, Get_Base_Type (Get_Return_Type (Inter_List)))
/= Not_Compatible
then
Res := Inter_List;
end if;
end if;
if Res = Null_Iir then
Error_Not_Match (Expr, A_Type);
return Null_Iir;
end if;
-- Clean up.
if Res_Type /= Null_Iir and then Is_Overload_List (Res_Type) then
Free_Iir (Res_Type);
end if;
if Is_Overload_List (Inter_List) then
Free_Iir (Inter_List);
end if;
-- Simple case: this is not a call to a function, but an enumeration
-- literal.
if Get_Kind (Res) = Iir_Kind_Enumeration_Literal then
-- Free_Iir (Expr);
return Res;
end if;
-- Set types.
Set_Type (Expr, Get_Return_Type (Res));
Assoc_Chain := Get_Parameter_Association_Chain (Expr);
Param_Chain := Get_Interface_Declaration_Chain (Res);
Sem_Association_Chain
(Param_Chain, Assoc_Chain, True, Missing_Parameter, Expr, Match);
Set_Parameter_Association_Chain (Expr, Assoc_Chain);
if Match = Not_Compatible then
return Null_Iir;
end if;
Check_Subprogram_Associations (Param_Chain, Assoc_Chain);
Set_Implementation (Expr, Res);
Sem_Subprogram_Call_Finish (Expr, Res);
return Expr;
end Sem_Subprogram_Call;
procedure Sem_Procedure_Call (Call : Iir_Procedure_Call; Stmt : Iir)
is
Imp: Iir;
Name : Iir;
Parameters_Chain : Iir;
Param : Iir;
Formal : Iir;
Prefix : Iir;
Inter : Iir;
begin
Name := Get_Prefix (Call);
if Name = Null_Iir
or else Is_Error (Name)
or else Get_Kind (Name) = Iir_Kind_String_Literal8
then
pragma Assert (Flags.Flag_Force_Analysis);
return;
end if;
-- FIXME: check for denoting name.
Sem_Name (Name);
-- Return now if the procedure declaration wasn't found.
Imp := Get_Named_Entity (Name);
if Is_Error (Imp) then
return;
end if;
Set_Implementation (Call, Imp);
Name_To_Method_Object (Call, Name);
Parameters_Chain := Get_Parameter_Association_Chain (Call);
if Sem_Actual_Of_Association_Chain (Parameters_Chain) = False then
return;
end if;
if Sem_Subprogram_Call (Call, Null_Iir) /= Call then
return;
end if;
Imp := Get_Implementation (Call);
if Is_Overload_List (Imp) then
-- Failed to resolve overload.
return;
end if;
Set_Named_Entity (Name, Imp);
Set_Prefix (Call, Finish_Sem_Name (Name));
-- LRM 2.1.1.2 Signal Parameters
-- A process statement contains a driver for each actual signal
-- associated with a formal signal parameter of mode OUT or INOUT in
-- a subprogram call.
-- Similarly, a subprogram contains a driver for each formal signal
-- parameter of mode OUT or INOUT declared in its subrogram
-- specification.
Param := Parameters_Chain;
Inter := Get_Interface_Declaration_Chain (Imp);
while Param /= Null_Iir loop
-- Association_Element_By_Individual duplicates existing
-- associations.
if Get_Kind (Param) /= Iir_Kind_Association_Element_By_Individual
then
Formal := Get_Formal (Param);
if Formal = Null_Iir then
Formal := Inter;
Inter := Get_Chain (Inter);
else
Formal := Get_Base_Name (Formal);
Inter := Null_Iir;
end if;
if Get_Kind (Formal) = Iir_Kind_Interface_Signal_Declaration
and then Get_Mode (Formal) in Iir_Out_Modes
and then
Get_Kind (Param) = Iir_Kind_Association_Element_By_Expression
then
Prefix := Name_To_Object (Get_Actual (Param));
if Prefix /= Null_Iir then
case Get_Kind (Get_Object_Prefix (Prefix)) is
when Iir_Kind_Signal_Declaration
| Iir_Kind_Interface_Signal_Declaration =>
Prefix := Get_Longest_Static_Prefix (Prefix);
Sem_Stmts.Sem_Add_Driver (Prefix, Stmt);
when others =>
null;
end case;
end if;
end if;
end if;
Param := Get_Chain (Param);
end loop;
end Sem_Procedure_Call;
-- List must be an overload list containing subprograms declarations.
-- Try to resolve overload and return the uniq interpretation if one,
-- NULL_IIR otherwise.
--
-- If there are two functions, one primitive of a universal
-- type and the other not, return the primitive of the universal type.
-- This implements implicit type conversions rules.
-- Cf Sem_Names.Extract_Call_Without_Implicit_Conversion
--
-- The typical case is the use of comparison operator with literals or
-- attributes, like: s'length = 0
function Get_Non_Implicit_Subprogram (List : Iir_List) return Iir
is
It : List_Iterator;
El : Iir;
Res : Iir;
Ref_Type : Iir;
begin
-- Conditions:
-- 1. All the possible functions must return boolean.
-- 2. There is only one implicit function for universal or real.
Res := Null_Iir;
It := List_Iterate (List);
while Is_Valid (It) loop
El := Get_Element (It);
-- Only comparison operators need this special handling.
if Get_Base_Type (Get_Return_Type (El)) /= Boolean_Type_Definition
then
return Null_Iir;
end if;
if Is_Implicit_Subprogram (El) then
Ref_Type := Get_Type (Get_Interface_Declaration_Chain (El));
if Ref_Type = Universal_Integer_Type_Definition
or Ref_Type = Universal_Real_Type_Definition
then
-- There could be only one such subprogram.
pragma Assert (Res = Null_Iir);
Res := El;
end if;
end if;
Next (It);
end loop;
return Res;
end Get_Non_Implicit_Subprogram;
-- Honor the -fexplicit flag.
-- If LIST is composed of 2 declarations that matches the 'explicit' rule,
-- return the explicit declaration.
-- Otherwise, return NULL_IIR.
function Get_Explicit_Subprogram (List : Iir_List) return Iir
is
Sub1 : Iir;
Sub2 : Iir;
It : List_Iterator;
Res : Iir;
begin
if Get_Nbr_Elements (List) /= 2 then
return Null_Iir;
end if;
It := List_Iterate (List);
Sub1 := Get_Element (It);
Next (It);
Sub2 := Get_Element (It);
Next (It);
pragma Assert (not Is_Valid (It));
-- One must be an implicit declaration, the other must be an explicit
-- declaration.
pragma Assert (Get_Kind (Sub1) = Iir_Kind_Function_Declaration);
pragma Assert (Get_Kind (Sub2) = Iir_Kind_Function_Declaration);
if Is_Implicit_Subprogram (Sub1) then
if Is_Implicit_Subprogram (Sub2) then
return Null_Iir;
end if;
Res := Sub2;
else
if not Is_Implicit_Subprogram (Sub2) then
return Null_Iir;
end if;
Res := Sub1;
end if;
-- They must have the same profile.
if Get_Subprogram_Hash (Sub1) /= Get_Subprogram_Hash (Sub2)
or else not Is_Same_Profile (Sub1, Sub2)
then
return Null_Iir;
end if;
-- They must be declared in a package.
if Get_Kind (Get_Parent (Sub1)) /= Iir_Kind_Package_Declaration
or else Get_Kind (Get_Parent (Sub2)) /= Iir_Kind_Package_Declaration
then
return Null_Iir;
end if;
return Res;
end Get_Explicit_Subprogram;
-- Set when the -fexplicit option was adviced.
Explicit_Advice_Given : Boolean := False;
-- LEFT and RIGHT must be set.
function Set_Operator_Unique_Interpretation
(Expr : Iir; Decl : Iir) return Iir
is
Is_Dyadic : constant Boolean :=
Get_Kind (Expr) in Iir_Kinds_Dyadic_Operator;
Inter : Iir;
Err : Boolean;
Left : Iir;
Left_Type : Iir;
Right : Iir;
Right_Type : Iir;
begin
Set_Type (Expr, Get_Return_Type (Decl));
Inter := Get_Interface_Declaration_Chain (Decl);
Err := False;
-- Left operand (or single operand)
Left := Get_Left (Expr);
Left_Type := Get_Type (Inter);
if Is_Overloaded (Left) then
Left := Sem_Expression_Ov (Left, Get_Base_Type (Left_Type));
if Left = Null_Iir then
Err := True;
end if;
end if;
Check_Subprogram_Association_Expression (Inter, Left, Null_Iir, Left);
Set_Left (Expr, Left);
-- Right operand
if Is_Dyadic then
Right := Get_Right (Expr);
Inter := Get_Chain (Inter);
Right_Type := Get_Type (Inter);
if Is_Overloaded (Right) then
Right := Sem_Expression_Ov (Right, Get_Base_Type (Right_Type));
if Right = Null_Iir then
Err := True;
end if;
end if;
Check_Subprogram_Association_Expression
(Inter, Right, Null_Iir, Right);
Set_Right (Expr, Right);
end if;
if not Err then
Set_Implementation (Expr, Decl);
Sem_Subprogram_Call_Finish (Expr, Decl);
if Get_Expr_Staticness (Expr) = Locally then
return Eval_Expr_If_Static (Expr);
else
-- The result is not static, but an operand may be static.
-- Evaluate it.
Left := Eval_Expr_Check_If_Static (Left, Left_Type);
Set_Left (Expr, Left);
if Is_Dyadic then
Right := Eval_Expr_Check_If_Static (Right, Right_Type);
Set_Right (Expr, Right);
end if;
end if;
end if;
return Expr;
end Set_Operator_Unique_Interpretation;
-- Display an error message for sem_operator.
procedure Error_Operator_Overload (Expr : Iir; List : Iir_List)
is
Operator : Name_Id;
begin
Operator := Utils.Get_Operator_Name (Expr);
Report_Start_Group;
Error_Msg_Sem (+Expr, "operator %i is overloaded", +Operator);
Disp_Overload_List (List, Expr);
Report_End_Group;
end Error_Operator_Overload;
-- Return False in case of error.
function Sem_Operator_Operands (Expr : Iir) return Boolean
is
Is_Dyadic : constant Boolean :=
Get_Kind (Expr) in Iir_Kinds_Dyadic_Operator;
Left, Right: Iir;
begin
-- First pass.
-- Analyze operands.
-- FIXME: should try to analyze right operand even if analyze
-- of left operand has failed ??
Left := Get_Left (Expr);
if Get_Type (Left) = Null_Iir then
Left := Sem_Expression_Ov (Left, Null_Iir);
if Left = Null_Iir then
return False;
end if;
Set_Left (Expr, Left);
end if;
if Is_Dyadic then
Right := Get_Right (Expr);
if Get_Type (Right) = Null_Iir then
Right := Sem_Expression_Ov (Right, Null_Iir);
if Right = Null_Iir then
return False;
end if;
Set_Right (Expr, Right);
end if;
end if;
return True;
end Sem_Operator_Operands;
-- Return the compatibility level between operation EXPR (either monadic
-- or dyadic) and operator DECL (also monadic or dyadic).
-- RES_TYPE is the expected expression type, which can be NULL_IIR.
-- Note: even if the result is fully_compatible, at the end the
-- compatibility could be via_conversion if the result has be to be
-- converted.
function Sem_Operator_Compatibility
(Decl : Iir; Expr : Iir; Is_Dyadic : Boolean; Res_Type : Iir)
return Compatibility_Level
is
Left_Inter, Right_Inter : Iir;
Res, Level : Compatibility_Level;
begin
-- Check return type.
if Res_Type /= Null_Iir then
Res := Are_Types_Compatible (Res_Type, Get_Return_Type (Decl));
if Res = Not_Compatible then
return Not_Compatible;
end if;
else
Res := Fully_Compatible;
end if;
Left_Inter := Get_Interface_Declaration_Chain (Decl);
Right_Inter := Get_Chain (Left_Inter);
-- Operator can be either monadic or dyadic.
pragma Assert (Right_Inter = Null_Iir
or else Get_Chain (Right_Inter) = Null_Iir);
-- Check arity.
-- LRM93 2.5.2 Operator overloading
-- The subprogram specification of a unary operator must have
-- a single parameter [...]
-- The subprogram specification of a binary operator must have
-- two parameters [...]
--
-- GHDL: So even in presence of default expression in a parameter,
-- a unary operation has to match with a binary operator.
if (Right_Inter /= Null_Iir) /= Is_Dyadic then
return Not_Compatible;
end if;
-- Check operands.
Level := Is_Expr_Compatible (Get_Type (Left_Inter), Get_Left (Expr));
if Level = Not_Compatible then
return Not_Compatible;
end if;
Res := Compatibility_Level'Min (Res, Level);
if Is_Dyadic then
Level := Is_Expr_Compatible (Get_Type (Right_Inter),
Get_Right (Expr));
if Level = Not_Compatible then
return Not_Compatible;
end if;
Res := Compatibility_Level'Min (Res, Level);
end if;
return Res;
end Sem_Operator_Compatibility;
function Sem_Operator_Pass1 (Expr : Iir; Res_Type : Iir) return Iir
is
Is_Dyadic : constant Boolean :=
Get_Kind (Expr) in Iir_Kinds_Dyadic_Operator;
Operator : constant Name_Id := Utils.Get_Operator_Name (Expr);
Interpretation : Name_Interpretation_Type;
Level : Compatibility_Level;
Decl : Iir;
Overload_List : Iir_List;
Res_Type_List : Iir;
It : List_Iterator;
begin
-- First pass.
-- Analyze operands.
-- FIXME: should try to analyze right operand even if analyze
-- of left operand has failed ??
if not Sem_Operator_Operands (Expr) then
return Null_Iir;
end if;
Overload_List := Create_Iir_List;
-- Try to find an implementation among user defined function
Interpretation := Get_Interpretation (Operator);
while Valid_Interpretation (Interpretation) loop
Decl := Get_Non_Alias_Declaration (Interpretation);
-- It is compatible with operand types ?
pragma Assert (Is_Function_Declaration (Decl));
-- LRM08 12.3 Visibility
-- [...] or all visible declarations denote the same named entity.
--
-- GHDL: If DECL has already been seen, then skip it.
if not Get_Seen_Flag (Decl) then
Level := Sem_Operator_Compatibility
(Decl, Expr, Is_Dyadic, Res_Type);
if Level /= Not_Compatible then
-- Match.
Set_Seen_Flag (Decl, True);
Append_Element (Overload_List, Decl);
end if;
end if;
Interpretation := Get_Next_Interpretation (Interpretation);
end loop;
-- Clear seen_flags.
It := List_Iterate (Overload_List);
while Is_Valid (It) loop
Set_Seen_Flag (Get_Element (It), False);
Next (It);
end loop;
-- The list of possible implementations was computed.
case Get_Nbr_Elements (Overload_List) is
when 0 =>
if Get_Kind (Expr) = Iir_Kind_Implicit_Condition_Operator then
-- TODO: display expression type.
Error_Msg_Sem (+Expr, "cannot convert expression to boolean "
& "(no ""??"" found)");
else
Error_Msg_Sem (+Expr,
"no function declarations for %n", +Expr);
end if;
Destroy_Iir_List (Overload_List);
return Null_Iir;
when 1 =>
Decl := Get_First_Element (Overload_List);
Destroy_Iir_List (Overload_List);
return Set_Operator_Unique_Interpretation (Expr, Decl);
when others =>
-- Preference for universal operator.
-- This roughly corresponds to:
--
-- LRM 7.3.5
-- An implicit conversion of a convertible universal operand
-- is applied if and only if the innermost complete context
-- determines a unique (numeric) target type for the implicit
-- conversion, and there is no legal interpretation of this
-- context without this conversion.
if Is_Dyadic then
Decl := Get_Non_Implicit_Subprogram (Overload_List);
if Decl /= Null_Iir then
Destroy_Iir_List (Overload_List);
return Set_Operator_Unique_Interpretation (Expr, Decl);
end if;
end if;
Set_Implementation (Expr, Create_Overload_List (Overload_List));
-- Create the list of possible return types, if it is not yet
-- determined.
if Res_Type = Null_Iir then
Res_Type_List := Create_List_Of_Types (Overload_List);
if Is_Overload_List (Res_Type_List) then
-- There are many possible return types.
-- Try again.
Set_Type (Expr, Res_Type_List);
return Expr;
end if;
end if;
-- The return type is known.
-- Search for explicit subprogram.
-- It was impossible to find one solution.
Error_Operator_Overload (Expr, Overload_List);
-- Give an advice.
if not Flags.Flag_Explicit
and then not Explicit_Advice_Given
and then Flags.Vhdl_Std < Vhdl_08
then
Decl := Get_Explicit_Subprogram (Overload_List);
if Decl /= Null_Iir then
Error_Msg_Sem
(+Expr, "(you may want to use the -fexplicit option)");
Explicit_Advice_Given := True;
end if;
end if;
return Null_Iir;
end case;
end Sem_Operator_Pass1;
function Sem_Operator_Pass2_Interpretation
(Expr : Iir; Res_Type : Iir) return Iir
is
Is_Dyadic : constant Boolean :=
Get_Kind (Expr) in Iir_Kinds_Dyadic_Operator;
Decl : Iir;
Overload : Iir;
Overload_List : Iir_List;
Full_Compat : Iir;
Conv_Compat : Iir;
It : List_Iterator;
Level : Compatibility_Level;
begin
-- Second pass
-- Find the uniq implementation for this call.
Overload := Get_Implementation (Expr);
Overload_List := Get_Overload_List (Overload);
Full_Compat := Null_Iir;
Conv_Compat := Null_Iir;
It := List_Iterate (Overload_List);
while Is_Valid (It) loop
Decl := Get_Element (It);
Level := Sem_Operator_Compatibility (Decl, Expr, Is_Dyadic, Res_Type);
case Level is
when Not_Compatible =>
-- Ignored
null;
when Fully_Compatible =>
if Full_Compat = Null_Iir then
Full_Compat := Decl;
else
-- There are several fully compatible functions.
-- TODO: remove non-fully compatible functions from the list
-- before displaying the list.
Error_Operator_Overload (Expr, Overload_List);
return Null_Iir;
end if;
when Via_Conversion =>
if Conv_Compat = Null_Iir then
Conv_Compat := Decl;
else
-- Not yet an error, as there can be one fully compatible
-- function.
Conv_Compat := Overload;
end if;
end case;
Next (It);
end loop;
if Full_Compat = Null_Iir then
if Conv_Compat = Overload then
-- Several results through implicit conversion.
-- TODO: remove incompatible declarations from the list before
-- displaying it.
