1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
|
<!DOCTYPE html>
<html><head><meta charset="UTF-8">
<style>
.ctab {
margin-left: auto;
margin-right: auto;
border: 1px solid gray;
}
.ctab td, .ctab th {
padding: 3px;
border: 1px solid gray;
}
.ctab td {
font-family:monospace;
}
</style>
<title>Project IceStorm – UltraPlus Features Documentation</title>
</head><body>
<h1>Project IceStorm – UltraPlus Features Documentation</h1>
<p>
<i><a href=".">Project IceStorm</a> aims at documenting the bitstream format of Lattice iCE40
FPGAs and providing simple tools for analyzing and creating bitstream files.
This is work in progress.</i>
</p>
<p>The ice40 UltraPlus devices have a number of new features compared to the older LP/HX series
devices, in particular:
<ul>
<li>Internal DSP units, capable of 16-bit multiply and 32-bit accumulate.</li>
<li>1Mbit of extra single-ported RAM, in addition to the usual BRAM</li>
<li>Internal hard IP cores for I2C and SPI</li>
<li>2 internal oscillators, 48MHz (with divider) and 10kHz</li>
<li>24mA constant current LED ouputs and PWM hard IP</li>
</ul>
In order to implement these new features, a significant architecural change has been made: the
left and right sides of the device are no longer IO, but instead DSP and IPConnect tiles.
</p>
<h2>DSP Tiles</h2>
<p>Each MAC16 DSP comprises of 4 DSP tiles, all of which perform part of the DSP function and have
different routing bit configurations. Structually they are similar to logic tiles, but with the DSP
function wired into where the LUTs and DFFs would be. The four types of DSP tiles will be referred to
as DSP0 through DSP3, with DSP0 at the lowest y-position. One signal CO, is also routed through the
IPConnect tile above the DSP tile, referred to as IPCON4 in this context.
A work-in-progress effort to determine where signals and configuration bits are located is below:</p>
<p>
<strong>Signal Assignments</strong><br/>
<table class="ctab">
<tr><th>SB_MAC16 port</th><th>DSP0</th><th>DSP1</th><th>DSP2</th><th>DSP3</th><th>IPCON4</th></tr>
<tr><td>CLK</td><td>-</td><td>-</td><td>lutff_global/clk</td><td>-</td><td>-</td></tr>
<tr><td>CE</td><td>-</td><td>-</td><td>lutff_global/cen</td><td>-</td><td>-</td></tr>
<tr><td>C[7:0]</td><td>-</td><td>-</td><td>-</td><td>lutff_[7:0]/in_3</td><td>-</td></tr>
<tr><td>C[15:8]</td><td>-</td><td>-</td><td>-</td><td>lutff_[7:0]/in_1</td><td>-</td></tr>
<tr><td>A[7:0]</td><td>-</td><td>-</td><td>lutff_[7:0]/in_3</td><td>-</td><td>-</td></tr>
<tr><td>A[15:8]</td><td>-</td><td>-</td><td>lutff_[7:0]/in_1</td><td>-</td><td>-</td></tr>
<tr><td>B[7:0]</td><td>-</td><td>lutff_[7:0]/in_3</td><td>-</td><td>-</td><td>-</td></tr>
<tr><td>B[15:8]</td><td>-</td><td>lutff_[7:0]/in_1</td><td>-</td><td>-</td><td>-</td></tr>
<tr><td>D[7:0]</td><td>lutff_[7:0]/in_3</td><td>-</td><td>-</td><td>-</td><td>-</td></tr>
<tr><td>D[15:8]</td><td>lutff_[7:0]/in_1</td><td>-</td><td>-</td><td>-</td><td>-</td></tr>
<tr><td>IRSTTOP</td><td>-</td><td>lutff_global/s_r</td><td>-</td><td>-</td><td>-</td></tr>
