blob: 932058653d2afb1531aefc0e01f3a9cf1aa010e4 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
|
--!
--! Copyright (C) 2011 - 2014 Creonic GmbH
--!
--! This file is part of the Creonic Viterbi Decoder, which is distributed
--! under the terms of the GNU General Public License version 2.
--!
--! @file
--! @brief Recursion unit for recursive code.
--! @author Markus Fehrenz
--! @date 2011/01/12
--!
--! @details The recusion handling buffers the reorder ouput and
--! calculates the correct output depending on the feedback polynomial.
--!
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library dec_viterbi;
use dec_viterbi.pkg_param.all;
use dec_viterbi.pkg_param_derived.all;
entity recursionx is
port(
clk : in std_logic;
rst : in std_logic;
--
-- Decoded bits input from the reordering units in std_logic
--
s_axis_input_tvalid : in std_logic;
s_axis_input_tdata : in std_logic;
s_axis_input_tlast : in std_logic;
s_axis_input_tready : out std_logic;
--
-- Output decoded bits convolved with the feedback polynomial
--
m_axis_output_tvalid : out std_logic;
m_axis_output_tdata : out std_logic;
m_axis_output_tlast : out std_logic;
m_axis_output_tready : in std_logic
);
end entity recursionx;
architecture rtl of recursionx is
signal recursion_sreg : unsigned(ENCODER_MEMORY_DEPTH downto 0);
signal s_axis_input_tready_int : std_logic;
signal m_axis_output_tvalid_int : std_logic;
begin
s_axis_input_tready_int <= '1' when m_axis_output_tready = '1' or m_axis_output_tvalid_int = '0' else
'0';
s_axis_input_tready <= s_axis_input_tready_int;
m_axis_output_tvalid <= m_axis_output_tvalid_int;
-- Use the feedback polynomial to convolve the global path.
pr_recursion : process(clk) is
variable v_bit : std_logic := '0';
variable v_recursion_state : unsigned(ENCODER_MEMORY_DEPTH downto 0);
begin
if rising_edge(clk) then
if rst = '1' then
recursion_sreg <= (others => '0');
m_axis_output_tdata <= '0';
m_axis_output_tlast <= '0';
else
m_axis_output_tvalid_int <= s_axis_input_tvalid;
if s_axis_input_tvalid = '1' and s_axis_input_tready_int = '1' then
-- move current decoded output bits into shift register and reset if last flag is valid
if s_axis_input_tlast = '1' then
recursion_sreg <= (others => '0');
else
recursion_sreg <= s_axis_input_tdata & recursion_sreg(ENCODER_MEMORY_DEPTH downto 1);
end if;
-- convolve with feedback polynomial with the output register.
v_bit := '0';
v_recursion_state := (s_axis_input_tdata & recursion_sreg(ENCODER_MEMORY_DEPTH downto 1)) and
('1' & to_unsigned(FEEDBACK_POLYNOMIAL, ENCODER_MEMORY_DEPTH));
for i in ENCODER_MEMORY_DEPTH downto 0 loop
v_bit := v_bit xor v_recursion_state(i);
end loop;
m_axis_output_tdata <= v_bit;
m_axis_output_tlast <= s_axis_input_tlast;
end if;
end if;
end if;
end process pr_recursion;
end architecture rtl;
|