Error_Operator_Overload (Expr, Overload_List);
return Null_Iir;
else
Full_Compat := Conv_Compat;
end if;
end if;
Free_Iir (Overload);
Overload := Get_Type (Expr);
Free_Overload_List (Overload);
Destroy_Iir_List (Overload_List);
if Full_Compat = Null_Iir then
Error_Msg_Sem (+Expr,
"no matching function declarations for %n", +Expr);
return Null_Iir;
else
return Full_Compat;
end if;
end Sem_Operator_Pass2_Interpretation;
function Sem_Operator (Expr : Iir; Res_Type : Iir) return Iir
is
Interpretation : Iir;
begin
if Get_Type (Expr) = Null_Iir then
return Sem_Operator_Pass1 (Expr, Res_Type);
else
Interpretation := Sem_Operator_Pass2_Interpretation (Expr, Res_Type);
if Interpretation = Null_Iir then
return Null_Iir;
else
return Set_Operator_Unique_Interpretation (Expr, Interpretation);
end if;
end if;
end Sem_Operator;
-- Analyze LIT whose elements must be of type EL_TYPE, and return
-- the length.
-- FIXME: the errors are reported, but there is no mark of that.
function Sem_String_Literal (Str : Iir; El_Type : Iir) return Natural
is
function Find_Literal (Etype : Iir_Enumeration_Type_Definition;
C : Character)
return Iir_Enumeration_Literal
is
Id : constant Name_Id := Name_Table.Get_Identifier (C);
Inter : Name_Interpretation_Type;
Decl : Iir;
begin
Inter := Get_Interpretation (Id);
while Valid_Interpretation (Inter) loop
Decl := Get_Non_Alias_Declaration (Inter);
if Get_Kind (Decl) = Iir_Kind_Enumeration_Literal
and then Get_Type (Decl) = Etype
then
return Decl;
end if;
Inter := Get_Next_Interpretation (Inter);
end loop;
-- LRM08 9.3 Operands
-- The character literals corresponding to the graphic characters
-- contained within a string literal or a bit string literal shall
-- be visible at the place of the string literal.
-- Character C is not visible...
if Find_Name_In_Flist (Get_Enumeration_Literal_List (Etype), Id)
= Null_Iir
then
-- ... because it is not defined.
Error_Msg_Sem
(+Str, "type %n does not define character %c", (+Etype, +C));
else
-- ... because it is not visible.
Error_Msg_Sem (+Str, "character %c of type %n is not visible",
(+C, +Etype));
end if;
return Null_Iir;
end Find_Literal;
type Characters_Pos is array (Character range <>) of Nat8;
Len : constant Nat32 := Get_String_Length (Str);
Id : constant String8_Id := Get_String8_Id (Str);
El : Iir;
Enum_Pos : Iir_Int32;
Ch : Character;
-- Create a cache of literals, to speed-up a little bit the
-- search.
No_Pos : constant Nat8 := Nat8'Last;
Map : Characters_Pos (' ' .. Character'Last) := (others => No_Pos);
Res : Nat8;
begin
for I in 1 .. Len loop
Ch := Str_Table.Char_String8 (Id, I);
if Ch not in Map'Range then
-- Invalid character.
pragma Assert (Flags.Flag_Force_Analysis);
Res := 0;
else
Res := Map (Ch);
if Res = No_Pos then
El := Find_Literal (El_Type, Ch);
if El = Null_Iir then
Res := 0;
else
Enum_Pos := Get_Enum_Pos (El);
Res := Nat8 (Enum_Pos);
Map (Ch) := Res;
end if;
end if;
end if;
Str_Table.Set_Element_String8 (Id, I, Res);
end loop;
-- LRM08 9.4.2 Locally static primaries
-- a) A literal of any type other than type TIME
Set_Expr_Staticness (Str, Locally);
return Natural (Len);
end Sem_String_Literal;
procedure Sem_String_Literal (Lit: Iir)
is
Lit_Type : constant Iir := Get_Type (Lit);
Lit_Base_Type : constant Iir := Get_Base_Type (Lit_Type);
-- The subtype created for the literal.
N_Type: Iir;
-- type of the index of the array type.
Index_Type: Iir;
Len : Natural;
El_Type : Iir;
begin
El_Type := Get_Base_Type (Get_Element_Subtype (Lit_Base_Type));
Len := Sem_String_Literal (Lit, El_Type);
if Get_Constraint_State (Lit_Type) = Fully_Constrained then
-- The type of the context is constrained.
Index_Type := Get_Index_Type (Lit_Type, 0);
if Get_Type_Staticness (Index_Type) = Locally then
if Eval_Discrete_Type_Length (Index_Type) = Int64 (Len) then
return;
else
Error_Msg_Sem (+Lit, "string length does not match that of %n",
+Index_Type);
-- Change the type.
end if;
else
-- FIXME: emit a warning because of dubious construct (the type
-- of the string is not locally constrained) ?
return;
end if;
end if;
-- Context type is not constained. Set type of the string literal,
-- according to LRM93 7.3.2.2.
N_Type := Create_Unidim_Array_By_Length
(Lit_Base_Type, Int64 (Len), Lit);
Set_Type (Lit, N_Type);
Set_Literal_Subtype (Lit, N_Type);
end Sem_String_Literal;
procedure Count_Choices (Info : out Choice_Info_Type;
Choice_Chain : Iir)
is
Choice : Iir;
begin
Info := (Nbr_Choices => 0,
Nbr_Alternatives => 0,
Others_Choice => Null_Iir,
Arr => null,
Annex_Arr => null);
Choice := Choice_Chain;
while Is_Valid (Choice) loop
case Iir_Kinds_Case_Choice (Get_Kind (Choice)) is
when Iir_Kind_Choice_By_Expression
| Iir_Kind_Choice_By_Range =>
if Get_Choice_Staticness (Choice) = Locally then
Info.Nbr_Choices := Info.Nbr_Choices + 1;
end if;
when Iir_Kind_Choice_By_Others =>
Info.Others_Choice := Choice;
end case;
if not Get_Same_Alternative_Flag (Choice) then
Info.Nbr_Alternatives := Info.Nbr_Alternatives + 1;
end if;
Choice := Get_Chain (Choice);
end loop;
end Count_Choices;
procedure Fill_Choices_Array (Info : in out Choice_Info_Type;
Choice_Chain : Iir)
is
Index : Natural;
Choice : Iir;
Expr : Iir;
begin
Info.Arr := new Iir_Array (1 .. Info.Nbr_Choices);
-- Fill the array.
Index := 0;
Choice := Choice_Chain;
while Choice /= Null_Iir loop
case Iir_Kinds_Case_Choice (Get_Kind (Choice)) is
when Iir_Kind_Choice_By_Expression =>
Expr := Get_Choice_Expression (Choice);
when Iir_Kind_Choice_By_Range =>
Expr := Get_Choice_Range (Choice);
Expr := Get_Range_From_Discrete_Range (Expr);
when Iir_Kind_Choice_By_Others =>
Expr := Null_Iir;
end case;
if Is_Valid (Expr) and then Get_Expr_Staticness (Expr) = Locally
then
Index := Index + 1;
Info.Arr (Index) := Choice;
end if;
Choice := Get_Chain (Choice);
end loop;
pragma Assert (Index = Info.Nbr_Choices);
end Fill_Choices_Array;
procedure Swap_Choice_Info (Info : Choice_Info_Type;
From : Natural; To : Natural)
is
Tmp : Iir;
begin
Tmp := Info.Arr (To);
Info.Arr (To) := Info.Arr (From);
Info.Arr (From) := Tmp;
if Info.Annex_Arr /= null then
declare
T : Int32;
begin
T := Info.Annex_Arr (To);
Info.Annex_Arr (To) := Info.Annex_Arr (From);
Info.Annex_Arr (From) := T;
end;
end if;
end Swap_Choice_Info;
procedure Sort_String_Choices (Info : in out Choice_Info_Type)
is
-- Compare two elements of ARR.
-- Return true iff OP1 < OP2.
function Lt (Op1, Op2 : Natural) return Boolean
is
E1 : constant Iir := Get_Choice_Expression (Info.Arr (Op1));
E2 : constant Iir := Get_Choice_Expression (Info.Arr (Op2));
begin
return Compare_String_Literals (E1, E2) = Compare_Lt;
end Lt;
procedure Swap (From : Natural; To : Natural) is
begin
Swap_Choice_Info (Info, From, To);
end Swap;
procedure Str_Heap_Sort is
new Grt.Algos.Heap_Sort (Lt => Lt, Swap => Swap);
begin
Str_Heap_Sort (Info.Nbr_Choices);
end Sort_String_Choices;
procedure Sem_String_Choices_Range (Choice_Chain : Iir; Sel : Iir)
is
-- Type of SEL.
Sel_Type : Iir;
-- Type of the element of SEL.
Sel_El_Type : Iir;
-- Number of literals in the element type.
Sel_El_Length : Int64;
-- Length of SEL (number of characters in SEL).
Sel_Length : Int64;
-- True if length of a choice mismatches
Has_Length_Error : Boolean := False;
El : Iir;
Info : Choice_Info_Type;
procedure Sem_Simple_Choice (Choice : Iir)
is
Expr : Iir;
Choice_Len : Int64;
begin
-- LRM93 8.8
-- In such case, each choice appearing in any of the case statement
-- alternative must be a locally static expression whose value is of
-- the same length as that of the case expression.
Expr := Sem_Expression (Get_Choice_Expression (Choice), Sel_Type);
if Expr = Null_Iir then
Has_Length_Error := True;
return;
end if;
Set_Choice_Expression (Choice, Expr);
if Get_Expr_Staticness (Expr) < Locally then
Error_Msg_Sem (+Expr, "choice must be locally static expression");
Has_Length_Error := True;
return;
end if;
Set_Choice_Staticness (Choice, Locally);
Expr := Eval_Expr (Expr);
Set_Choice_Expression (Choice, Expr);
if Get_Kind (Expr) = Iir_Kind_Overflow_Literal then
Error_Msg_Sem
(+Expr, "bound error during evaluation of choice expression");
Has_Length_Error := True;
return;
end if;
-- If the choice is an aggregate (which could be static in vhdl08),
-- transform it into a simple aggregate to ease the comparisons.
if Get_Kind (Expr) = Iir_Kind_Aggregate then
Expr := Eval_String_Literal (Expr);
Set_Choice_Expression (Choice, Expr);
end if;
Choice_Len := Eval_Discrete_Type_Length
(Get_String_Type_Bound_Type (Get_Type (Expr)));
if Sel_Length = -1 then
Sel_Length := Choice_Len;
else
if Choice_Len /= Sel_Length then
Has_Length_Error := True;
Error_Msg_Sem (+Expr, "incorrect length for the choice value");
return;
end if;
end if;
end Sem_Simple_Choice;
function Eq (Op1, Op2 : Natural) return Boolean is
begin
return Compare_String_Literals
(Get_Choice_Expression (Info.Arr (Op1)),
Get_Choice_Expression (Info.Arr (Op2)))
= Compare_Eq;
end Eq;
begin
-- LRM93 8.8
-- If the expression is of one-dimensional character array type, then
-- the expression must be one of the following:
-- FIXME: to complete.
Sel_Type := Get_Type (Sel);
if not Is_One_Dimensional_Array_Type (Sel_Type) then
Error_Msg_Sem
(+Sel,
"expression must be discrete or one-dimension array subtype");
return;
end if;
if Get_Type_Staticness (Sel_Type) = Locally then
Sel_Length := Eval_Discrete_Type_Length
(Get_String_Type_Bound_Type (Sel_Type));
else
-- LRM08 10.9 Case statement
-- If the expression is of a one-dimensional character array type and
-- is not described by either of the preceding two paragraphs, then
-- the values of all of the choices, except the OTHERS choice, if
-- present, shall be of the same length.
if Flags.Vhdl_Std >= Vhdl_08 then
Sel_Length := -1;
else
Error_Msg_Sem (+Sel, "array type must be locally static");
return;
end if;
-- Use the base type so that the subtype of the choices is computed.
Sel_Type := Get_Base_Type (Sel_Type);
end if;
Sel_El_Type := Get_Element_Subtype (Sel_Type);
Sel_El_Length := Eval_Discrete_Type_Length (Sel_El_Type);
El := Choice_Chain;
Info.Others_Choice := Null_Iir;
while El /= Null_Iir loop
case Get_Kind (El) is
when Iir_Kind_Choice_By_None =>
raise Internal_Error;
when Iir_Kind_Choice_By_Range =>
Error_Msg_Sem
(+El, "range choice are not allowed for non-discrete type");
when Iir_Kind_Choice_By_Expression =>
Sem_Simple_Choice (El);
when Iir_Kind_Choice_By_Others =>
if Info.Others_Choice /= Null_Iir then
Error_Msg_Sem (+El, "duplicate others choice");
elsif Get_Chain (El) /= Null_Iir then
Error_Msg_Sem
(+El, "choice others must be the last alternative");
end if;
Info.Others_Choice := El;
when others =>
Error_Kind ("sem_string_choices_range", El);
end case;
El := Get_Chain (El);
end loop;
-- Null choices.
if Sel_Length = 0 then
return;
end if;
if Has_Length_Error then
return;
end if;
-- LRM 8.8
--
-- If the expression is the name of an object whose subtype is locally
-- static, whether a scalar type or an array type, then each value of
-- the subtype must be represented once and only once in the set of
-- choices of the case statement and no other value is allowed; [...]
-- 1. Allocate Arr, fill it and sort
Count_Choices (Info, Choice_Chain);
Fill_Choices_Array (Info, Choice_Chain);
Sort_String_Choices (Info);
-- 2. Check for duplicate choices
for I in 1 .. Info.Nbr_Choices - 1 loop
if Eq (I, I + 1) then
Error_Msg_Sem
(+Info.Arr (I),
"duplicate choice with choice at %l", +Info.Arr (I + 1));
exit;
end if;
end loop;
-- 3. Free Arr
Free (Info.Arr);
-- Check for missing choice.
-- Do not try to compute the expected number of choices as this can
-- easily overflow.
if Info.Others_Choice = Null_Iir then
declare
Nbr : Int64 := Int64 (Info.Nbr_Choices);
begin
for I in 1 .. Sel_Length loop
Nbr := Nbr / Sel_El_Length;
if Nbr = 0 and then Choice_Chain /= Null_Iir then
-- An error has already been reported by parse if there is
-- no choices.
Error_Msg_Sem (+Choice_Chain, "missing choice(s)");
exit;
end if;
end loop;
end;
end if;
end Sem_String_Choices_Range;
-- Get low limit of ASSOC.
-- First, get the expression of the association, then the low limit.
-- ASSOC may be either association_by_range (in this case the low limit
-- is to be fetched), or association_by_expression (and the low limit
-- is the expression).
function Get_Assoc_Low (Assoc : Iir) return Iir
is
Expr : Iir;
begin
case Get_Kind (Assoc) is
when Iir_Kind_Choice_By_Expression =>
return Get_Choice_Expression (Assoc);
when Iir_Kind_Choice_By_Range =>
Expr := Get_Choice_Range (Assoc);
Expr := Get_Range_From_Discrete_Range (Expr);
case Get_Kind (Expr) is
when Iir_Kind_Range_Expression =>
return Get_Low_Limit (Expr);
when others =>
return Expr;
end case;
when others =>
Error_Kind ("get_assoc_low", Assoc);
end case;
end Get_Assoc_Low;
function Get_Assoc_High (Assoc : Iir) return Iir
is
Expr : Iir;
begin
case Get_Kind (Assoc) is
when Iir_Kind_Choice_By_Expression =>
return Get_Choice_Expression (Assoc);
when Iir_Kind_Choice_By_Range =>
Expr := Get_Choice_Range (Assoc);
Expr := Get_Range_From_Discrete_Range (Expr);
case Get_Kind (Expr) is
when Iir_Kind_Range_Expression =>
return Get_High_Limit (Expr);
when others =>
return Expr;
end case;
when others =>
Error_Kind ("get_assoc_high", Assoc);
end case;
end Get_Assoc_High;
procedure Sort_Discrete_Choices (Info : in out Choice_Info_Type)
is
-- Compare two elements of ARR.
-- Return true iff OP1 < OP2.
function Lt (Op1, Op2 : Natural) return Boolean is
begin
return (Eval_Pos (Get_Assoc_Low (Info.Arr (Op1)))
< Eval_Pos (Get_Assoc_Low (Info.Arr (Op2))));
end Lt;
procedure Swap (From : Natural; To : Natural) is
begin
Swap_Choice_Info (Info, From, To);
end Swap;
procedure Disc_Heap_Sort is
new Grt.Algos.Heap_Sort (Lt => Lt, Swap => Swap);
begin
Disc_Heap_Sort (Info.Nbr_Choices);
end Sort_Discrete_Choices;
procedure Sem_Check_Continuous_Choices (Choice_Chain : Iir;
Choice_Type : Iir;
Low : out Iir;
High : out Iir;
Loc : Location_Type;
Is_Sub_Range : Boolean)
is
-- Nodes that can appear.
Info : Choice_Info_Type;
Type_Has_Bounds : Boolean;
begin
-- Set TYPE_HAS_BOUNDS
case Get_Kind (Choice_Type) is
when Iir_Kind_Enumeration_Type_Definition
| Iir_Kind_Enumeration_Subtype_Definition
| Iir_Kind_Integer_Subtype_Definition =>
Type_Has_Bounds := True;
when Iir_Kind_Integer_Type_Definition =>
Type_Has_Bounds := False;
when others =>
Error_Kind ("sem_check_continuous_choices(3)", Choice_Type);
end case;
-- Check the choices are within the bounds.
if Type_Has_Bounds
and then Get_Type_Staticness (Choice_Type) = Locally
then
declare
Choice : Iir;
Ok : Boolean;
Has_Err : Boolean;
Expr : Iir;
begin
Has_Err := False;
Choice := Choice_Chain;
while Choice /= Null_Iir loop
Ok := True;
case Iir_Kinds_Case_Choice (Get_Kind (Choice)) is
when Iir_Kind_Choice_By_Expression =>
Expr := Get_Choice_Expression (Choice);
if Get_Expr_Staticness (Expr) = Locally then
Ok := Eval_Is_In_Bound (Expr, Choice_Type);
end if;
when Iir_Kind_Choice_By_Range =>
Expr := Get_Choice_Range (Choice);
Expr := Get_Range_From_Discrete_Range (Expr);
if Get_Expr_Staticness (Expr) = Locally then
Ok := Eval_Is_Range_In_Bound (Expr, Choice_Type, True);
end if;
when Iir_Kind_Choice_By_Others =>
null;
end case;
if not Ok then
Error_Msg_Sem (+Choice, "choice is out of index range");
Has_Err := True;
end if;
Choice := Get_Chain (Choice);
end loop;
-- In case of error (value not in range), don't try to extract
-- bounds or to sort values.
if Has_Err then
High := Null_Iir;
Low := Null_Iir;
return;
end if;
end;
end if;
-- Compute the number of elements and sort.