<tr><td>IRSTBOT</td><td>lutff_global/s_r</td><td>-</td><td>-</td><td>-</td><td>-</td></tr>
<tr><td>ORSTTOP</td><td>-</td><td>-</td><td>-</td><td>lutff_global/s_r</td><td>-</td></tr>
<tr><td>ORSTBOT</td><td>-</td><td>-</td><td>lutff_global/s_r</td><td>-</td><td>-</td></tr>
<tr><td>AHOLD</td><td>-</td><td>-</td><td>lutff_0/in_0</td><td>-</td><td>-</td></tr>
<tr><td>BHOLD</td><td>-</td><td>lutff_0/in_0</td><td>-</td><td>-</td><td>-</td></tr>
<tr><td>CHOLD</td><td>-</td><td>-</td><td>-</td><td>lutff_0/in_0</td><td>-</td></tr>
<tr><td>DHOLD</td><td>lutff_0/in_0</td><td>-</td><td>-</td><td>-</td><td>-</td></tr>
<tr><td>OHOLDTOP</td><td>-</td><td>-</td><td>-</td><td>lutff_1/in_0</td><td>-</td></tr>
<tr><td>OHOLDBOT</td><td>lutff_1/in_0</td><td>-</td><td>-</td><td>-</td><td>-</td></tr>
<tr><td>ADDSUBTOP</td><td>-</td><td>-</td><td>-</td><td>lutff_3/in_0</td><td>-</td></tr>
<tr><td>ADDSUBBOT</td><td>lutff_3/in_0</td><td>-</td><td>-</td><td>-</td><td>-</td></tr>
<tr><td>OLOADTOP</td><td>-</td><td>-</td><td>-</td><td>lutff_2/in_0</td><td>-</td></tr>
<tr><td>OLOADBOT</td><td>lutff_2/in_0</td><td>-</td><td>-</td><td>-</td><td>-</td></tr>
<tr><td>CI</td><td>lutff_4/in_0</td><td>-</td><td>-</td><td>-</td><td>-</td></tr>
<tr><td>O[31:0]</td><td>mult/O_[7:0]</td><td>mult/O_[15:8]</td><td>mult/O_[23:16]</td><td>mult/O_[31:24]</td><td>-</td></tr>
<tr><td>CO</td><td>-</td><td>-</td><td>-</td><td>-</td><td>slf_op_0</td></tr>
</table>
</p>
<p>
<strong>Configuration Bits</strong><br/>
<p>The DSP configuration bits mostly follow the order stated in the ICE Technology Library document, where they are described as<span style="font-family:monospace">CBIT[24:0]</span>. For most DSP tiles,
these follow a logical order where <span style="font-family:monospace">CBIT[7:0]</span> maps to DSP0 <span style="font-family:monospace">CBIT[7:0]</span>; <span style="font-family:monospace">CBIT[15:8]</span>
to DSP1 <span style="font-family:monospace">CBIT[7:0]</span>, <span style="font-family:monospace">CBIT[23:16]</span> to DSP2 <span style="font-family:monospace">CBIT[7:0]</span>
and <span style="font-family:monospace">CBIT[24]</span> to DSP3 <span style="font-family:monospace">CBIT0</span>.
</p>
<p>However, there is one location where configuration bits are swapped between DSP tiles and IPConnect tiles. In DSP1 (0, 16) <span style="font-family:monospace">CBIT[4:1]</span> are used
for IP such as the internal oscillator, and the DSP configuration bits are then located in IPConnect tile (0, 19) <span style="font-family:monospace">CBIT[6:3]</span>.</p>
<p>The full list of configuration bits, including the changes for the DSP at (0, 15) are described in the table below.</p>
<table class="ctab">
<tr><th>Parameter</th><th>Normal Position</th><th>DSP (0, 15)<br/>Changes</th></tr>
<tr><td>C_REG</td><td>DSP0.CBIT_0</td><td></td></tr>
<tr><td>A_REG</td><td>DSP0.CBIT_1</td><td></td></tr>
<tr><td>B_REG</td><td>DSP0.CBIT_2</td><td></td></tr>
<tr><td>D_REG</td><td>DSP0.CBIT_3</td><td></td></tr>
<tr><td>TOP_8x8_MULT_REG</td><td>DSP0.CBIT_4</td><td></td></tr>