Count_Choices (Info, Choice_Chain);
Fill_Choices_Array (Info, Choice_Chain);
Sort_Discrete_Choices (Info);
-- Set low and high bounds.
if Info.Nbr_Choices > 0 then
Low := Get_Assoc_Low (Info.Arr (Info.Arr'First));
High := Get_Assoc_High (Info.Arr (Info.Arr'Last));
else
Low := Null_Iir;
High := Null_Iir;
end if;
-- Fourth:
-- check for lacking choice (if no others)
-- check for overlapping choices
declare
-- Emit an error message for absence of choices in position L to H
-- of index type BT at location LOC.
procedure Error_No_Choice (Bt : Iir;
L, H : Int64;
Loc : Location_Type) is
begin
if L = H then
Error_Msg_Sem (+Loc, "no choice for " & Disp_Discrete (Bt, L));
else
Error_Msg_Sem
(+Loc, "no choices for " & Disp_Discrete (Bt, L)
& " to " & Disp_Discrete (Bt, H));
end if;
end Error_No_Choice;
-- Lowest and highest bounds.
Lb, Hb : Iir;
Pos : Int64;
Pos_Max : Int64;
E_Pos : Int64;
Choice : Iir;
Need_Others : Boolean;
Bt : constant Iir := Get_Base_Type (Choice_Type);
begin
if not Is_Sub_Range
and then Get_Type_Staticness (Choice_Type) = Locally
and then Type_Has_Bounds
then
Get_Low_High_Limit (Get_Range_Constraint (Choice_Type), Lb, Hb);
else
Lb := Low;
Hb := High;
end if;
if Lb = Null_Iir or else Hb = Null_Iir then
-- Return now in case of error.
Free (Info.Arr);
return;
end if;
-- Checks all values between POS and POS_MAX are handled.
Pos := Eval_Pos (Lb);
Pos_Max := Eval_Pos (Hb);
if Pos > Pos_Max then
-- Null range.
Free (Info.Arr);
return;
end if;
Need_Others := False;
for I in Info.Arr'Range loop
Choice := Info.Arr (I);
E_Pos := Eval_Pos (Get_Assoc_Low (Choice));
if E_Pos > Pos_Max then
-- Choice out of bound, already handled.
Error_No_Choice (Bt, Pos, Pos_Max, Get_Location (Choice));
-- Avoid other errors.
Pos := Pos_Max + 1;
exit;
end if;
if Pos < E_Pos then
Need_Others := True;
if Info.Others_Choice = Null_Iir then
Error_No_Choice (Bt, Pos, E_Pos - 1, Get_Location (Choice));
end if;
elsif Pos > E_Pos then
Need_Others := True;
if Pos = E_Pos + 1 then
Error_Msg_Sem
(+Choice,
"duplicate choice for " & Disp_Discrete (Bt, E_Pos));
else
Error_Msg_Sem
(+Choice, "duplicate choices for "
& Disp_Discrete (Bt, E_Pos)
& " to " & Disp_Discrete (Bt, Pos));
end if;
end if;
if Get_Kind (Choice) = Iir_Kind_Choice_By_Range then
Pos := Eval_Pos (Get_Assoc_High (Choice)) + 1;
else
Pos := E_Pos + 1;
end if;
end loop;
if Pos /= Pos_Max + 1 then
Need_Others := True;
if Info.Others_Choice = Null_Iir then
Error_No_Choice (Bt, Pos, Pos_Max, Loc);
end if;
end if;
if not Need_Others and then Info.Others_Choice /= Null_Iir then
Warning_Msg_Sem (Warnid_Others, +Info.Others_Choice,
"redundant 'others' choices");
end if;
end;
-- LRM93 7.3.2.2 Array aggregates
-- An others choice is locally static if the applicable index constraint
-- if locally static.
if Info.Nbr_Choices > 0
and then Info.Others_Choice /= Null_Iir
and then Get_Type_Staticness (Choice_Type) /= Locally
then
Warning_Msg_Sem
(Warnid_Static, +Info.Others_Choice,
"'others' choice allowed only if the index constraint is static");
end if;
Free (Info.Arr);
end Sem_Check_Continuous_Choices;
procedure Sem_Choices_Range (Choice_Chain : in out Iir;
Choice_Type : Iir;
Low : out Iir;
High : out Iir;
Loc : Location_Type;
Is_Sub_Range : Boolean;
Is_Case_Stmt : Boolean)
is
-- Number of positionnal choice.
Nbr_Pos : Int64;
-- Number of named choices.
Nbr_Named : Natural;
-- True if others choice is present.
Has_Others : Boolean;
-- True if one association doesn't have the element_type flag (ie the
-- expression is of the same type as an aggregate).
Has_Array : Boolean;
Has_Error : Boolean;
Pos_Max : Int64;
El : Iir;
Prev_El : Iir;
-- Staticness of the current choice.
Choice_Staticness : Iir_Staticness;
-- Staticness of all the choices.
Staticness : Iir_Staticness;
-- The choice was parsed as a choice by expression, but in fact the
-- expression is a range (eg: a subtype name). Change the choice by
-- a range choice.
function Replace_By_Range_Choice (Name : Iir; Range_Type : Iir)
return Boolean
is
N_Choice : Iir;
Name1 : Iir;
begin
if Are_Types_Compatible (Range_Type, Choice_Type) = Not_Compatible
then
Error_Not_Match (Name, Choice_Type);
return False;
end if;
Name1 := Finish_Sem_Name (Name);
N_Choice := Create_Iir (Iir_Kind_Choice_By_Range);
Location_Copy (N_Choice, El);
Set_Chain (N_Choice, Get_Chain (El));
Set_Associated_Expr (N_Choice, Get_Associated_Expr (El));
Set_Associated_Chain (N_Choice, Get_Associated_Chain (El));
Set_Same_Alternative_Flag (N_Choice, Get_Same_Alternative_Flag (El));
Set_Choice_Range (N_Choice, Eval_Range_If_Static (Name1));
Set_Choice_Staticness (N_Choice, Get_Type_Staticness (Range_Type));
Set_Element_Type_Flag (N_Choice, Get_Element_Type_Flag (El));
Free_Iir (El);
if Prev_El = Null_Iir then
Choice_Chain := N_Choice;
else
Set_Chain (Prev_El, N_Choice);
end if;
El := N_Choice;
return True;
end Replace_By_Range_Choice;
-- Analyze a simple (by expression or by range) choice.
-- Return FALSE in case of error.
function Sem_Simple_Choice return Boolean
is
Expr : Iir;
Ent : Iir;
Static : Iir_Staticness;
begin
if Get_Kind (El) = Iir_Kind_Choice_By_Range then
Expr := Get_Choice_Range (El);
Expr := Sem_Discrete_Range (Expr, Choice_Type);
if Expr = Null_Iir then
return False;
end if;
case Get_Kind (Expr) is
when Iir_Kind_Range_Expression
| Iir_Kinds_Range_Attribute
| Iir_Kinds_Denoting_Name =>
Static := Get_Expr_Staticness (Expr);
when Iir_Kinds_Scalar_Subtype_Definition =>
Static := Get_Type_Staticness (Expr);
when others =>
Error_Kind ("sem_sime_choice(1)", Expr);
end case;
Set_Choice_Staticness (El, Static);
if Static = Locally then
Expr := Eval_Range (Expr);
end if;
Set_Choice_Range (El, Expr);
else
Expr := Get_Choice_Expression (El);
case Get_Kind (Expr) is
when Iir_Kind_Selected_Name
| Iir_Kind_Simple_Name
| Iir_Kind_Character_Literal
| Iir_Kind_Parenthesis_Name
| Iir_Kind_Selected_By_All_Name
| Iir_Kind_Attribute_Name =>
Sem_Name (Expr);
Ent := Get_Named_Entity (Expr);
if Ent = Error_Mark then
return False;
end if;
-- So range or expression ?
-- FIXME: share code with sem_name for slice/index.
case Get_Kind (Ent) is
when Iir_Kind_Range_Array_Attribute
| Iir_Kind_Reverse_Range_Array_Attribute
| Iir_Kind_Range_Expression =>
return Replace_By_Range_Choice (Expr, Ent);
when Iir_Kind_Subtype_Declaration
| Iir_Kind_Type_Declaration =>
Set_Type (Expr, Get_Type (Ent));
Ent := Is_Type_Name (Expr);
Set_Expr_Staticness (Expr, Get_Type_Staticness (Ent));
return Replace_By_Range_Choice (Expr, Ent);
when others =>
Expr := Name_To_Expression
(Expr, Get_Base_Type (Choice_Type));
end case;
when others =>
Expr :=
Sem_Expression_Ov (Expr, Get_Base_Type (Choice_Type));
end case;
if Expr = Null_Iir then
return False;
end if;
Expr := Eval_Expr_If_Static (Expr);
Set_Choice_Expression (El, Expr);
Set_Choice_Staticness (El, Get_Expr_Staticness (Expr));
end if;
return True;
end Sem_Simple_Choice;
begin
Low := Null_Iir;
High := Null_Iir;
-- First:
-- Analyze the choices
-- compute the range of positionnal choices
-- compute the number of choice elements (extracted from lists).
-- check for others presence.
Nbr_Pos := 0;
Nbr_Named := 0;
Has_Others := False;
Has_Error := False;
Has_Array := False;
Staticness := Locally;
El := Choice_Chain;
Prev_El := Null_Iir;
while El /= Null_Iir loop
if not Get_Element_Type_Flag (El) then
Has_Array := True;
end if;
case Get_Kind (El) is
when Iir_Kind_Choice_By_None =>
Nbr_Pos := Nbr_Pos + 1;
when Iir_Kind_Choice_By_Expression
| Iir_Kind_Choice_By_Range =>
if Sem_Simple_Choice then
Choice_Staticness := Get_Choice_Staticness (El);
Staticness := Min (Staticness, Choice_Staticness);
if Choice_Staticness /= Locally
and then Is_Case_Stmt
then
-- FIXME: explain why
Error_Msg_Sem (+El, "choice is not locally static");
end if;
else
Has_Error := True;
end if;
Nbr_Named := Nbr_Named + 1;
when Iir_Kind_Choice_By_Name =>
-- It is not possible to have such a choice in an array
-- aggregate.
-- Should have been caught previously.
raise Internal_Error;
when Iir_Kind_Choice_By_Others =>
if Has_Others then
Error_Msg_Sem (+El, "duplicate others choice");
elsif Get_Chain (El) /= Null_Iir then
Error_Msg_Sem
(+El, "choice others should be the last alternative");
end if;
Has_Others := True;
when others =>
Error_Kind ("sem_choices_range", El);
end case;
Prev_El := El;
El := Get_Chain (El);
end loop;
if Has_Error then
-- Nothing can be done here...
return;
end if;
if Nbr_Pos > 0 and then Nbr_Named > 0 then
-- LRM93 7.3.2.2
-- Apart from the final element with the single choice OTHERS, the
-- rest (if any) of the element associations of an array aggregate
-- must be either all positionnal or all named.
Error_Msg_Sem
(+Loc, "element associations must be all positional or all named");
return;
end if;
-- For a positional aggregate.
if Nbr_Pos > 0 then
-- Check number of elements match, but only if it is possible.
if Get_Type_Staticness (Choice_Type) /= Locally then
return;
end if;
Pos_Max := Eval_Discrete_Type_Length (Choice_Type);
if (not Has_Others and not Is_Sub_Range)
and then Nbr_Pos < Pos_Max
-- For aggregates, a positional association can be a vector.
and then (Vhdl_Std < Vhdl_08 or Is_Case_Stmt or not Has_Array)
then
Error_Msg_Sem (+Loc, "not enough elements associated");
elsif Nbr_Pos > Pos_Max then
Error_Msg_Sem (+Loc, "too many elements associated");
end if;
return;
end if;
-- Second:
-- Create the list of choices
if Nbr_Named = 0 and then Has_Others then
-- This is only a others association.
return;
end if;
if Staticness /= Locally then
-- Emit a message for aggregrate. The message has already been
-- emitted for a case stmt.
-- FIXME: what about individual associations?
if not Is_Case_Stmt then
-- LRM93 7.3.2.2
-- A named association of an array aggregate is allowed to have
-- a choice that is not locally static, or likewise a choice that
-- is a null range, only if the aggregate includes a single
-- element association and the element association has a single
-- choice.
if Nbr_Named > 1 or Has_Others then
Error_Msg_Sem (+Loc, "not static choice exclude others choice");
end if;
end if;
return;
end if;
Sem_Check_Continuous_Choices
(Choice_Chain, Choice_Type, Low, High, Loc, Is_Sub_Range);
end Sem_Choices_Range;
-- Perform semantisation on a (sub)aggregate AGGR, which is of type
-- A_TYPE.
-- return FALSE is case of failure
function Sem_Record_Aggregate
(Aggr : Iir_Aggregate; A_Type : Iir; Constrained : Boolean)
return boolean
is
El_List : constant Iir_Flist := Get_Elements_Declaration_List (A_Type);
-- Type of the element.
El_Type : Iir;
Matches: Iir_Array (0 .. Get_Nbr_Elements (El_List) - 1);
Ok : Boolean;
-- Add a choice for element REC_EL.
-- Checks the element is not already associated.
-- Checks type of expression is compatible with type of element.
procedure Add_Match (El : Iir; Rec_El : Iir_Element_Declaration)
is
Ass_Type : Iir;
Pos : constant Natural := Natural (Get_Element_Position (Rec_El));
begin
if Matches (Pos) /= Null_Iir then
Error_Msg_Sem (+El, "%n was already associated", +Matches (Pos));
Ok := False;
return;
end if;
Matches (Pos) := El;
-- LRM 7.3.2.1 Record aggregates
-- An element association with more than once choice, [...], is
-- only allowed if the elements specified are all of the same type.
Ass_Type := Get_Type (Rec_El);
if El_Type = Null_Iir then
El_Type := Ass_Type;
elsif Are_Types_Compatible (El_Type, Ass_Type) = Not_Compatible then
Error_Msg_Sem (+El, "elements are not of the same type");
Ok := False;
end if;
end Add_Match;
-- Analyze a simple choice: extract the record element corresponding
-- to the expression, and create a choice_by_name.
-- FIXME: should mutate the node.
function Sem_Simple_Choice (Ass : Iir) return Iir
is
Expr : constant Iir := Get_Choice_Expression (Ass);
N_El : Iir;
Aggr_El : Iir_Element_Declaration;
begin
if Get_Kind (Expr) /= Iir_Kind_Simple_Name then
Error_Msg_Sem (+Ass, "element association must be a simple name");
Ok := False;
return Ass;
end if;
Aggr_El := Find_Name_In_Flist (El_List, Get_Identifier (Expr));
if Aggr_El = Null_Iir then
Error_Msg_Sem (+Ass, "record has no such element %n", +Ass);
Ok := False;
return Ass;
end if;
Set_Named_Entity (Expr, Aggr_El);
Xref_Ref (Expr, Aggr_El);
-- Was a choice_by_expression, now by_name.
N_El := Create_Iir (Iir_Kind_Choice_By_Name);
Location_Copy (N_El, Ass);
Set_Choice_Name (N_El, Expr);
Set_Associated_Expr (N_El, Get_Associated_Expr (Ass));
Set_Associated_Chain (N_El, Get_Associated_Chain (Ass));
Set_Chain (N_El, Get_Chain (Ass));
Set_Same_Alternative_Flag (N_El, Get_Same_Alternative_Flag (Ass));
Free_Iir (Ass);
Add_Match (N_El, Aggr_El);
return N_El;
end Sem_Simple_Choice;
Assoc_Chain : Iir;
El, Prev_El : Iir;
Expr: Iir;
Has_Named : Boolean;
Rec_El_Index : Natural;
Expr_Staticness : Iir_Staticness;
-- True if at least one element constrains the subtype. For unbounded
-- records.
Add_Constraints : Boolean;
begin
Set_Aggregate_Expand_Flag (Aggr, True);
Ok := True;
Assoc_Chain := Get_Association_Choices_Chain (Aggr);
Matches := (others => Null_Iir);
Expr_Staticness := Locally;
Add_Constraints := False;
El_Type := Null_Iir;
Has_Named := False;
Rec_El_Index := 0;
Prev_El := Null_Iir;
El := Assoc_Chain;
while El /= Null_Iir loop
Expr := Get_Associated_Expr (El);
-- If there is an associated expression with the choice, then the
-- choice is a new alternative, and has no expected type.
if not Get_Same_Alternative_Flag (El) then
pragma Assert (Expr /= Null_Iir);
El_Type := Null_Iir;
end if;
case Get_Kind (El) is
when Iir_Kind_Choice_By_None =>
if Has_Named then
Error_Msg_Sem
(+El, "positional association after named one");
Ok := False;
elsif Rec_El_Index > Matches'Last then
Error_Msg_Sem (+El, "too many elements");
exit;
else
Add_Match (El, Get_Nth_Element (El_List, Rec_El_Index));
Rec_El_Index := Rec_El_Index + 1;
end if;
when Iir_Kind_Choice_By_Expression =>
Has_Named := True;
El := Sem_Simple_Choice (El);
-- This creates a choice_by_name, which replaces the
-- choice_by_expression.
if Prev_El = Null_Iir then
Set_Association_Choices_Chain (Aggr, El);
else
Set_Chain (Prev_El, El);
end if;
when Iir_Kind_Choice_By_Others =>
Has_Named := True;
if Get_Chain (El) /= Null_Iir then
Error_Msg_Sem
(+El, "choice others must be the last alternative");
end if;
declare
Found : Boolean := False;
begin
for I in Matches'Range loop
if Matches (I) = Null_Iir then
Add_Match (El, Get_Nth_Element (El_List, I));
Found := True;
end if;
end loop;
if not Found then
-- LRM08 9.3.3.2 Record aggregates
-- If the choise OTHERS is given as a choice, it shall
-- represent at least one element.
-- GHDL: so that the type of the associated expression
-- is known.
Error_Msg_Sem (+El, "no element for choice others");
Ok := False;
end if;
end;
when others =>
Error_Kind ("sem_record_aggregate", El);
end case;
-- Analyze the expression associated.
if not Get_Same_Alternative_Flag (El) then
if El_Type /= Null_Iir then
-- Analyze the expression only if the choice is correct.
Expr := Sem_Expression_Wildcard
(Expr, El_Type, Constrained);
if Expr /= Null_Iir then
Set_Associated_Expr
(El, Eval_Expr_Check_If_Static (Expr, El_Type));
Expr_Staticness := Min (Expr_Staticness,
Get_Expr_Staticness (Expr));
if not Add_Constraints
and then Is_Fully_Constrained_Type (Get_Type (Expr))
and then not Is_Fully_Constrained_Type (El_Type)
then
Add_Constraints := True;
end if;
if not Is_Static_Construct (Expr) then
Set_Aggregate_Expand_Flag (Aggr, False);
end if;
else
Ok := False;
end if;
else
-- This case is not possible unless there is an error.
pragma Assert (not Ok);
null;
end if;
end if;
Prev_El := El;
El := Get_Chain (El);
end loop;
if Has_Named then
-- TODO: support named element on expanded aggregate
Set_Aggregate_Expand_Flag (Aggr, False);
end if;
-- Check for missing associations.
for I in Matches'Range loop
if Matches (I) = Null_Iir then
Error_Msg_Sem
(+Aggr, "no value for %n", +Get_Nth_Element (El_List, I));
Ok := False;
end if;
end loop;
Set_Expr_Staticness (Aggr, Min (Get_Expr_Staticness (Aggr),
Expr_Staticness));
-- Create a constrained subtype for the aggregate type
if Ok and Add_Constraints then
declare
Rec_Type : Iir;
Rec_El_List : Iir_Flist;
Rec_El : Iir;
Rec_El_Type : Iir;
New_Rec_El : Iir;
Assoc_Expr : Iir;
Constraint : Iir_Constraint;
Composite_Found : Boolean;
Staticness : Iir_Staticness;
begin
Rec_Type := Sem_Types.Copy_Subtype_Indication (Get_Type (Aggr));
Rec_El_List := Get_Elements_Declaration_List (Rec_Type);
Constraint := Fully_Constrained;
Composite_Found := False;
Staticness := Locally;
for I in Flist_First .. Flist_Last (El_List) loop
El := Matches (I);
Assoc_Expr := Get_Associated_Expr (El);
El_Type := Get_Type (Assoc_Expr);
Rec_El := Get_Nth_Element (Rec_El_List, I);
Rec_El_Type := Get_Type (Rec_El);
if Is_Fully_Constrained_Type (El_Type)
and then not Is_Fully_Constrained_Type (Rec_El_Type)
then
Rec_El_Type := El_Type;
New_Rec_El :=
Create_Iir (Iir_Kind_Record_Element_Constraint);
Location_Copy (New_Rec_El, Rec_El);
Set_Parent (New_Rec_El, Rec_Type);
Set_Identifier (New_Rec_El, Get_Identifier (Rec_El));
pragma Assert (I = Natural (Get_Element_Position (Rec_El)));
Set_Element_Position (New_Rec_El, Iir_Index32 (I));
Set_Nth_Element (Rec_El_List, I, New_Rec_El);
Set_Type (New_Rec_El, Rec_El_Type);
Append_Owned_Element_Constraint (Rec_Type, New_Rec_El);
end if;
Staticness := Min (Staticness,
Get_Type_Staticness (Rec_El_Type));
Sem_Types.Update_Record_Constraint
(Constraint, Composite_Found, Rec_El_Type);
end loop;
Set_Type_Staticness (Rec_Type, Staticness);
Set_Constraint_State (Rec_Type, Constraint);
Set_Type (Aggr, Rec_Type);
Set_Literal_Subtype (Aggr, Rec_Type);
end;
end if;
return Ok;
end Sem_Record_Aggregate;
-- Information for each dimension of an aggregate.
type Array_Aggr_Info is record
-- False if one sub-aggregate has no others choices.
-- If FALSE, the dimension is constrained.
Has_Others : Boolean := True;
-- True if one sub-aggregate is by named/by position.
Has_Named : Boolean := False;
-- True if one sub-aggregate is dynamic.
Has_Dynamic : Boolean := False;
-- True if one association is a choice by range and the expression is
-- of the type of the aggregate (vhdl-08). If so, Dir is also set.
Has_Dir : Boolean := False;
-- Direction of the range.
Dir : Direction_Type;
-- LOW and HIGH limits for the dimension.
Low : Iir := Null_Iir;
High : Iir := Null_Iir;
-- Minimum length of the dimension. This is a minimax.
Min_Length : Natural := 0;
-- If not NULL_IIR, this is the bounds of the dimension.
-- If every dimension has bounds, then the aggregate is constrained.
Index_Subtype : Iir := Null_Iir;
-- Number of associations in last-level (not for sub-aggregate). This
-- is used only to decide whether or not a static aggregate can be
-- expanded.
Nbr_Assocs : Natural := 0;
-- True if there is an error.
Error : Boolean := False;
-- True if one element doesn't match the bounds.
Has_Bound_Error : Boolean := False;
end record;
type Array_Aggr_Info_Arr is array (Natural range <>) of Array_Aggr_Info;
procedure Sem_Array_Aggregate_Elements
(Aggr : Iir;
A_Type : Iir;
Expr_Staticness : in out Iir_Staticness;
Info : in out Array_Aggr_Info)
is
Element_Type : constant Iir := Get_Element_Subtype (A_Type);
El : Iir;
El_Expr : Iir;
Expr : Iir;
El_Staticness : Iir_Staticness;
Assoc_Chain : Iir;
Res_Type : Iir;
-- True if the type of the expression is the type of the aggregate.
Is_Array : Boolean;
-- Null_Iir if the type of aggregagte elements myst be of the element
-- type.
Elements_Types : Iir;
Elements_Types_List : Iir_List;
begin
-- LRM93 7.3.2.2 Array aggregates
-- [...] the expression of each element association must be of the
-- element type.
-- LRM08 9.3.3.3 Array aggregates
-- For an aggregate of a one-dimensional array type, [each choice shall
-- specify values of the index type], and the expression of each element
-- association shall be of either the element type or the type of the
-- aggregate.
if Flags.Vhdl_Std >= Vhdl_08
and then Is_One_Dimensional_Array_Type (A_Type)
then
Elements_Types_List := Create_Iir_List;
Append_Element (Elements_Types_List, Element_Type);
Append_Element (Elements_Types_List, Get_Base_Type (A_Type));
Elements_Types := Create_Overload_List (Elements_Types_List);
else
Elements_Types := Null_Iir;
end if;
Assoc_Chain := Get_Association_Choices_Chain (Aggr);
El := Assoc_Chain;
while El /= Null_Iir loop
if not Get_Same_Alternative_Flag (El) then
El_Expr := Get_Associated_Expr (El);
Is_Array := False;
-- Directly analyze the expression with the type of the element
-- if it cannot be the type of the aggregate.
-- In VHDL-2008, also do it when the expression is an aggregate.
-- This is not in the LRM, but otherwise this would create a lot
-- of ambiguities when the element type is a composite type. Eg:
--
-- type time_unit is record
-- val : time;
-- name : string (1 to 3);
-- end record;
-- type time_names_type is array (1 to 2) of time_unit;
-- constant time_names : time_names_type :=
-- ((fs, "fs "), (ps, "ps "));
--
-- The type of the first sub-aggregate could be either time_unit
-- or time_names_type. Because it's determined by the context,
-- it is ambiguous. But there is no point in using aggregates
-- to specify a range of choices.
-- FIXME: fix LRM ?
-- LRM08 9.3.3.3 Array aggregates
-- If the type of the expression of an element association is the
-- type of the aggregate, then either the element association
-- shall be positional or the choice shall be a discrete range.
if Elements_Types = Null_Iir
or else not Kind_In (El, Iir_Kind_Choice_By_None,
Iir_Kind_Choice_By_Range)
or else Get_Kind (El_Expr) = Iir_Kind_Aggregate
then
Expr := Sem_Expression (El_Expr, Element_Type);
else
Expr := Sem_Expression_Wildcard (El_Expr, Null_Iir);
if Expr /= Null_Iir then
Res_Type := Compatible_Types_Intersect
(Get_Type (Expr), Elements_Types);
if Res_Type = Null_Iir then
Error_Msg_Sem
(+Get_Associated_Expr (El),
"type of element not compatible with the "
& "expected type");
Set_Type (Expr, Error_Type);
Set_Associated_Expr (El, Expr);
Expr := Null_Iir;
elsif Is_Overload_List (Res_Type) then
Error_Msg_Sem
(+Expr, "type of element is ambiguous");
Free_Overload_List (Res_Type);
Set_Type (El_Expr, Error_Type);
Expr := Null_Iir;
else
pragma Assert (Is_Defined_Type (Res_Type));
Is_Array :=
Get_Base_Type (Res_Type) = Get_Base_Type (A_Type);
Expr := Sem_Expression_Wildcard (Expr, Res_Type);
end if;
end if;
end if;
if Expr /= Null_Iir then
El_Staticness := Get_Expr_Staticness (Expr);
Expr := Eval_Expr_If_Static (Expr);
Set_Associated_Expr (El, Expr);
if not Is_Static_Construct (Expr) then
Set_Aggregate_Expand_Flag (Aggr, False);
end if;
if not Is_Array
and then not Eval_Is_In_Bound (Expr, Element_Type)
then
Info.Has_Bound_Error := True;
Warning_Msg_Sem (Warnid_Runtime_Error, +Expr,
"element is out of the bounds");
end if;
if Is_Array
and then Get_Kind (El) = Iir_Kind_Choice_By_Range
then
declare
Ch_Rng : constant Iir := Get_Choice_Range (El);
Expr_Type : constant Iir := Get_Type (Expr);
Idx : Iir;
begin
if Get_Expr_Staticness (Ch_Rng) = Locally then
-- Check for matching length.
if Get_Index_Constraint_Flag (Expr_Type) then
Idx := Get_Index_Type (Expr_Type, 0);
if Get_Type_Staticness (Idx) = Locally
and then
(Eval_Discrete_Type_Length (Idx)
/= Eval_Discrete_Range_Length (Ch_Rng))
then
Warning_Msg_Sem (Warnid_Runtime_Error, +Expr,
"length mismatch");
Expr := Build_Overflow (Expr, Expr_Type);
Set_Associated_Expr (El, Expr);
end if;
end if;
-- Check for matching direction.
if Info.Has_Dir then
if Get_Direction (Ch_Rng) /= Info.Dir then
Error_Msg_Sem (+El, "direction mismatch");
end if;
else
Info.Has_Dir := True;
Info.Dir := Get_Direction (Ch_Rng);
end if;
end if;
end;
end if;
Expr_Staticness := Min (Expr_Staticness, El_Staticness);
Info.Nbr_Assocs := Info.Nbr_Assocs + 1;
else
Info.Error := True;
end if;
end if;
Set_Element_Type_Flag (El, not Is_Array);
if Is_Array then
-- LRM08 9.3.3.3 Array aggregates
-- If the type of the expression of an element association
-- is the type of the aggregate, then either the element
-- association shall be positional or the choice shall be
-- a discrete range.
-- GHDL: must be checked for all associations, so do it outside
-- the above 'if' statement.
-- GHDL: improve error message.
case Get_Kind (El) is
when Iir_Kind_Choice_By_None
| Iir_Kind_Choice_By_Range =>
null;
when Iir_Kind_Choice_By_Others =>
Error_Msg_Sem
(+El, "expression for 'others' must be an element");
when others =>
Error_Msg_Sem
(+El, "positional association or "
& "discrete range choice required");
end case;
end if;
El := Get_Chain (El);
end loop;
if Elements_Types /= Null_Iir then
Free_Overload_List (Elements_Types);
end if;
end Sem_Array_Aggregate_Elements;
procedure Sem_Array_Aggregate_Choice_Length
(Choice : Iir;
Len : in out Natural;
Len_Staticness : in out Iir_Staticness)
is
-- Extract length from associated expression.
-- Always has an associated expr, as not named.
Expr : constant Iir := Get_Associated_Expr (Choice);
Expr_Type : constant Iir := Get_Type (Expr);
Expr_Index : Iir;
Index_Staticness : Iir_Staticness;
begin
if Is_Error (Expr_Type) then
return;
end if;
if Get_Constraint_State (Expr_Type) /= Fully_Constrained then
Len_Staticness := None;
return;
end if;
Expr_Index := Get_Index_Type (Expr_Type, 0);
Index_Staticness := Get_Type_Staticness (Expr_Index);
case Index_Staticness is
when Locally =>
Len := Len + Natural
(Eval_Discrete_Type_Length (Expr_Index));
when Globally | None =>
Len_Staticness := Nodes.Min
(Len_Staticness, Index_Staticness);
when Unknown =>
-- Must have been caught by Is_Error.
raise Internal_Error;
end case;
end Sem_Array_Aggregate_Choice_Length;
-- Extract the best element subtype (the most static one).
procedure Sem_Array_Aggregate_Extract_Element_Subtype
(Aggr : Iir; Dim : Natural; Nbr_Dim : Natural; El_Subtype : in out Iir)
is
Assoc : Iir;
Sub_Aggr : Iir;
New_El_Subtype : Iir;
begin
Assoc := Get_Association_Choices_Chain (Aggr);
while Assoc /= Null_Iir loop
if not Get_Same_Alternative_Flag (Assoc) then
Sub_Aggr := Get_Associated_Expr (Assoc);
if Dim < Nbr_Dim then
case Get_Kind (Sub_Aggr) is
when Iir_Kind_Aggregate =>
Sem_Array_Aggregate_Extract_Element_Subtype
(Sub_Aggr, Dim + 1, Nbr_Dim, El_Subtype);
-- TODO: only if locally static ?
if El_Subtype /= Null_Iir then
return;
end if;
when Iir_Kind_String_Literal8 =>
-- If a string is a proper subaggregate, then the element
-- subtype must be fully bounded.
raise Internal_Error;
when others =>
null;
end case;
else
New_El_Subtype := Get_Type (Sub_Aggr);
if not Get_Element_Type_Flag (Assoc) then
New_El_Subtype := Get_Element_Subtype (New_El_Subtype);
end if;
-- TODO: try to extract the 'best' element subtype: with
-- static indexes, with constrained sub-elements.
-- Possibly create an hybrid subtype (for records).
if Get_Constraint_State (New_El_Subtype) = Fully_Constrained
then
El_Subtype := New_El_Subtype;
return;
end if;
end if;
end if;
Assoc := Get_Chain (Assoc);
end loop;
end Sem_Array_Aggregate_Extract_Element_Subtype;
-- Return FALSE in case of known mismatch.
function Check_Matching_Subtype (Expr : Iir; St : Iir) return Boolean
is
Et : constant Iir := Get_Type (Expr);
begin
case Get_Kind (St) is
when Iir_Kind_Array_Subtype_Definition =>
if Get_Kind (Et) /= Iir_Kind_Array_Subtype_Definition then
return True;
end if;
-- Fast check.
if Et = St then
return True;
end if;
-- Check indexes.
if Get_Index_Constraint_Flag (St)
and then Get_Index_Constraint_Flag (Et)
then
declare
Eil : constant Iir_Flist := Get_Index_Subtype_List (Et);
Sil : constant Iir_Flist := Get_Index_Subtype_List (St);
Ei, Si : Iir;
begin
for I in Flist_First .. Flist_Last (Eil) loop
Ei := Get_Nth_Element (Eil, I);
Si := Get_Nth_Element (Sil, I);
if Get_Type_Staticness (Ei) = Locally
and then Get_Type_Staticness (Si) = Locally
and then (Eval_Discrete_Type_Length (Si)
/= Eval_Discrete_Type_Length (Ei))
then
Warning_Msg_Sem
(Warnid_Runtime_Error, +Expr,
"expression subtype doesn't match "
& "aggregate element subtype");
return False;
end if;
end loop;
end;
end if;
-- TODO: element array element ?
when Iir_Kind_Record_Subtype_Definition =>
-- TODO
null;
when others =>
null;
end case;
return True;
end Check_Matching_Subtype;
-- Check the subtype of all elements of AGGR match EL_SUBTYPE.
-- Used only if the aggregate element subtype is extracted from an
-- element of the aggregate. In that case, we should check the match.
function Sem_Array_Aggregate_Check_Element_Subtype
(El_Subtype : Iir; Aggr : Iir; Dim : Natural; Nbr_Dim : Natural)
return Boolean
is
Ok : Boolean;
Assoc : Iir;
Sub_Aggr : Iir;
begin
Ok := True;
Assoc := Get_Association_Choices_Chain (Aggr);
while Assoc /= Null_Iir loop
if not Get_Same_Alternative_Flag (Assoc) then
Sub_Aggr := Get_Associated_Expr (Assoc);
if Dim < Nbr_Dim then
-- If a string is a proper subaggregate, then the element
-- subtype must be fully bounded.
pragma Assert (Get_Kind (Sub_Aggr) = Iir_Kind_Aggregate);
if not Sem_Array_Aggregate_Check_Element_Subtype
(El_Subtype, Sub_Aggr, Dim + 1, Nbr_Dim)
then
Ok := False;
end if;
else
if Get_Element_Type_Flag (Assoc) then
-- TODO: only report the first error ?
if not Check_Matching_Subtype (Sub_Aggr, El_Subtype) then
Ok := False;
end if;
end if;
end if;
end if;
Assoc := Get_Chain (Assoc);
end loop;
return Ok;
end Sem_Array_Aggregate_Check_Element_Subtype;
-- Analyze an array aggregate AGGR of *base type* A_TYPE.
-- The type of the array is computed into A_SUBTYPE.
-- DIM is the dimension index in A_TYPE.
-- Return FALSE in case of error.
procedure Sem_Array_Aggregate_1 (Aggr: Iir;
A_Type: Iir;
Infos : in out Array_Aggr_Info_Arr;
Constrained : Boolean;
Dim: Natural)
is
Index_List : constant Iir_Flist := Get_Index_Subtype_List (A_Type);
-- Type of the index (this is also the type of the choices).
Index_Type : constant Iir := Get_Index_Type (Index_List, Dim - 1);
Assoc_Chain : Iir;
Choice: Iir;
Is_Positional: Tri_State_Type;
Has_Positional_Choice: Boolean;
Low, High : Iir;
Has_Others : Boolean;
Len : Natural;
Index_Subtype_Constraint : Iir_Range_Expression;
Index_Constraint : Iir_Range_Expression; -- FIXME: 'range.
Dir : Direction_Type;
Choice_Staticness : Iir_Staticness;
Len_Staticness : Iir_Staticness;
Expr_Staticness : Iir_Staticness;
Info : Array_Aggr_Info renames Infos (Dim);
begin
-- Analyze choices (for aggregate but not for strings).
if Get_Kind (Aggr) = Iir_Kind_Aggregate then
-- By default, consider the aggregate can be statically built.
Set_Aggregate_Expand_Flag (Aggr, True);
Assoc_Chain := Get_Association_Choices_Chain (Aggr);
Sem_Choices_Range (Assoc_Chain, Index_Type, Low, High,
Get_Location (Aggr), not Constrained, False);
Set_Association_Choices_Chain (Aggr, Assoc_Chain);
-- Update infos.
if Low /= Null_Iir
and then (Info.Low = Null_Iir
or else Eval_Pos (Low) < Eval_Pos (Info.Low))
then
Info.Low := Low;
end if;
if High /= Null_Iir
and then (Info.High = Null_Iir
or else Eval_Pos (High) > Eval_Pos (Info.High))
then
Info.High := High;
end if;
end if;
-- Analyze aggregate elements.
if Constrained then
Expr_Staticness := Get_Type_Staticness (Index_Type);
if Expr_Staticness /= Locally then
-- Cannot be statically built as the bounds are not known and
-- must be checked at run-time.
Set_Aggregate_Expand_Flag (Aggr, False);
end if;
else
Expr_Staticness := Locally;
end if;
if Dim = Get_Nbr_Elements (Index_List) then
-- A type has been found for AGGR, analyze AGGR as if it was
-- an aggregate with a subtype (and not a string).
if Get_Kind (Aggr) = Iir_Kind_Aggregate then
Sem_Array_Aggregate_Elements (Aggr, A_Type, Expr_Staticness, Info);
else
-- Nothing to do for a string.
null;
end if;
else
-- A sub-aggregate: recurse.
declare
Sub_Aggr : Iir;
begin
-- Here we know that AGGR is an aggregate because:
-- * either this is the first call (ie DIM = 1) and therefore
-- AGGR is an aggregate (an aggregate is being analyzed).