<tr><td>BOT_8x8_MULT_REG</td><td>DSP0.CBIT_5</td><td></td></tr>
<tr><td>PIPELINE_16x16_MULT_REG1</td><td>DSP0.CBIT_6</td><td></td></tr>
<tr><td>PIPELINE_16x16_MULT_REG2</td><td>DSP0.CBIT_7</td><td></td></tr>
<tr><td>TOPOUTPUT_SELECT[0]</td><td>DSP1.CBIT_0</td><td></td></tr>
<tr><td>TOPOUTPUT_SELECT[1]</td><td>DSP1.CBIT_1</td><td>(0, 19).CBIT_3</td></tr>
<tr><td>TOPADDSUB_LOWERINPUT[1:0]</td><td>DSP1.CBIT_[3:2]</td><td>(0, 19).CBIT_[5:4]</td></tr>
<tr><td>TOPADDSUB_UPPERINUT</td><td>DSP1.CBIT_4</td><td>(0, 19).CBIT_6</td></tr>
<tr><td>TOPADDSUB_CARRYSELECT[1:0]</td><td>DSP1.CBIT_[6:5]</td><td></td></tr>
<tr><td>BOTOUTPUT_SELECT[0]</td><td>DSP1.CBIT_7</td><td></td></tr>
<tr><td>BOTOUTPUT_SELECT[1]</td><td>DSP2.CBIT_0</td><td></td></tr>
<tr><td>BOTADDSUB_LOWERINPUT[1:0]</td><td>DSP2.CBIT_[2:1]</td><td></td></tr>
<tr><td>BOTADDSUB_UPPERINPUT</td><td>DSP2.CBIT_3</td><td></td></tr>
<tr><td>BOTADDSUB_CARRYSELECT</td><td>DSP2.CBIT_[5:4]</td><td></td></tr>
<tr><td>MODE_8x8</td><td>DSP2.CBIT_6</td><td></td></tr>
<tr><td>A_SIGNED</td><td>DSP2.CBIT_7</td><td></td></tr>
<tr><td>B_SIGNED</td><td>DSP3.CBIT_0</td><td></td></tr>
</table>
<p>Lattice document a limited number of supported configurations in the ICE Technology Library document, and Lattice's EDIF parser will
reject designs not following a supported configuration. It is not yet known whether unsupported configurations (such as mixed
signed and unsigned) function correctly or not.
<p>
<strong>Other Implementation Notes</strong><br/>
<p>
All active DSP tiles, and all IPConnect tiles whether used or not, have some bits set which reflect their logic tile heritage. The <span style="font-family:monospace">LC_<em>x</em></span>
bits which would be used to configure the logic cell, are set to the below pattern for each "logic cell" (interpreting them like a logic tile):<br/>
<br><span style="font-family:monospace">0000111100001111 0000</span><br/><br/>
Coincidentally or not, this corresponds to a buffer passing through input 2 to the output. For each "cell" the cascade bit <span style="font-family:monospace">LC0<em>x</em>_inmux02_5</span> is
also set, effectively creating one large chain, as this connects input 2 to the output of the previous LUT. It is not yet known if this serves any purpose, or is merely a remainder of Lattice's
internal testing.
</p>
</p>
<h2>IPConnect Tiles</h2>
<p>IPConnect tiles are used for connections to all of the other UltraPlus features, such as I2C/SPI, SPRAM, RGB and oscillators. Like DSP tiles,
they are structually similar to logic tiles. The outputs of IP functions are connected to nets named <span style="font-family:monospace">slf_op_0</span> through <span style="font-family:monospace">slf_op_7</span>,
and the inputs use the LUT/FF inputs in the same way as DSP tiles.</p>
<h2>Internal Oscillators</h2>
Both of the internal oscillators are connected through IPConnect tiles, with their outputs optionally connected to the global networks,
by setting the "padin" extra bit (the used global networks 4 and 5 don't have physical pins on UltraPlus devices).