-- * or DIM > 1 and the use of strings is checked (just bellow).
Assoc_Chain := Get_Association_Choices_Chain (Aggr);
Choice := Assoc_Chain;
while Choice /= Null_Iir loop
if not Get_Same_Alternative_Flag (Choice) then
Sub_Aggr := Get_Associated_Expr (Choice);
case Get_Kind (Sub_Aggr) is
when Iir_Kind_Aggregate =>
Set_Determined_Aggregate_Flag (Sub_Aggr, Constrained);
Sem_Array_Aggregate_1
(Sub_Aggr, A_Type, Infos, Constrained, Dim + 1);
if not Get_Aggregate_Expand_Flag (Sub_Aggr) then
Set_Aggregate_Expand_Flag (Aggr, False);
end if;
when Iir_Kind_String_Literal8 =>
if Dim + 1 = Get_Nbr_Elements (Index_List) then
Sem_Array_Aggregate_1
(Sub_Aggr, A_Type, Infos, Constrained, Dim + 1);
else
Error_Msg_Sem
(+Sub_Aggr, "string literal not allowed here");
Infos (Dim + 1).Error := True;
end if;
when others =>
Error_Msg_Sem (+Sub_Aggr, "sub-aggregate expected");
Infos (Dim + 1).Error := True;
end case;
end if;
-- Always true for a sub-aggregate.
Set_Element_Type_Flag (Choice, True);
Choice := Get_Chain (Choice);
end loop;
end;
end if;
Set_Expr_Staticness
(Aggr, Min (Expr_Staticness, Get_Expr_Staticness (Aggr)));
-- Compute length.
Len_Staticness := Locally;
case Get_Kind (Aggr) is
when Iir_Kind_Aggregate =>
-- Determine if the aggregate is positionnal or named;
-- and compute choice staticness.
Is_Positional := Unknown;
Choice_Staticness := Locally;
Has_Positional_Choice := False;
Has_Others := False;
Len := 0;
Choice := Assoc_Chain;
while Choice /= Null_Iir loop
case Get_Kind (Choice) is
when Iir_Kind_Choice_By_Range
| Iir_Kind_Choice_By_Expression =>
Is_Positional := False;
Choice_Staticness := Min (Choice_Staticness,
Get_Choice_Staticness (Choice));
-- FIXME: not true for range.
Len := Len + 1;
when Iir_Kind_Choice_By_None =>
Has_Positional_Choice := True;
if Get_Element_Type_Flag (Choice) then
Len := Len + 1;
else
-- Extract length from associated expression.
Sem_Array_Aggregate_Choice_Length
(Choice, Len, Len_Staticness);
end if;
when Iir_Kind_Choice_By_Others =>
if not Constrained then
Error_Msg_Sem (+Aggr, "'others' choice not allowed "
& "for an aggregate in this context");
Infos (Dim).Error := True;
return;
end if;
Has_Others := True;
when others =>
Error_Kind ("sem_array_aggregate", Choice);
end case;
-- LRM93 7.3.2.2
-- Apart from the final element with the single choice
-- OTHERS, the rest (if any) of the element
-- associations of an array aggregate must be either
-- all positionnal or all named.
if Has_Positional_Choice then
if Is_Positional = False then
-- The error has already been emited
-- by sem_choices_range.
Infos (Dim).Error := True;
return;
end if;
Is_Positional := True;
end if;
Choice := Get_Chain (Choice);
end loop;
Info.Min_Length := Integer'Max (Info.Min_Length, Len);
if Choice_Staticness = Unknown then
-- This is possible when a choice is erroneous.
Infos (Dim).Error := True;
return;
end if;
when Iir_Kind_String_Literal8 =>
Len := Sem_String_Literal
(Aggr, Get_Base_Type (Get_Element_Subtype (A_Type)));
Assoc_Chain := Null_Iir;
Info.Min_Length := Integer'Max (Info.Min_Length, Len);
Is_Positional := True;
Has_Others := False;
Choice_Staticness := Locally;
Info.Nbr_Assocs := Info.Nbr_Assocs + Len;
when others =>
Error_Kind ("sem_array_aggregate(1)", Aggr);
end case;
if Is_Positional = False then
Info.Has_Named := True;
end if;
if not Has_Others then
Info.Has_Others := False;
end if;
-- LRM93 7.3.2.2
-- A named association of an array aggregate is allowed to have a choice
-- that is not locally static, [or likewise a choice that is a null
-- range], only if the aggregate includes a single element association
-- and this element association has a single choice.
if Is_Positional = False and then Choice_Staticness /= Locally then
Choice := Assoc_Chain;
if not Is_Chain_Length_One (Assoc_Chain) or else
(Get_Kind (Choice) /= Iir_Kind_Choice_By_Expression
and then Get_Kind (Choice) /= Iir_Kind_Choice_By_Range)
then
Error_Msg_Sem (+Aggr, "non-locally static choice for an aggregate "
& "is allowed only if only choice");
Infos (Dim).Error := True;
return;
end if;
Info.Has_Dynamic := True;
Set_Aggregate_Expand_Flag (Aggr, False);
end if;
-- Compute bounds of the index if there is no index subtype.
if Info.Index_Subtype = Null_Iir and then Has_Others = False then
-- LRM93 7.3.2.2
-- the direction of the index subtype of the aggregate is that of the
-- index subtype of the base type of the aggregate.
if Is_Positional = True then
-- LRM93 7.3.2.2
-- For a positionnal aggregate, [...] the leftmost bound is given
-- by S'LEFT where S is the index subtype of the base type of the
-- array; [...] the rightmost bound is determined by the direction
-- of the index subtype and the number of element.
if Get_Type_Staticness (Index_Type) = Locally
and then Len_Staticness = Locally
then
Info.Index_Subtype := Create_Range_Subtype_By_Length
(Index_Type, Int64 (Len), Get_Location (Aggr));
-- In vhdl08 and later, the number of elements may also depend
-- from associated expressions.
if Vhdl_Std >= Vhdl_08
and then Get_Index_Constraint_Flag (A_Type)
and then Eval_Discrete_Type_Length (Index_Type) /= Int64 (Len)
then
Error_Msg_Sem (+Aggr, "incorrect number of elements");
end if;
end if;
else
-- Create an index subtype.
case Get_Kind (Index_Type) is
when Iir_Kind_Integer_Subtype_Definition =>
Info.Index_Subtype :=
Create_Iir (Iir_Kind_Integer_Subtype_Definition);
when Iir_Kind_Enumeration_Type_Definition
| Iir_Kind_Enumeration_Subtype_Definition =>
Info.Index_Subtype :=
Create_Iir (Iir_Kind_Enumeration_Subtype_Definition);
when others =>
Error_Kind ("sem_array_aggregate(2)", Index_Type);
end case;
Location_Copy (Info.Index_Subtype, Aggr);
Set_Parent_Type (Info.Index_Subtype, Get_Base_Type (Index_Type));
Index_Constraint := Get_Range_Constraint (Index_Type);
-- LRM93 7.3.2.2
-- If the aggregate appears in one of the above contexts, then the
-- direction of the index subtype of the aggregate is that of the
-- corresponding constrained array subtype; [...]
Index_Subtype_Constraint := Create_Iir (Iir_Kind_Range_Expression);
Location_Copy (Index_Subtype_Constraint, Aggr);
Set_Range_Constraint
(Info.Index_Subtype, Index_Subtype_Constraint);
Set_Type_Staticness (Info.Index_Subtype, Choice_Staticness);
Set_Expr_Staticness (Index_Subtype_Constraint, Choice_Staticness);
Set_Type (Index_Subtype_Constraint, Index_Type);
if Info.Has_Dir then
-- LRM08 9.3.3.3 array aggregate
-- If the aggregate does not appear in one of the contexts in
-- the preceding list and an element association in the
-- aggregate list has a choice that is a discrete range and an
-- expression that is of the type of the aggregate, then the
-- direction of the index range of the aggregate is that of
-- the discrete range.
Dir := Info.Dir;
elsif Get_Kind (Index_Constraint) = Iir_Kind_Range_Expression then
Dir := Get_Direction (Index_Constraint);
else
-- This is not correct, as the direction must be the one of
-- the corresponding constraint. But it may not be determined
-- at analysis time (if 'Range), and it doesn't really matter
-- because of implicit subtype conversion. So choose one
-- arbitrary direction.
Dir := Dir_To;
end if;
-- LRM93 7.3.2.2
-- For an aggregate that has named associations, the leftmost and
-- the rightmost bounds are determined by the direction of the
-- index subtype of the aggregate and the smallest and largest
-- choice given.
if Choice_Staticness = Locally then
if Low = Null_Iir or High = Null_Iir then
-- Avoid error propagation.
Set_Range_Constraint (Info.Index_Subtype,
Get_Range_Constraint (Index_Type));
Free_Iir (Index_Subtype_Constraint);
else
Set_Direction (Index_Subtype_Constraint, Dir);
case Dir is
when Dir_To =>
Set_Left_Limit (Index_Subtype_Constraint, Low);
Set_Right_Limit (Index_Subtype_Constraint, High);
when Dir_Downto =>
Set_Left_Limit (Index_Subtype_Constraint, High);
Set_Right_Limit (Index_Subtype_Constraint, Low);
end case;
end if;
else
-- Dynamic aggregate.
Set_Aggregate_Expand_Flag (Aggr, False);
declare
-- There is only one choice.
Choice : constant Iir := Assoc_Chain;
Expr : Iir;
begin
case Get_Kind (Choice) is
when Iir_Kind_Choice_By_Expression =>
Expr := Get_Choice_Expression (Choice);
Set_Direction (Index_Subtype_Constraint, Dir);
Set_Left_Limit (Index_Subtype_Constraint, Expr);
Set_Right_Limit (Index_Subtype_Constraint, Expr);
when Iir_Kind_Choice_By_Range =>
Expr := Get_Choice_Range (Choice);
Set_Range_Constraint (Info.Index_Subtype, Expr);
Set_Is_Ref (Info.Index_Subtype, True);
-- FIXME: avoid allocation-free.
Free_Iir (Index_Subtype_Constraint);
when others =>
raise Internal_Error;
end case;
end;
end if;
end if;
--Set_Type_Staticness
-- (A_Subtype, Iirs.Min (Get_Type_Staticness (A_Subtype),
-- Get_Type_Staticness (Index_Subtype)));
--Append_Element (Get_Index_List (A_Subtype), Index_Subtype);
elsif Has_Others = False then
-- Check the subaggregate bounds are the same.
if Is_Positional = True then
if Eval_Pos (Eval_Discrete_Range_Left (Get_Range_Constraint
(Info.Index_Subtype)))
/= Eval_Pos (Eval_Discrete_Range_Left (Get_Range_Constraint
(Index_Type)))
then
Error_Msg_Sem (+Aggr, "subaggregate bounds mismatch");
else
if Eval_Discrete_Type_Length (Info.Index_Subtype)
/= Int64 (Len)
then
Error_Msg_Sem (+Aggr, "subaggregate length mismatch");
end if;
end if;
else
declare
L, H : Iir;
begin
Get_Low_High_Limit
(Get_Range_Constraint (Info.Index_Subtype), L, H);
if Eval_Pos (L) /= Eval_Pos (Low)
or else Eval_Pos (H) /= Eval_Pos (H)
then
Error_Msg_Sem (+Aggr, "subaggregate bounds mismatch");
end if;
end;
end if;
end if;
Expr_Staticness := Min (Get_Expr_Staticness (Aggr), Choice_Staticness);
Set_Expr_Staticness (Aggr, Expr_Staticness);
end Sem_Array_Aggregate_1;
-- Analyze an array aggregate whose type is AGGR_TYPE.
-- If CONSTRAINED is true, then the aggregate appears in one of the
-- context and can have an 'others' choice.
-- If CONSTRAINED is false, the aggregate can not have an 'others' choice.
-- Create a subtype for this aggregate.
-- Return NULL_IIR in case of error, or AGGR if not.
function Sem_Array_Aggregate
(Aggr : Iir; Aggr_Type : Iir; Constrained : Boolean) return Iir
is
Index_List : constant Iir_Flist := Get_Index_Subtype_List (Aggr_Type);
Nbr_Dim : constant Natural := Get_Nbr_Elements (Index_List);
El_Type : constant Iir := Get_Element_Subtype (Aggr_Type);
El_Subtype : Iir;
Infos : Array_Aggr_Info_Arr (1 .. Nbr_Dim);
A_Subtype: Iir;
Base_Type : Iir;
Aggr_Constrained : Boolean;
Info, Prev_Info : Iir_Aggregate_Info;
Type_Staticness : Iir_Staticness;
begin
-- Analyze the aggregate.
Sem_Array_Aggregate_1 (Aggr, Aggr_Type, Infos, Constrained, 1);
-- The aggregate is constrained if all indexes are known.
Aggr_Constrained := True;
for I in Infos'Range loop
-- Return now in case of error.
if Infos (I).Error then
Set_Aggregate_Expand_Flag (Aggr, False);
return Null_Iir;
end if;
if Infos (I).Index_Subtype = Null_Iir then
Aggr_Constrained := False;
end if;
end loop;
Base_Type := Get_Base_Type (Aggr_Type);
-- Extract element subtype (if needed and if possible).
if not Is_Fully_Constrained_Type (El_Type) then
-- Need to extract the element subtype.
-- First, extract it - try to find the best one.
El_Subtype := Null_Iir;
Sem_Array_Aggregate_Extract_Element_Subtype
(Aggr, 1, Nbr_Dim, El_Subtype);
if El_Subtype = Null_Iir then
El_Subtype := El_Type;
else
-- TODO: check constraints of elements (if El_Subtype is static)
null;
end if;
else
El_Subtype := El_Type;
end if;
-- Reuse AGGR_TYPE iff AGGR_TYPE is fully constrained
-- and statically match the subtype of the aggregate.
if Aggr_Constrained then
Type_Staticness := Locally;
for I in Infos'Range loop
Type_Staticness := Min
(Type_Staticness, Get_Type_Staticness (Infos (I).Index_Subtype));
end loop;
if Get_Constraint_State (Aggr_Type) = Fully_Constrained
and then Get_Type_Staticness (Aggr_Type) = Locally
and then Type_Staticness = Locally
then
Set_Type (Aggr, Aggr_Type);
else
A_Subtype := Create_Array_Subtype (Base_Type, Get_Location (Aggr));
Set_Element_Subtype (A_Subtype, El_Subtype);
if El_Subtype /= El_Type then
if not Sem_Array_Aggregate_Check_Element_Subtype
(El_Subtype, Aggr, 1, Nbr_Dim)
then
Infos (Nbr_Dim).Has_Bound_Error := True;
end if;
end if;
Type_Staticness := Min (Type_Staticness,
Get_Type_Staticness (El_Subtype));
declare
Idx_List : constant Iir_Flist :=
Get_Index_Subtype_List (A_Subtype);
begin
for I in Infos'Range loop
Set_Nth_Element (Idx_List, I - 1, Infos (I).Index_Subtype);
end loop;
end;
Set_Type_Staticness (A_Subtype, Type_Staticness);
Set_Index_Constraint_Flag (A_Subtype, True);
if Get_Kind (El_Subtype) in Iir_Kinds_Composite_Type_Definition
then
Set_Constraint_State
(A_Subtype, Get_Constraint_State (El_Subtype));
else
Set_Constraint_State
(A_Subtype, Fully_Constrained);
end if;
Set_Type (Aggr, A_Subtype);
Set_Literal_Subtype (Aggr, A_Subtype);
end if;
if Type_Staticness = Locally and then Get_Aggregate_Expand_Flag (Aggr)
then
-- Compute ratio of elements vs size of the aggregate to determine
-- if the aggregate can be expanded.
declare
Size : Int64;
begin
Size := 1;
for I in Infos'Range loop
Size := Size
* Eval_Discrete_Type_Length (Infos (I).Index_Subtype);
end loop;
Set_Aggregate_Expand_Flag
(Aggr, Infos (Nbr_Dim).Nbr_Assocs >= Natural (Size / 10));
end;
else
Set_Aggregate_Expand_Flag (Aggr, False);
end if;
else
-- If the array is not constrained, expression cannot be more
-- static than the type. In particular, if the type is not
-- constrained, the expression cannot be locally static.
Set_Expr_Staticness (Aggr, Min (Get_Type_Staticness (Aggr_Type),
Get_Expr_Staticness (Aggr)));
-- Free unused indexes subtype.
for I in Infos'Range loop
declare
St : constant Iir := Infos (I).Index_Subtype;
Rng : Iir;
begin
if St /= Null_Iir then
Rng := Get_Range_Constraint (St);
Free_Iir (Get_Right_Limit_Expr (Rng));
Free_Iir (Rng);
Free_Iir (St);
end if;
end;
end loop;
-- If bounds are not known, the aggregate cannot be statically built.
Set_Aggregate_Expand_Flag (Aggr, False);
if Get_Constraint_State (Aggr_Type) /= Fully_Constrained
and then El_Subtype /= El_Type
then
A_Subtype := Create_Array_Subtype (Base_Type, Get_Location (Aggr));
Set_Element_Subtype (A_Subtype, El_Subtype);
if not Sem_Array_Aggregate_Check_Element_Subtype
(El_Subtype, Aggr, 1, Nbr_Dim)
then
Infos (Nbr_Dim).Has_Bound_Error := True;
end if;
Type_Staticness := Get_Type_Staticness (El_Subtype);
if Get_Index_Constraint_Flag (Aggr_Type) then
declare
Idx_Src_List : constant Iir_Flist :=
Get_Index_Subtype_List (Aggr_Type);
Idx_Dest_List : constant Iir_Flist :=
Get_Index_Subtype_List (A_Subtype);
Idx : Iir;
begin
for I in 1 .. Nbr_Dim loop
Idx := Get_Nth_Element (Idx_Src_List, I - 1);
Type_Staticness := Min (Type_Staticness,
Get_Type_Staticness (Idx));
Set_Nth_Element (Idx_Dest_List, I - 1, Idx);
end loop;
end;
Set_Index_Constraint_Flag (A_Subtype, True);
Set_Constraint_State (A_Subtype,
Get_Constraint_State (El_Subtype));
else
Set_Constraint_State
(A_Subtype,
Iir_Constraint'Min (Partially_Constrained,
Get_Constraint_State (El_Subtype)));
end if;
Set_Type_Staticness (A_Subtype, Type_Staticness);
Set_Type (Aggr, A_Subtype);
Set_Literal_Subtype (Aggr, A_Subtype);
end if;
end if;
if Infos (Nbr_Dim).Has_Bound_Error then
return Build_Overflow (Aggr, Get_Type (Aggr));
end if;
Prev_Info := Null_Iir;
for I in Infos'Range loop
-- Create info and link.
Info := Create_Iir (Iir_Kind_Aggregate_Info);
if I = 1 then
Set_Aggregate_Info (Aggr, Info);
else
Set_Sub_Aggregate_Info (Prev_Info, Info);
end if;
Prev_Info := Info;
-- Fill info.
Set_Aggr_Dynamic_Flag (Info, Infos (I).Has_Dynamic);
Set_Aggr_Named_Flag (Info, Infos (I).Has_Named);
Set_Aggr_Low_Limit (Info, Infos (I).Low);
Set_Aggr_High_Limit (Info, Infos (I).High);
Set_Aggr_Min_Length (Info, Iir_Int32 (Infos (I).Min_Length));
Set_Aggr_Others_Flag (Info, Infos (I).Has_Others);
end loop;
return Aggr;
end Sem_Array_Aggregate;
-- Analyze aggregate EXPR whose type is expected to be A_TYPE.
-- A_TYPE cannot be null_iir (this case is handled in sem_expression_ov)
-- If CONSTRAINED is true, the aggregate type is constrained by the
-- context, even if its type isn't. This is to deal with cases like:
-- procedure set (v : out string) is
-- begin
-- v := (others => ' ');
-- end set;
-- but this is not allowed by:
-- LRM08 9.3.3.3 Array aggregates
-- e) As a value expression in an assignment statement, where the target
-- is a declared object (or member thereof), and either the subtype of
-- the target is a fully constrained array subtype or the target is a
-- slice name.
function Sem_Aggregate
(Expr: Iir_Aggregate; A_Type: Iir; Constrained : Boolean) return Iir is
begin
pragma Assert (A_Type /= Null_Iir);
if Flags.Vhdl_Std >= Vhdl_08 then
-- An aggregate can be a locally static primary according to LRM08
-- 9.4.2 Locally static primaries l) and m).
Set_Expr_Staticness (Expr, Locally);
else
-- An aggregate is at most globally static.
Set_Expr_Staticness (Expr, Globally);
end if;
Set_Determined_Aggregate_Flag (Expr, Constrained);
Set_Type (Expr, A_Type); -- FIXME: should free old type
case Get_Kind (A_Type) is
when Iir_Kind_Array_Subtype_Definition =>
return Sem_Array_Aggregate
(Expr, A_Type,
Constrained or Get_Index_Constraint_Flag (A_Type));
when Iir_Kind_Array_Type_Definition =>
return Sem_Array_Aggregate (Expr, A_Type, Constrained);
when Iir_Kind_Record_Type_Definition
| Iir_Kind_Record_Subtype_Definition =>
if not Sem_Record_Aggregate (Expr, A_Type, Constrained) then
return Null_Iir;
end if;
return Expr;
when Iir_Kind_Error =>
return Null_Iir;
when others =>
Error_Msg_Sem (+Expr, "type %n is not composite", +A_Type);
return Null_Iir;
end case;
end Sem_Aggregate;
function Is_Physical_Literal_Zero (Lit : Iir) return Boolean is
begin
case Iir_Kinds_Physical_Literal (Get_Kind (Lit)) is
when Iir_Kind_Physical_Int_Literal =>
return Get_Value (Lit) = 0;
when Iir_Kind_Physical_Fp_Literal =>
return Get_Fp_Value (Lit) = 0.0;
end case;
end Is_Physical_Literal_Zero;
-- Transform LIT into a physical_literal.
-- LIT can be either a not analyzed physical literal or
-- a simple name that is a physical unit. In the later case, a physical
-- literal is created.
function Sem_Physical_Literal (Lit: Iir) return Iir
is
Unit_Name : Iir;
Unit : Iir;
Unit_Type : Iir;
Res: Iir;
begin
case Get_Kind (Lit) is
when Iir_Kind_Physical_Int_Literal
| Iir_Kind_Physical_Fp_Literal =>
Unit_Name := Get_Unit_Name (Lit);
Res := Lit;
when Iir_Kinds_Denoting_Name =>
Res := Create_Iir (Iir_Kind_Physical_Int_Literal);
Location_Copy (Res, Lit);
Set_Value (Res, 1);
Set_Literal_Origin (Res, Lit);
Unit_Name := Lit;
when others =>
Error_Kind ("sem_physical_literal", Lit);
end case;
if Is_Error (Unit_Name) then
return Create_Error_Expr (Res, Error_Mark);
end if;
case Get_Kind (Unit_Name) is
when Iir_Kind_Simple_Name
| Iir_Kind_Selected_Name =>
Unit_Name := Sem_Denoting_Name (Unit_Name);
Unit := Get_Named_Entity (Unit_Name);
when others =>
pragma Assert (Flags.Flag_Force_Analysis);
Unit := Null_Iir;
end case;
if Unit = Null_Iir
or else Get_Kind (Unit) /= Iir_Kind_Unit_Declaration
then
if Unit /= Null_Iir and then not Is_Error (Unit) then
Error_Class_Match (Unit_Name, "unit");
end if;
Set_Named_Entity (Unit_Name, Create_Error_Name (Unit_Name));
else
-- Note: there is corresponding code for physical literal without
-- literal (so only the unit) in vhdl.sem_expr.name_to_expression.
-- Physical unit is used.
Set_Use_Flag (Unit, True);
if Get_Type (Unit) = Time_Type_Definition
and then Get_Value (Get_Physical_Literal (Unit)) = 0
and then not Is_Physical_Literal_Zero (Res)
then
-- LRM08 5.2.4.2 Predefined physical types
-- It is an error if a given unit of type TIME appears anywhere
-- within the design hierarchy defining a model to be elaborated,
-- and if the position number of that unit is less than that of
-- the secondary unit selected as the resolution limit for type
-- TIME during the elaboration of the model, unless that unit is
-- part of a physical literal whose abstract literal is either
-- the integer value zero or the floating-point value zero.
Error_Msg_Sem
(+Res, "physical unit %i is below the time resolution", +Unit);
end if;
end if;
Set_Unit_Name (Res, Unit_Name);
Unit_Type := Get_Type (Unit_Name);
Set_Type (Res, Unit_Type);
-- LRM93 7.4.2
-- 1. a literal of type TIME.
--
-- LRM93 7.4.1
-- 1. a literal of any type other than type TIME;
Set_Expr_Staticness (Res, Get_Expr_Staticness (Unit_Name));
--Eval_Check_Constraints (Res);
return Res;
end Sem_Physical_Literal;
-- Analyze an allocator by expression or an allocator by subtype.
function Sem_Allocator (Expr : Iir; A_Type : Iir) return Iir
is
Arg : Iir;
Ind : Iir;
Arg_Type : Iir;
begin
Set_Expr_Staticness (Expr, None);
Arg_Type := Get_Allocator_Designated_Type (Expr);
if Arg_Type = Null_Iir then
-- Expression was not analyzed.
case Iir_Kinds_Allocator (Get_Kind (Expr)) is
when Iir_Kind_Allocator_By_Expression =>
Arg := Get_Expression (Expr);
pragma Assert (Get_Kind (Arg) = Iir_Kind_Qualified_Expression);
Arg := Sem_Expression (Arg, Null_Iir);
if Arg = Null_Iir then
return Null_Iir;
end if;
Check_Read (Arg);
Set_Expression (Expr, Arg);
Arg_Type := Get_Type (Arg);
when Iir_Kind_Allocator_By_Subtype =>
-- Analyze subtype indication.
Ind := Get_Subtype_Indication (Expr);
Ind := Sem_Types.Sem_Subtype_Indication (Ind);
Set_Subtype_Indication (Expr, Ind);
Set_Allocator_Subtype (Expr, Ind);
Arg := Get_Type_Of_Subtype_Indication (Ind);
if Arg = Null_Iir or else Is_Error (Arg) then
return Null_Iir;
end if;
-- LRM93 7.3.6
-- If an allocator includes a subtype indication and if the
-- type of the object created is an array type, then the
-- subtype indication must either denote a constrained
-- subtype or include an explicit index constraint.
if not Is_Fully_Constrained_Type (Arg) then
Error_Msg_Sem
(+Expr, "allocator of unconstrained %n is not allowed",
+Arg);
end if;
-- LRM93 7.3.6
-- A subtype indication that is part of an allocator must
-- not include a resolution function.
if Is_Proper_Subtype_Indication (Ind)
and then Get_Kind (Arg) /= Iir_Kind_Access_Subtype_Definition
and then Get_Resolution_Indication (Arg) /= Null_Iir
then
Error_Msg_Sem (+Expr, "subtype indication must not include"
& " a resolution function");
end if;
Arg_Type := Arg;
end case;
Set_Allocator_Designated_Type (Expr, Arg_Type);
end if;
-- LRM 7.3.6 Allocators
-- The type of the access value returned by an allocator must be
-- determinable solely from the context, but using the fact that the
-- value returned is of an access type having the named designated
-- type.
if A_Type = Null_Iir then
-- Type of the context is not yet known.
return Expr;
else
if not Is_Allocator_Type (A_Type, Expr) then
if Get_Kind (A_Type) /= Iir_Kind_Access_Type_Definition then
if not Is_Error (A_Type) then
Error_Msg_Sem (+Expr, "expected type is not an access type");
end if;
else
Error_Not_Match (Expr, A_Type);
end if;
return Null_Iir;
end if;
Set_Type (Expr, A_Type);
return Expr;
end if;
end Sem_Allocator;
function Sem_Qualified_Expression (Expr : Iir; A_Type : Iir) return Iir
is
N_Type: Iir;
Res: Iir;
begin
N_Type := Sem_Type_Mark (Get_Type_Mark (Expr));
Set_Type_Mark (Expr, N_Type);
N_Type := Get_Type (N_Type);
if N_Type = Null_Iir then
-- Stop now in case of error. It is highly possible that the
-- expression is ambiguous.
return Null_Iir;
end if;
Set_Type (Expr, N_Type);
if A_Type /= Null_Iir
and then Are_Types_Compatible (A_Type, N_Type) = Not_Compatible
then
Error_Not_Match (Expr, A_Type);
return Null_Iir;
end if;
Res := Sem_Expression (Get_Expression (Expr), N_Type);
if Res = Null_Iir then
return Null_Iir;
end if;
Check_Read (Res);
Res := Eval_Expr_If_Static (Res);
Set_Expression (Expr, Res);
-- LRM93 7.4.1 Locally static primaries
-- h) A qualified expression whose operand is a locally static
-- expression.
--
-- LRM08 9.4.2 Locally static primaries
-- i) A qualified expression whose type mark denotes a locally static
-- subtype and whose operand is a locally static expression.
--
-- We use the vhdl08 definition, because it is weird to have locally
-- static expression with a non-locally static subtype.
Set_Expr_Staticness (Expr, Min (Get_Expr_Staticness (Res),
Get_Type_Staticness (N_Type)));
-- But be nice with vhdl93 if the type mark is an array type definition.
-- In that case copy the type from the expression.
if Flags.Vhdl_Std < Vhdl_08
and then Get_Kind (N_Type) = Iir_Kind_Array_Type_Definition
and then Get_Expr_Staticness (Res) >= Globally
then
Set_Expr_Staticness (Expr, Get_Expr_Staticness (Res));
Set_Type (Expr, Get_Type (Res));
end if;
-- When possible, use the type of the expression as the type of the
-- qualified expression.
-- TODO: also handle unbounded subtypes, but only if this is a proper
-- subtype.
-- FIXME: is it valid ? Try to merge bounds ? This has real
-- consequences on validity, for self-determined aggregates with
-- unbounded types: the element may become bounded.
if not Is_Fully_Constrained_Type (N_Type)
and then Is_Fully_Constrained_Type (Get_Type (Res))
then
Set_Type (Expr, Get_Type (Res));
end if;
-- Emit a warning if the value is known not to be within the bounds.
if Get_Expr_Staticness (Res) = Locally
and then not Eval_Is_In_Bound (Res, N_Type)
then
Warning_Msg_Sem
(Warnid_Runtime_Error, +Expr,
"static expression out of prefix type bounds");
return Build_Overflow (Expr, N_Type);
end if;
return Expr;
end Sem_Qualified_Expression;
function Can_Interface_Be_Read (Inter : Iir) return Boolean is
begin
case Get_Mode (Inter) is
when Iir_In_Mode
| Iir_Inout_Mode
| Iir_Buffer_Mode =>
-- LRM08 6.5.3 Interface object declarations
-- - in. The value of the interface object is allowed
-- to be read, [...]
-- - inout or buffer. Reading and updating the value of
-- the interface object is allowed. [...]
null;
when Iir_Out_Mode =>
-- LRM93 4.3.2 Interface declarations
-- - out. The value of the interface object is allowed to be
-- updated, but it must not be read.
--
-- LRM08 6.5.3 Interface object declarations
-- - out. The value of the interface object is allowed
-- [to be updated and,] provided it is not a signal
-- parameter, read.
if Vhdl_Std < Vhdl_08 or else Is_Signal_Parameter (Inter) then
return False;
end if;
when Iir_Linkage_Mode =>
-- LRM08 6.5.3 Interface object declarations
-- - linkage. Reading and updating the value of the
-- interface object is allowed, but only by appearing
-- as an actual corresponding to an interface object
-- of mode LINKAGE. No other reading or updating is
-- permitted.
return False;
when Iir_Unknown_Mode =>
raise Internal_Error;
end case;
return True;
end Can_Interface_Be_Read;
function Can_Interface_Be_Updated (Inter : Iir) return Boolean is
begin
case Get_Mode (Inter) is
when Iir_In_Mode =>
-- LRM08 6.5.3 Interface object declarations
-- - in. The value of the interface object is allowed to be read,
-- but it shall not be updated.
return False;
when Iir_Out_Mode =>
-- LRM08 6.5.3 Interface object declarations
-- - out. The value of the interface object is allowed
-- to be updated [and, ...]
return True;
when Iir_Inout_Mode
| Iir_Buffer_Mode =>
-- LRM08 6.5.3 Interface object declarations
-- - inout or buffer. Reading and updating the value of the
-- interface is allowed.
return True;
when Iir_Linkage_Mode =>
-- LRM08 6.5.3 Interface object declarations
-- - linkage. Reading and updating the value of the
-- interface object is allowed, but only by appearing
-- as an actual corresponding to an interface object
-- of mode LINKAGE. No other reading or updating is
-- permitted.
return False;
when Iir_Unknown_Mode =>
raise Internal_Error;
end case;
end Can_Interface_Be_Updated;
procedure Check_Read_Aggregate (Aggr : Iir)
is
Atype : constant Iir := Get_Type (Aggr);
Choice : Iir;
begin
if Atype /= Null_Iir and then Is_Error (Atype) then
-- No check in case of error.
return;
end if;
Choice := Get_Association_Choices_Chain (Aggr);
while Choice /= Null_Iir loop
case Iir_Kinds_Choice (Get_Kind (Choice)) is
when Iir_Kind_Choice_By_Range =>
-- Already checked while analyzing the range.
null;
when Iir_Kind_Choice_By_Expression =>
Check_Read (Get_Choice_Expression (Choice));
when Iir_Kind_Choice_By_Others
| Iir_Kind_Choice_By_Name
| Iir_Kind_Choice_By_None =>
-- Nothing to check.
null;
end case;
Check_Read (Get_Associated_Expr (Choice));
Choice := Get_Chain (Choice);
end loop;
end Check_Read_Aggregate;
-- Check EXPR can be read.
procedure Check_Read (Expr : Iir)
is
Obj : Iir;
begin
if Expr = Null_Iir then
return;
end if;
Obj := Expr;
loop
case Get_Kind (Obj) is
when Iir_Kind_Signal_Declaration
| Iir_Kind_Variable_Declaration =>
Set_Use_Flag (Obj, True);
return;
when Iir_Kind_Constant_Declaration
| Iir_Kind_Interface_Constant_Declaration
| Iir_Kind_Attribute_Value
| Iir_Kind_Iterator_Declaration
| Iir_Kind_Guard_Signal_Declaration =>
return;
when Iir_Kinds_Quantity_Declaration
| Iir_Kind_Interface_Quantity_Declaration =>
return;
when Iir_Kinds_External_Name =>
return;
when Iir_Kind_Psl_Endpoint_Declaration
| Iir_Kind_Psl_Boolean_Parameter =>
return;
when Iir_Kind_File_Declaration
| Iir_Kind_Interface_File_Declaration =>
-- LRM 4.3.2 Interface declarations
-- The value of an object is said to be read [...]
-- - When the object is a file and a READ operation is
-- performed on the file.
return;
when Iir_Kind_Object_Alias_Declaration =>
Obj := Get_Name (Obj);
when Iir_Kind_Interface_Signal_Declaration
| Iir_Kind_Interface_Variable_Declaration =>
if not Can_Interface_Be_Read (Obj) then
Error_Msg_Sem (+Expr, "%n cannot be read", +Obj);
end if;
return;
when Iir_Kind_Enumeration_Literal
| Iir_Kind_Physical_Int_Literal
| Iir_Kind_Physical_Fp_Literal
| Iir_Kind_String_Literal8
| Iir_Kind_Character_Literal
| Iir_Kind_Integer_Literal
| Iir_Kind_Floating_Point_Literal
| Iir_Kind_Null_Literal
| Iir_Kind_Unit_Declaration
| Iir_Kind_Simple_Aggregate
| Iir_Kind_Overflow_Literal =>
return;
when Iir_Kinds_Monadic_Operator
| Iir_Kinds_Dyadic_Operator
| Iir_Kind_Function_Call =>
return;
when Iir_Kind_Parenthesis_Expression =>
Obj := Get_Expression (Obj);
when Iir_Kind_Qualified_Expression =>
return;
when Iir_Kind_Type_Conversion
| Iir_Kind_Allocator_By_Expression
| Iir_Kind_Allocator_By_Subtype
| Iir_Kind_Implicit_Dereference
| Iir_Kind_Dereference
| Iir_Kind_Attribute_Name =>
return;
when Iir_Kinds_Scalar_Type_Attribute
| Iir_Kinds_Type_Attribute
| Iir_Kinds_Array_Attribute
| Iir_Kind_Image_Attribute
| Iir_Kind_Value_Attribute
| Iir_Kinds_Name_Attribute
| Iir_Kinds_Signal_Attribute
| Iir_Kinds_Signal_Value_Attribute
| Iir_Kind_Above_Attribute
| Iir_Kind_Zoh_Attribute
| Iir_Kind_Ltf_Attribute
| Iir_Kind_Ztf_Attribute
| Iir_Kind_Dot_Attribute
| Iir_Kind_Integ_Attribute
| Iir_Kind_Ramp_Attribute
| Iir_Kind_Quantity_Delayed_Attribute =>
return;
when Iir_Kind_Aggregate =>
Check_Read_Aggregate (Obj);
return;
when Iir_Kind_Indexed_Name
| Iir_Kind_Slice_Name
| Iir_Kind_Selected_Element =>
-- FIXME: speed up using Base_Name
-- Obj := Get_Base_Name (Obj);
Obj := Get_Prefix (Obj);
when Iir_Kind_Simple_Name
| Iir_Kind_Selected_Name =>
Obj := Get_Named_Entity (Obj);
when Iir_Kinds_Psl_Builtin =>
return;
when Iir_Kind_Parenthesis_Name
| Iir_Kind_Error =>
return;
when others =>
Error_Kind ("check_read", Obj);
end case;
end loop;
end Check_Read;
-- Emit an error if the constant EXPR is deferred and cannot be used in
-- the current context.
procedure Check_Constant_Restriction (Expr : Iir; Loc : Iir)
is
Lib : Iir;
Cur_Lib : Iir;
begin
-- LRM93 2.6
-- Within a package declaration that contains the declaration
-- of a deferred constant, and within the body of that package,
-- before the end of the corresponding full declaration, the
-- use of a name that denotes the deferred constant is only
-- allowed in the default expression for a local generic,
-- local port or formal parameter.
if Get_Deferred_Declaration_Flag (Expr) = False
or else Get_Deferred_Declaration (Expr) /= Null_Iir
then
-- The constant declaration is not deferred
-- or the it has been fully declared.
return;
end if;
Lib := Get_Parent (Expr);
Cur_Lib := Get_Library_Unit (Sem.Get_Current_Design_Unit);
if (Get_Kind (Cur_Lib) = Iir_Kind_Package_Declaration
and then Lib = Cur_Lib)
or else (Get_Kind (Cur_Lib) = Iir_Kind_Package_Body
and then Get_Package (Cur_Lib) = Lib)
then
Error_Msg_Sem (+Loc, "invalid use of a deferred constant");
end if;
end Check_Constant_Restriction;
function Sem_Dyadic_Operator (Expr : Iir; Atype : Iir) return Iir
is
Arr : Iir_Array (1 .. 128);
Len : Natural;
begin
-- Try to linearize the tree in order to reduce recursion depth
-- and also improve speed of evaluation.