<h3>SB_HFOSC</h3>
<p>The <span style="font-family:monospace">CLKHFPU</span> input connects through IPConnect tile (0, 29) input <span style="font-family:monospace">lutff_0/in_1</span>;
and the <span style="font-family:monospace">CLKHFEN</span> input connects through input <span style="font-family:monospace">lutff_7/in_3</span> of the same tile.<br/>
The <span style="font-family:monospace">CLKHF</span> output of SB_HFOSC is connected to both IPConnect tile (0, 28) output <span style="font-family:monospace">slf_op_7</span> and to the <span style="font-family:monospace">padin</span>
of <span style="font-family:monospace">glb_netwk_4</span>.</p>
<p>Configuration bit <span style="font-family:monospace">CLKHF_DIV[1]</span> maps to DSP1 tile (0, 16) config bit <span style="font-family:monospace">CBIT_4</span>, and
<span style="font-family:monospace">CLKHF_DIV[0]</span> maps to DSP1 tile (0, 16) config bit <span style="font-family:monospace">CBIT_3</span>.</p>
<h3>SB_LFOSC</h3>
<p>The <span style="font-family:monospace">CLKLFPU</span> input connects through IPConnect tile (25, 29) input <span style="font-family:monospace">lutff_0/in_1</span>;
and the <span style="font-family:monospace">CLKLFEN</span> input connects through input <span style="font-family:monospace">lutff_7/in_3</span> of the same tile.<br/>
The <span style="font-family:monospace">CLKLF</span> output of SB_LFOSC is connected to both IPConnect tile (25, 29) output <span style="font-family:monospace">slf_op_0</span> and to the <span style="font-family:monospace">padin</span>
of <span style="font-family:monospace">glb_netwk_5</span>.</p>
<p>SB_LFOSC has no configuration bits.</p>
<h2>SPRAM</h2>
<p>The UltraPlus devices have 1Mbit of extra single-ported RAM, split into 4 256kbit blocks. The full list of connections for each SPRAM block in the 5k device is shown below,
as well as the location of the 1 configuration bit which is set to enable use of that SPRAM block.</p>
<table class="ctab">
<tr><th>Signal</th><th>SPRAM (0, 0, 1)</th><th>SPRAM (0, 0, 2)</th><th>SPRAM (25, 0, 3)</th><th>SPRAM (25, 0, 4)</th></tr>
<tr><td>ADDRESS[1:0]</td><td>(0, 2, lutff_[1:0]/in_1)</td><td>(0, 2, lutff_[7:6]/in_0)</td><td>(25, 2, lutff_[1:0]/in_1)</td><td>(25, 2, lutff_[7:6]/in_0)</td></tr>
<tr><td>ADDRESS[7:2]</td><td>(0, 2, lutff_[7:2]/in_1)</td><td>(0, 3, lutff_[5:0]/in_3)</td><td>(25, 2, lutff_[7:2]/in_1)</td><td>(25, 3, lutff_[5:0]/in_3)</td></tr>
<tr><td>ADDRESS[9:8]</td><td>(0, 2, lutff_[1:0]/in_0)</td><td>(0, 3, lutff_[7:6]/in_3)</td><td>(25, 2, lutff_[1:0]/in_0)</td><td>(25, 3, lutff_[7:6]/in_3)</td></tr>
<tr><td>ADDRESS[13:10]</td><td>(0, 2, lutff_[5:2]/in_0)</td><td>(0, 3, lutff_[3:0]/in_1)</td><td>(25, 2, lutff_[5:2]/in_0)</td><td>(25, 3, lutff_[3:0]/in_1)</td></tr>
<tr><td>DATAIN[7:0]</td><td>(0, 1, lutff_[7:0]/in_3)</td><td>(0, 1, lutff_[7:0]/in_0)</td><td>(25, 1, lutff_[7:0]/in_3)</td><td>(25, 1, lutff_[7:0]/in_0)</td></tr>
<tr><td>DATAIN[15:8]</td><td>(0, 1, lutff_[7:0]/in_1)</td><td>(0, 2, lutff_[7:0]/in_3)</td><td>(25, 1, lutff_[7:0]/in_1)</td><td>(25, 2, lutff_[7:0]/in_3)</td></tr>