-- This is particularly useful for repeated concatenations.
declare
Left : Iir;
begin
Len := 0;
Left := Expr;
while Len < Arr'Last
and then Get_Kind (Left) in Iir_Kinds_Dyadic_Operator
loop
Len := Len + 1;
Arr (Len) := Left;
Left := Get_Left (Left);
end loop;
end;
-- No possibility to linearize...
if Len = 1 then
return Sem_Operator (Expr, Atype);
end if;
if Get_Type (Expr) = Null_Iir then
-- First pass.
Arr (Len) := Sem_Operator_Pass1 (Arr (Len), Null_Iir);
if Arr (Len) = Null_Iir then
return Null_Iir;
end if;
for I in reverse 2 .. Len - 1 loop
Set_Left (Arr (I), Arr (I + 1));
Arr (I) := Sem_Operator_Pass1 (Arr (I), Null_Iir);
if Arr (I) = Null_Iir then
return Null_Iir;
end if;
end loop;
Set_Left (Arr (1), Arr (2));
Arr (1) := Sem_Operator_Pass1 (Arr (1), Atype);
return Arr (1);
else
-- Second pass.
declare
Op_Type : Iir;
Decl : Iir;
Interfaces : Iir;
Left, Right : Iir;
Is_All_Concat : Boolean;
Imp : Iir;
Err : Boolean;
begin
Op_Type := Atype;
Err := False;
for I in 1 .. Len loop
if not Is_Overloaded (Arr (I)) then
pragma Assert (I > 1);
exit;
end if;
Decl := Sem_Operator_Pass2_Interpretation
(Arr (I), Op_Type);
if Decl = Null_Iir then
-- Stop in case of error.
return Null_Iir;
end if;
Set_Type (Arr (I), Get_Return_Type (Decl));
Set_Implementation (Arr (I), Decl);
Interfaces := Get_Interface_Declaration_Chain (Decl);
Op_Type := Get_Base_Type (Get_Type (Interfaces));
-- Right operand.
Right := Get_Right (Arr (I));
if Is_Overloaded (Right) then
Right := Get_Right (Arr (I));
Right := Sem_Expression_Ov
(Right,
Get_Base_Type (Get_Type (Get_Chain (Interfaces))));
if Right = Null_Iir then
Err := True;
else
Set_Right (Arr (I), Right);
end if;
end if;
Check_Read (Right);
end loop;
Left := Get_Left (Arr (Len));
if Is_Overloaded (Left) then
Left := Sem_Expression_Ov
(Left, Get_Base_Type (Get_Type (Interfaces)));
if Left = Null_Iir then
Err := True;
else
Set_Left (Arr (Len), Left);
end if;
end if;
-- Finish
if not Err then
Is_All_Concat := True;
for I in reverse 1 .. Len loop
Imp := Get_Implementation (Arr (I));
Sem_Subprogram_Call_Finish (Arr (I), Imp);
Is_All_Concat := Is_All_Concat
and then (Get_Implicit_Definition (Imp)
in Iir_Predefined_Concat_Functions);
end loop;
if Get_Expr_Staticness (Arr (1)) = Locally then
if Is_All_Concat
then
Arr (1) := Eval_Concatenation (Arr (1 .. Len));
else
Arr (1) := Eval_Expr_If_Static (Arr (1));
end if;
else
for I in reverse 1 .. Len loop
exit when Get_Expr_Staticness (Arr (I)) /= Locally;
Arr (I) := Eval_Expr_If_Static (Arr (I));
if I > 1 then
Set_Left (Arr (I - 1), Arr (I));
end if;
end loop;
end if;
end if;
return Arr (1);
end;
end if;
end Sem_Dyadic_Operator;
function Sem_Parenthesis_Expression (Expr : Iir; Atype: Iir) return Iir
is
Sub_Expr : Iir;
begin
Sub_Expr := Get_Expression (Expr);
Sub_Expr := Sem_Expression_Ov (Sub_Expr, Atype);
if Sub_Expr = Null_Iir then
return Null_Iir;
end if;
Set_Expression (Expr, Sub_Expr);
Set_Type (Expr, Get_Type (Sub_Expr));
Set_Expr_Staticness (Expr, Get_Expr_Staticness (Sub_Expr));
return Expr;
end Sem_Parenthesis_Expression;
-- Set semantic to EXPR.
-- Replace simple_name with the referenced node,
-- Set type to nodes,
-- Resolve overloading
-- If A_TYPE is not null, then EXPR must be of type A_TYPE.
-- Return null in case of error.
function Sem_Expression_Ov (Expr: Iir; A_Type1: Iir) return Iir
is
A_Type: Iir;
begin
-- -- Avoid to run sem_expression_ov when a node was already analyzed
-- -- except to resolve overload.
-- if Get_Type (Expr) /= Null_Iir then
-- -- EXPR was already analyzed.
-- if A_Type1 = null or else not Is_Overload_List (Get_Type (Expr)) then
-- -- This call to sem_expression_ov do not add any informations.
-- Check_Restrictions (Expr, Restriction);
-- return Expr;
-- end if;
-- -- This is an overload list that will be reduced.
-- end if;
-- A_TYPE must be a type definition and not a subtype.
if A_Type1 /= Null_Iir then
A_Type := Get_Base_Type (A_Type1);
if A_Type /= A_Type1 then
raise Internal_Error;
end if;
else
A_Type := Null_Iir;
end if;
case Get_Kind (Expr) is
when Iir_Kind_Selected_Name
| Iir_Kind_Simple_Name
| Iir_Kind_Character_Literal
| Iir_Kind_Parenthesis_Name
| Iir_Kind_Selected_By_All_Name
| Iir_Kind_Attribute_Name =>
declare
E : Iir;
begin
E := Get_Named_Entity (Expr);
if E = Null_Iir then
Sem_Name (Expr);
E := Get_Named_Entity (Expr);
pragma Assert (E /= Null_Iir);
end if;
if E = Error_Mark then
return Null_Iir;
end if;
case Get_Kind (E) is
when Iir_Kind_Constant_Declaration =>
if not Deferred_Constant_Allowed then
Check_Constant_Restriction (E, Expr);
end if;
when Iir_Kind_Enumeration_Literal =>
Set_Use_Flag (E, True);
when others =>
null;
end case;
E := Name_To_Expression (Expr, A_Type);
return E;
end;
when Iir_Kinds_External_Name =>
Sem_External_Name (Expr);
return Expr;
when Iir_Kinds_Monadic_Operator =>
return Sem_Operator (Expr, A_Type);
when Iir_Kinds_Dyadic_Operator =>
return Sem_Dyadic_Operator (Expr, A_Type);
when Iir_Kind_Enumeration_Literal
| Iir_Kinds_Object_Declaration =>
-- All these case have already a type.
if Get_Type (Expr) = Null_Iir then
return Null_Iir;
end if;
if A_Type /= Null_Iir
and then Are_Basetypes_Compatible
(A_Type, Get_Base_Type (Get_Type (Expr))) = Not_Compatible
then
Error_Not_Match (Expr, A_Type);
return Null_Iir;
end if;
return Expr;
when Iir_Kind_Integer_Literal =>
Set_Expr_Staticness (Expr, Locally);
if A_Type = Null_Iir then
Set_Type (Expr, Convertible_Integer_Type_Definition);
return Expr;
elsif Get_Kind (A_Type) = Iir_Kind_Integer_Type_Definition then
Set_Type (Expr, A_Type);
return Expr;
else
Error_Not_Match (Expr, A_Type);
return Null_Iir;
end if;
when Iir_Kind_Floating_Point_Literal =>
Set_Expr_Staticness (Expr, Locally);
if A_Type = Null_Iir then
Set_Type (Expr, Convertible_Real_Type_Definition);
return Expr;
elsif Get_Kind (A_Type) = Iir_Kind_Floating_Type_Definition then
Set_Type (Expr, A_Type);
return Expr;
else
Error_Not_Match (Expr, A_Type);
return Null_Iir;
end if;
when Iir_Kind_Physical_Int_Literal
| Iir_Kind_Physical_Fp_Literal
| Iir_Kind_Unit_Declaration =>
declare
Res: Iir;
Res_Type : Iir;
begin
Res := Sem_Physical_Literal (Expr);
Res_Type := Get_Type (Res);
if Is_Null (Res_Type) then
return Null_Iir;
end if;
if A_Type /= Null_Iir and then Res_Type /= A_Type then
Error_Not_Match (Res, A_Type);
return Null_Iir;
end if;
return Res;
end;
when Iir_Kind_String_Literal8 =>
-- LRM93 7.3.1 Literals
-- The type of a string or bit string literal must be
-- determinable solely from the context in whcih the literal
-- appears, excluding the literal itself [...]
if A_Type = Null_Iir then
return Expr;
end if;
if not Is_String_Literal_Type (A_Type, Expr) then
Error_Not_Match (Expr, A_Type);
return Null_Iir;
else
Replace_Type (Expr, A_Type);
Sem_String_Literal (Expr);
return Expr;
end if;
when Iir_Kind_Null_Literal =>
Set_Expr_Staticness (Expr, Locally);
-- GHDL: the LRM doesn't explain how the type of NULL is
-- determined. Use the same rule as string or aggregates.
if A_Type = Null_Iir then
return Expr;
end if;
if not Is_Null_Literal_Type (A_Type) then
Error_Msg_Sem (+Expr, "null literal can only be access type");
return Null_Iir;
else
Set_Type (Expr, A_Type);
return Expr;
end if;
when Iir_Kind_Aggregate =>
-- LRM93 7.3.2 Aggregates
-- The type of an aggregate must be determinable solely from the
-- context in which the aggregate appears, excluding the aggregate
-- itself but [...]
if A_Type = Null_Iir then
return Expr;
else
return Sem_Aggregate (Expr, A_Type, False);
end if;
when Iir_Kind_Parenthesis_Expression =>
return Sem_Parenthesis_Expression (Expr, A_Type1);
when Iir_Kind_Qualified_Expression =>
return Sem_Qualified_Expression (Expr, A_Type);
when Iir_Kind_Allocator_By_Expression
| Iir_Kind_Allocator_By_Subtype =>
return Sem_Allocator (Expr, A_Type);
when Iir_Kind_Procedure_Declaration =>
Error_Msg_Sem (+Expr, "%n cannot be used as an expression", +Expr);
return Null_Iir;
when Iir_Kind_Range_Expression =>
-- That's an error. Can happen for:
-- c (1 downto 0);
-- which is first parsed as a target of a concurrent assignment,
-- and then as a concurrent procedure call.
declare
Res : Iir;
begin
Res := Sem_Simple_Range_Expression (Expr, A_Type);
return Create_Error_Expr (Res, A_Type);
end;
when Iir_Kind_Psl_Prev =>
return Sem_Psl.Sem_Prev_Builtin (Expr, A_Type);
when Iir_Kind_Psl_Stable
| Iir_Kind_Psl_Rose
| Iir_Kind_Psl_Fell =>
return Sem_Psl.Sem_Clock_Builtin (Expr);
when Iir_Kind_Psl_Onehot
| Iir_Kind_Psl_Onehot0 =>
return Sem_Psl.Sem_Onehot_Builtin (Expr);
when Iir_Kind_Error =>
-- Always ok.
-- Use the error as a type.
Set_Type (Expr, Expr);
return Expr;
when others =>
Error_Kind ("sem_expression_ov", Expr);
return Null_Iir;
end case;
end Sem_Expression_Ov;
function Is_Expr_Not_Analyzed (Expr : Iir) return Boolean is
begin
return Get_Type (Expr) = Null_Iir;
end Is_Expr_Not_Analyzed;
function Is_Expr_Fully_Analyzed (Expr : Iir) return Boolean is
begin
return Is_Defined_Type (Get_Type (Expr));
end Is_Expr_Fully_Analyzed;
function Get_Wildcard_Type (Wildcard : Iir; Atype : Iir) return Iir is
begin
if Atype in Iir_Wildcard_Types then
-- Special wildcard vs wildcard.
case Iir_Wildcard_Types (Wildcard) is
when Wildcard_Any_Type =>
return Atype;
when Wildcard_Any_Aggregate_Type =>
case Iir_Wildcard_Types (Atype) is
when Wildcard_Any_Type
| Wildcard_Any_Aggregate_Type =>
return Wildcard_Any_Aggregate_Type;
when Wildcard_Any_String_Type =>
return Wildcard_Any_String_Type;
when Wildcard_Psl_Bitvector_Type =>
return Wildcard_Psl_Bitvector_Type;
when Wildcard_Any_Access_Type
| Wildcard_Any_Integer_Type
| Wildcard_Psl_Bit_Type
| Wildcard_Psl_Boolean_Type =>
return Null_Iir;
end case;
when Wildcard_Any_String_Type =>
case Iir_Wildcard_Types (Atype) is
when Wildcard_Any_Type
| Wildcard_Any_Aggregate_Type
| Wildcard_Any_String_Type =>
return Wildcard_Any_String_Type;
when Wildcard_Psl_Bitvector_Type =>
return Wildcard_Psl_Bitvector_Type;
when Wildcard_Any_Access_Type
| Wildcard_Any_Integer_Type
| Wildcard_Psl_Bit_Type
| Wildcard_Psl_Boolean_Type =>
return Null_Iir;
end case;
when Wildcard_Any_Access_Type =>
case Iir_Wildcard_Types (Atype) is
when Wildcard_Any_Type
| Wildcard_Any_Access_Type =>
return Wildcard_Any_Access_Type;
when Wildcard_Any_Aggregate_Type
| Wildcard_Any_String_Type
| Wildcard_Any_Integer_Type
| Wildcard_Psl_Bit_Type
| Wildcard_Psl_Bitvector_Type
| Wildcard_Psl_Boolean_Type =>
return Null_Iir;
end case;
when Wildcard_Any_Integer_Type =>
case Iir_Wildcard_Types (Atype) is
when Wildcard_Any_Type
| Wildcard_Any_Integer_Type =>
return Wildcard_Any_Integer_Type;
when Wildcard_Any_Access_Type
| Wildcard_Any_Aggregate_Type
| Wildcard_Any_String_Type
| Wildcard_Psl_Bit_Type
| Wildcard_Psl_Boolean_Type
| Wildcard_Psl_Bitvector_Type =>
return Null_Iir;
end case;
when Wildcard_Psl_Bit_Type =>
case Iir_Wildcard_Types (Atype) is
when Wildcard_Any_Type
| Wildcard_Psl_Bit_Type =>
return Wildcard_Psl_Bit_Type;
when Wildcard_Any_Access_Type
| Wildcard_Any_Aggregate_Type
| Wildcard_Any_String_Type
| Wildcard_Any_Integer_Type
| Wildcard_Psl_Bitvector_Type
| Wildcard_Psl_Boolean_Type =>
return Null_Iir;
end case;
when Wildcard_Psl_Bitvector_Type =>
case Iir_Wildcard_Types (Atype) is
when Wildcard_Any_Type
| Wildcard_Any_Aggregate_Type
| Wildcard_Any_String_Type
| Wildcard_Psl_Bitvector_Type =>
return Wildcard_Psl_Bitvector_Type;
when Wildcard_Any_Access_Type
| Wildcard_Any_Integer_Type
| Wildcard_Psl_Bit_Type
| Wildcard_Psl_Boolean_Type =>
return Null_Iir;
end case;
when Wildcard_Psl_Boolean_Type =>
case Iir_Wildcard_Types (Atype) is
when Wildcard_Any_Type
| Wildcard_Psl_Boolean_Type =>
return Wildcard_Psl_Boolean_Type;
when Wildcard_Psl_Bit_Type =>
return Wildcard_Psl_Bit_Type;
when Wildcard_Any_Access_Type
| Wildcard_Any_Aggregate_Type
| Wildcard_Any_String_Type
| Wildcard_Any_Integer_Type
| Wildcard_Psl_Bitvector_Type =>
return Null_Iir;
end case;
end case;
else
case Iir_Wildcard_Types (Wildcard) is
when Wildcard_Any_Type =>
-- Match with any type.
return Atype;
when Wildcard_Any_Aggregate_Type =>
if Is_Aggregate_Type (Atype) then
return Atype;
end if;
when Wildcard_Any_String_Type =>
if Is_String_Type (Atype) then
return Atype;
end if;
when Wildcard_Any_Access_Type =>
if Get_Kind (Get_Base_Type (Atype))
= Iir_Kind_Access_Type_Definition
then
return Atype;
end if;
when Wildcard_Any_Integer_Type =>
if Get_Kind (Get_Base_Type (Atype))
= Iir_Kind_Integer_Type_Definition
then
return Atype;
end if;
when Wildcard_Psl_Bit_Type =>
if Sem_Psl.Is_Psl_Bit_Type (Atype) then
return Atype;
end if;
when Wildcard_Psl_Bitvector_Type =>
if Sem_Psl.Is_Psl_Bitvector_Type (Atype) then
return Atype;
end if;
when Wildcard_Psl_Boolean_Type =>
if Sem_Psl.Is_Psl_Boolean_Type (Atype) then
return Atype;
end if;
end case;
return Null_Iir;
end if;
end Get_Wildcard_Type;
function Compatible_Types_Intersect_Single (T1, T2 : Iir) return Iir is
begin
if T1 = T2 then
return T1;
end if;
if T1 in Iir_Wildcard_Types then
return Get_Wildcard_Type (T1, T2);
elsif T2 in Iir_Wildcard_Types then
return Get_Wildcard_Type (T2, T1);
else
return Get_Common_Basetype (Get_Base_Type (T1), Get_Base_Type (T2));
end if;
end Compatible_Types_Intersect_Single;
function Compatible_Types_Intersect_Single_List (A_Type, Types_List : Iir)
return Iir
is
Types_List_List : Iir_List;
It : List_Iterator;
El: Iir;
Com : Iir;
Res : Iir;
begin
if not Is_Overload_List (Types_List) then
return Compatible_Types_Intersect_Single (A_Type, Types_List);
else
Types_List_List := Get_Overload_List (Types_List);
Res := Null_Iir;
It := List_Iterate (Types_List_List);
while Is_Valid (It) loop
El := Get_Element (It);
Com := Compatible_Types_Intersect_Single (El, A_Type);
if Com /= Null_Iir then
Add_Result (Res, Com);
end if;
Next (It);
end loop;
return Res;
end if;
end Compatible_Types_Intersect_Single_List;
function Compatible_Types_Intersect (List1, List2 : Iir) return Iir
is
List1_List : Iir_List;
It1 : List_Iterator;
Res : Iir;
El : Iir;
Tmp : Iir;
begin
if List1 = Null_Iir or else List2 = Null_Iir then
return Null_Iir;
end if;
if Is_Overload_List (List1) then
List1_List := Get_Overload_List (List1);
Res := Null_Iir;
It1 := List_Iterate (List1_List);
while Is_Valid (It1) loop
El := Get_Element (It1);
Tmp := Compatible_Types_Intersect_Single_List (El, List2);
if Tmp /= Null_Iir then
Add_Result (Res, Tmp);
end if;
Next (It1);
end loop;
return Res;
else
return Compatible_Types_Intersect_Single_List (List1, List2);
end if;
end Compatible_Types_Intersect;
function Sem_Expression_Wildcard
(Expr : Iir; Atype : Iir; Constrained : Boolean := False)
return Iir
is
Expr_Type : constant Iir := Get_Type (Expr);
Atype_Defined : constant Boolean := Is_Defined_Type (Atype);
Expr_Type_Defined : constant Boolean := Is_Defined_Type (Expr_Type);
begin
if Expr_Type /= Null_Iir then
-- EXPR is at least partially analyzed.
if Expr_Type_Defined or else not Atype_Defined then
-- Nothing to do if:
-- - Expression is already fully analyzed: caller has to merge
-- types
-- - Expression is partially analyzed but ATYPE is not defined:
-- caller has to merge types.
return Expr;
end if;
end if;
case Get_Kind (Expr) is
when Iir_Kind_Aggregate =>
if Atype_Defined then
return Sem_Aggregate (Expr, Atype, Constrained);
else
pragma Assert (Expr_Type = Null_Iir);
Set_Type (Expr, Wildcard_Any_Aggregate_Type);
end if;
return Expr;
when Iir_Kind_String_Literal8 =>
if Atype_Defined then
if not Is_String_Literal_Type (Atype, Expr) then
Error_Not_Match (Expr, Atype);
Set_Type (Expr, Error_Type);
else
Set_Type (Expr, Atype);
Sem_String_Literal (Expr);
end if;
else
pragma Assert (Expr_Type = Null_Iir);
Set_Type (Expr, Wildcard_Any_String_Type);
end if;
return Expr;
when Iir_Kind_Null_Literal =>
if Atype_Defined then
if not Is_Null_Literal_Type (Atype) then
Error_Not_Match (Expr, Atype);
Set_Type (Expr, Error_Type);
else
Set_Type (Expr, Atype);
Set_Expr_Staticness (Expr, Locally);
end if;
else
pragma Assert (Expr_Type = Null_Iir);
Set_Type (Expr, Wildcard_Any_Access_Type);
end if;
return Expr;
when Iir_Kind_Allocator_By_Expression
| Iir_Kind_Allocator_By_Subtype =>
if Atype_Defined then
if not Is_Null_Literal_Type (Atype) then
Error_Not_Match (Expr, Atype);
Set_Type (Expr, Error_Type);
else
return Sem_Allocator (Expr, Atype);
end if;
else
pragma Assert (Expr_Type = Null_Iir);
Set_Type (Expr, Wildcard_Any_Access_Type);
end if;
return Expr;
when Iir_Kind_Parenthesis_Expression =>
declare
Sub_Expr : Iir;
Ntype : Iir;
begin
Sub_Expr := Get_Expression (Expr);
if Atype_Defined and then not Flag_Relaxed_Rules then
-- Very important: loose the subtype due to
-- LRM93 7.3.2.2 Array aggregate.
Ntype := Get_Base_Type (Atype);
else
Ntype := Atype;
end if;
Sub_Expr := Sem_Expression_Wildcard (Sub_Expr, Ntype);
if Sub_Expr /= Null_Iir then
Set_Expression (Expr, Sub_Expr);
Set_Type (Expr, Get_Type (Sub_Expr));
Set_Expr_Staticness (Expr, Get_Expr_Staticness (Sub_Expr));
else
Set_Type (Expr, Error_Type);
end if;
end;
return Expr;
when others =>
if Atype_Defined then
return Sem_Expression_Ov (Expr, Get_Base_Type (Atype));
else
declare
Res : Iir;
Res_Type : Iir;
Prev_Res_Type : Iir;
begin
pragma Assert (Expr_Type = Null_Iir);
if Atype in Iir_Wildcard_Types then
-- Analyze without known type.
Res := Sem_Expression_Ov (Expr, Null_Iir);
if Res = Null_Iir or else Is_Error (Res) then
Set_Type (Expr, Error_Type);
return Expr;
end if;
Prev_Res_Type := Get_Type (Res);
-- Filter possible type.
Res_Type := Compatible_Types_Intersect_Single_List
(Atype, Prev_Res_Type);
if Res_Type = Null_Iir then
-- No matching type. This is an error.
Error_Not_Match (Expr, Atype);
Set_Type (Expr, Error_Type);
elsif Is_Defined_Type (Res_Type) then
-- Known and defined matching type.
if Res_Type /= Prev_Res_Type then
-- Need to refine analysis.
Res := Sem_Expression_Ov (Expr, Res_Type);
end if;
else
-- Matching but not defined type (overload).
Set_Type (Expr, Res_Type);
end if;
if Is_Overload_List (Prev_Res_Type) then
Free_Overload_List (Prev_Res_Type);
end if;
return Res;
else
pragma Assert (Atype = Null_Iir);
return Sem_Expression_Ov (Expr, Atype);
end if;
end;
end if;
end case;
end Sem_Expression_Wildcard;
procedure Merge_Wildcard_Type (Expr : Iir; Atype : in out Iir)
is
Result_Type : Iir;
Expr_Type : Iir;
begin
if Is_Error (Expr) then
return;
end if;
Expr_Type := Get_Type (Expr);
if Is_Error (Expr_Type) then
return;
end if;
if not Is_Overload_List (Expr_Type) then
-- Use the base type; EXPR may define its own subtype (like in
-- qualified expression with forwarding) which must not be
-- referenced before it is defined (so by a parent). In any case,
-- that also makes sense: we need to deal with types, not with
-- subtypes.
Expr_Type := Get_Base_Type (Expr_Type);
pragma Assert (Expr_Type /= Null_Iir);
end if;
Result_Type := Compatible_Types_Intersect (Atype, Expr_Type);
if Atype /= Null_Iir and then Is_Overload_List (Atype) then
Free_Overload_List (Atype);
end if;
if Result_Type /= Null_Iir then
if Is_Defined_Type (Atype) then
-- If ATYPE was already defined, keep it. So that subtypes
-- are kept (this is needed for aggregates and always helpful).
null;
else
Atype := Result_Type;
end if;
else
Atype := Result_Type;
end if;
end Merge_Wildcard_Type;
-- If A_TYPE is not null, then EXPR must be of type A_TYPE.
-- Return null in case of error.
function Sem_Expression (Expr: Iir; A_Type: Iir) return Iir
is
A_Type1: Iir;
Res: Iir;
Expr_Type : Iir;
begin
if Check_Is_Expression (Expr, Expr) = Null_Iir then
return Null_Iir;
end if;
-- Can't try to run sem_expression_ov when a node was already analyzed
Expr_Type := Get_Type (Expr);
if Expr_Type /= Null_Iir and then not Is_Overload_List (Expr_Type) then
-- Checks types.
-- This is necessary when the first call to sem_expression was done
-- with A_TYPE set to NULL_IIR and results in setting the type of
-- EXPR.
if A_Type /= Null_Iir
and then Are_Types_Compatible (A_Type, Expr_Type) = Not_Compatible
then
if not Is_Error (Expr_Type) then
Error_Not_Match (Expr, A_Type);
end if;
return Null_Iir;
end if;
return Expr;
end if;
-- A_TYPE must be a type definition and not a subtype.
if A_Type /= Null_Iir then
A_Type1 := Get_Base_Type (A_Type);
else
A_Type1 := Null_Iir;
end if;
case Get_Kind (Expr) is
when Iir_Kind_Aggregate =>
Res := Sem_Aggregate (Expr, A_Type, False);
when Iir_Kind_String_Literal8 =>
if A_Type = Null_Iir then
Res := Sem_Expression_Ov (Expr, Null_Iir);
else
if not Is_String_Literal_Type (A_Type, Expr) then
Error_Not_Match (Expr, A_Type);
return Null_Iir;
end if;
Set_Type (Expr, A_Type);
Sem_String_Literal (Expr);
return Expr;
end if;
when Iir_Kind_Parenthesis_Expression =>
if Flag_Relaxed_Rules then
-- With -frelaxed, consider parentheses as a no-op.
-- The difference is significant for aggregates with 'others'
-- choice.
declare
Sub_Expr : Iir;
begin
Sub_Expr := Get_Expression (Expr);
Sub_Expr := Sem_Expression (Sub_Expr, A_Type);
if Sub_Expr = Null_Iir then
return Null_Iir;
end if;
Set_Expression (Expr, Sub_Expr);
Set_Type (Expr, Get_Type (Sub_Expr));
Set_Expr_Staticness (Expr, Get_Expr_Staticness (Sub_Expr));
return Expr;
end;
else
-- Loose the subtype, use the type.
Res := Sem_Parenthesis_Expression (Expr, A_Type1);
end if;
when others =>
Res := Sem_Expression_Ov (Expr, A_Type1);
end case;
if Res /= Null_Iir and then Is_Overloaded (Res) then
-- FIXME: clarify between overload and not determinable from the
-- context.
if not Is_Error (Expr) then
Report_Start_Group;
Error_Overload (Expr);
if Get_Type (Res) /= Null_Iir then
Disp_Overload_List (Get_Overload_List (Get_Type (Res)), Expr);
end if;
Report_End_Group;
end if;
return Null_Iir;
end if;
return Res;
end Sem_Expression;
function Sem_Composite_Expression (Expr : Iir) return Iir
is
Res : Iir;
begin
Res := Sem_Expression_Ov (Expr, Null_Iir);
if Res = Null_Iir or else Get_Type (Res) = Null_Iir then
return Res;
elsif Is_Overload_List (Get_Type (Res)) then
declare
List : constant Iir_List := Get_Overload_List (Get_Type (Res));
It : List_Iterator;
Res_Type : Iir;
Atype : Iir;
begin
Res_Type := Null_Iir;
It := List_Iterate (List);
while Is_Valid (It) loop
Atype := Get_Element (It);
if Is_Aggregate_Type (Atype) then
Add_Result (Res_Type, Atype);
end if;
Next (It);
end loop;
if Res_Type = Null_Iir then
Error_Overload (Expr);
return Null_Iir;
elsif Is_Overload_List (Res_Type) then
Report_Start_Group;
Error_Overload (Expr);
Disp_Overload_List (Get_Overload_List (Res_Type), Expr);
Report_End_Group;
Free_Overload_List (Res_Type);
return Null_Iir;
else
return Sem_Expression_Ov (Expr, Res_Type);
end if;
end;
else
-- Either an error (already handled) or not overloaded. Type
-- matching will be done later (when the target is analyzed).
return Res;
end if;
end Sem_Composite_Expression;
-- EXPR must be an expression with type is an overload list.
-- Extract and finish the analysis of the expression that is of universal
-- type, if there is one and if all types are either integer types or
-- floating point types.
-- This is used to get rid of implicit conversions.
function Sem_Favour_Universal_Type (Expr : Iir) return Iir
is
Expr_Type : constant Iir := Get_Type (Expr);
Type_List : constant Iir_List := Get_Overload_List (Expr_Type);
-- Extract kind (from the first element).
First_El : constant Iir := Get_First_Element (Type_List);
Kind : constant Iir_Kind := Get_Kind (Get_Base_Type (First_El));
Res : Iir;
El : Iir;
It : List_Iterator;
begin
Res := Null_Iir;
It := List_Iterate (Type_List);
while Is_Valid (It) loop
El := Get_Element (It);
if Get_Kind (Get_Base_Type (El)) /= Kind then
-- Must be of the same kind.
Res := Null_Iir;
exit;
end if;
if El = Universal_Integer_Type_Definition
or El = Convertible_Integer_Type_Definition
or El = Universal_Real_Type_Definition
or El = Convertible_Real_Type_Definition
then
if Res = Null_Iir then
Res := El;
else
Res := Null_Iir;
exit;
end if;
end if;
Next (It);
end loop;
if Res = Null_Iir then
Report_Start_Group;
Error_Overload (Expr);
Disp_Overload_List (Type_List, Expr);
Report_End_Group;
return Null_Iir;
end if;
return Sem_Expression_Ov (Expr, Res);
end Sem_Favour_Universal_Type;
function Sem_Expression_Universal (Expr : Iir) return Iir
is
Expr1 : Iir;
Expr_Type : Iir;
begin
Expr1 := Sem_Expression_Wildcard (Expr, Wildcard_Any_Type);
Expr_Type := Get_Type (Expr1);
if Is_Error (Expr_Type) then
return Null_Iir;
end if;
if not Is_Overload_List (Expr_Type) then
return Expr1;
else
return Sem_Favour_Universal_Type (Expr1);
end if;
end Sem_Expression_Universal;
function Sem_Case_Expression (Expr : Iir) return Iir
is
Expr1 : Iir;
Expr_Type : Iir;
El : Iir;
Res : Iir;
List : Iir_List;
It : List_Iterator;
begin
Expr1 := Sem_Expression_Ov (Expr, Null_Iir);
if Expr1 = Null_Iir then
return Null_Iir;
end if;
Expr_Type := Get_Type (Expr1);
if Expr_Type = Null_Iir then
-- Possible only if the type cannot be determined without the
-- context (aggregate or string literal).
Error_Msg_Sem
(+Expr, "cannot determine the type of choice expression");
if Get_Kind (Expr1) = Iir_Kind_Aggregate then
Error_Msg_Sem
(+Expr, "(use a qualified expression of the form T'(xxx).)");
end if;
return Null_Iir;
end if;
if not Is_Overload_List (Expr_Type) then
return Expr1;
end if;
-- In case of overload, try to find one match.
-- FIXME: match only character types.
-- LRM93 8.8 Case statement
-- This type must be determinable independently of the context in which
-- the expression occurs, but using the fact that the expression must be
-- of a discrete type or a one-dimensional character array type.
List := Get_Overload_List (Expr_Type);
Res := Null_Iir;
It := List_Iterate (List);
while Is_Valid (It) loop
El := Get_Element (It);
if Get_Kind (El) in Iir_Kinds_Discrete_Type_Definition
or else Is_One_Dimensional_Array_Type (El)
then
if Res = Null_Iir then
Res := El;
else
Report_Start_Group;
Error_Overload (Expr1);
Disp_Overload_List (List, Expr1);
Report_End_Group;
return Null_Iir;
end if;
end if;
Next (It);
end loop;
if Res = Null_Iir then
Report_Start_Group;
Error_Overload (Expr1);
Disp_Overload_List (List, Expr1);
Report_End_Group;
return Null_Iir;
end if;
return Sem_Expression_Ov (Expr1, Get_Base_Type (Res));
end Sem_Case_Expression;
function Insert_Condition_Operator (Cond : Iir) return Iir
is
Op : Iir;
Res : Iir;
begin
Op := Create_Iir (Iir_Kind_Implicit_Condition_Operator);
Location_Copy (Op, Cond);
Set_Operand (Op, Cond);
Res := Sem_Operator (Op, Boolean_Type_Definition);
Check_Read (Res);
return Res;
end Insert_Condition_Operator;
function Sem_Condition_Pass2 (Cond : Iir) return Iir
is
Cond_Type : Iir;
begin
Cond_Type := Get_Type (Cond);
if Cond_Type = Null_Iir or else Is_Error (Cond_Type) then
-- Error.
return Cond;
end if;
if not Is_Overload_List (Cond_Type) then
-- Only one result. Operator "??" is not applied if the result
-- is of type boolean.
if Are_Types_Compatible (Cond_Type, Boolean_Type_Definition)
/= Not_Compatible
then
Check_Read (Cond);
return Cond;
end if;
else
-- Many interpretations.
declare
Res_List : constant Iir_List := Get_Overload_List (Cond_Type);
It : List_Iterator;
El : Iir;
Nbr_Booleans : Natural;
Res : Iir;
begin
Nbr_Booleans := 0;
-- Extract boolean interpretations.
It := List_Iterate (Res_List);
while Is_Valid (It) loop
El := Get_Element (It);
if Are_Types_Compatible (El, Boolean_Type_Definition)
/= Not_Compatible
then
Nbr_Booleans := Nbr_Booleans + 1;
end if;
Next (It);
end loop;
if Nbr_Booleans >= 1 then
-- There is one or more boolean interpretations: keep them.
-- In case of multiple boolean interpretations, an error
-- message will be generated.
Res := Sem_Expression_Ov (Cond, Boolean_Type_Definition);
Check_Read (Res);
return Res;
end if;
end;
end if;
-- LRM08 9.2.9
-- Otherwise, the condition operator is implicitely applied, and the
-- type of the expresion with the implicit application shall be
-- BOOLEAN defined in package STANDARD.
return Insert_Condition_Operator (Cond);
end Sem_Condition_Pass2;
function Sem_Condition (Cond : Iir) return Iir
is
Res : Iir;
begin
-- This function fully analyze COND, so it supposes COND is not yet
-- analyzed.
pragma Assert (Is_Expr_Not_Analyzed (Cond));
if Vhdl_Std < Vhdl_08 then
Res := Sem_Expression (Cond, Boolean_Type_Definition);
Check_Read (Res);
return Res;
else
-- LRM08 9.2.9
-- If, without overload resolution (see 12.5), the expression is
-- of type BOOLEAN defined in package STANDARD, or if, assuming a
-- rule requiring the expression to be of type BOOLEAN defined in
-- package STANDARD, overload resolution can determine at least one
-- interpretation of each constituent of the innermost complete
-- context including the expression, then the condition operator is
-- not applied.
Res := Sem_Expression_Wildcard (Cond, Null_Iir);
if Res = Null_Iir then
-- Error occurred.
return Null_Iir;
end if;
return Sem_Condition_Pass2 (Res);
end if;
end Sem_Condition;
end Vhdl.Sem_Expr;
|