<tr><td>MASKWREN[3:0]</td><td>(0, 3, lutff_[3:0]/in_0)</td><td>(0, 3, lutff_[7:4]/in_0)</td><td>(25, 3, lutff_[3:0]/in_0)</td><td>(25, 3, lutff_[7:4]/in_0)</td></tr>
<tr><td>WREN</td><td>(0, 3, lutff_4/in_1)</td><td>(0, 3, lutff_5/in_1)</td><td>(25, 3, lutff_4/in_1)</td><td>(25, 3, lutff_5/in_1)</td></tr>
<tr><td>CHIPSELECT</td><td>(0, 3, lutff_6/in_1)</td><td>(0, 3, lutff_7/in_1)</td><td>(25, 3, lutff_6/in_1)</td><td>(25, 3, lutff_7/in_1)</td></tr>
<tr><td>CLOCK</td><td>(0, 1, clk)</td><td>(0, 2, clk)</td><td>(25, 1, clk)</td><td>(25, 2, clk)</td></tr>
<tr><td>STANDBY</td><td>(0, 4, lutff_0/in_3)</td><td>(0, 4, lutff_1/in_3)</td><td>(25, 4, lutff_0/in_3)</td><td>(25, 4, lutff_1/in_3)</td></tr>
<tr><td>SLEEP</td><td>(0, 4, lutff_2/in_3)</td><td>(0, 4, lutff_3/in_3)</td><td>(25, 4, lutff_2/in_3)</td><td>(25, 4, lutff_3/in_3)</td></tr>
<tr><td>POWEROFF</td><td>(0, 4, lutff_4/in_3)</td><td>(0, 4, lutff_5/in_3)</td><td>(25, 4, lutff_4/in_3)</td><td>(25, 4, lutff_5/in_3)</td></tr>
<tr><td>DATAOUT[7:0]</td><td>(0, 1, slf_op_[7:0])</td><td>(0, 3, slf_op_[7:0])</td><td>(25, 1, slf_op_[7:0])</td><td>(25, 3, slf_op_[7:0])</td></tr>
<tr><td>DATAOUT[15:8]</td><td>(0, 2, slf_op_[7:0])</td><td>(0, 4, slf_op_[7:0])</td><td>(25, 2, slf_op_[7:0])</td><td>(25, 4, slf_op_[7:0])</td></tr>
<tr><td><em>SPRAM_ENABLE</em></td><td><em>(0, 1, CBIT_0)</em></td><td><em>(0, 1, CBIT_1)</em></td><td><em>(25, 1, CBIT_0)</em></td><td><em>(25, 1, CBIT_1)</em></td></tr>
</table>
<h2>RGB LED Driver</h2>
<p>The UltraPlus devices contain an internal 3-channel 2-24mA constant-current driver intended for RGB led driving (SB_RGBA_DRV). It is broken out onto 3 pins: 39, 40 and 41 on the QFN48 package.
The LED driver is implemented using the IPConnect tiles and is entirely seperate to the IO cells, if the LED driver is ignored or disabled on a pin then the pin
can be used as an open-drain IO using the standard IO cell.</p>
<p>Note that the UltraPlus devices also have a seperate PWM generator IP core, which would often be connected to this one to create LED effects such as "breathing" without
involving FPGA resources.</p>
<p>The LED driver connections are shown in the label below.</p>
<table class="ctab">
<tr><th>Signal</th><th>Net</th></tr>
<tr><td>CURREN</td><td>(25, 29, lutff_6/in_3)</td></tr>
<tr><td>RGBLEDEN</td><td>(0, 30, lutff_1/in_1)</td></tr>
<tr><td>RGB0PWM</td><td>(0, 30, lutff_2/in_1)</td></tr>
<tr><td>RGB1PWM</td><td>(0, 30, lutff_3/in_1)</td></tr>
<tr><td>RGB2PWM</td><td>(0, 30, lutff_4/in_1)</td></tr>
</table>
<p>The configuration bits are as follows. As well as the documented bits, another bit "RGBA_DRV_EN" is set if any of the channels are enabled.</p>
<table class="ctab">
<tr><th>Parameter</th><th>Bit</th></tr>
<tr><td>RGBA_DRV_EN</td><td>(0, 28, CBIT_5)</td></tr>
<tr><td>RGB0_CURRENT[1:0]</td><td>(0, 28, CBIT_[7:6])</td></tr>
<tr><td>RGB0_CURRENT[5:2]</td><td>(0, 29, CBIT_[3:0])</td></tr>
<tr><td>RGB1_CURRENT[3:0]</td><td>(0, 29, CBIT_[7:4])</td></tr>
<tr><td>RGB1_CURRENT[5:4]</td><td>(0, 30, CBIT_[1:0])</td></tr>
<tr><td>RGB2_CURRENT[5:0]</td><td>(0, 30, CBIT_[7:2])</td></tr>
<tr><td>CURRENT_MODE</td><td>(0, 28, CBIT_4)</td></tr>
</table>
</body></html>
|