aboutsummaryrefslogtreecommitdiffstats
path: root/3rdparty/pybind11/docs/advanced/misc.rst
diff options
context:
space:
mode:
authorMiodrag Milanovic <mmicko@gmail.com>2020-07-23 08:58:19 +0200
committerMiodrag Milanovic <mmicko@gmail.com>2020-07-23 08:58:19 +0200
commit444e535f000fd7b53dadf6726d5cd29ac34cc75f (patch)
tree1ac675d8f0381de320849294fa70c946f631e7f6 /3rdparty/pybind11/docs/advanced/misc.rst
parente6991ad5dc79f6118838f091cc05f10d3377eb4a (diff)
downloadnextpnr-444e535f000fd7b53dadf6726d5cd29ac34cc75f.tar.gz
nextpnr-444e535f000fd7b53dadf6726d5cd29ac34cc75f.tar.bz2
nextpnr-444e535f000fd7b53dadf6726d5cd29ac34cc75f.zip
Add pybind11 2.5 source
Diffstat (limited to '3rdparty/pybind11/docs/advanced/misc.rst')
-rw-r--r--3rdparty/pybind11/docs/advanced/misc.rst306
1 files changed, 306 insertions, 0 deletions
diff --git a/3rdparty/pybind11/docs/advanced/misc.rst b/3rdparty/pybind11/docs/advanced/misc.rst
new file mode 100644
index 00000000..5b38ec75
--- /dev/null
+++ b/3rdparty/pybind11/docs/advanced/misc.rst
@@ -0,0 +1,306 @@
+Miscellaneous
+#############
+
+.. _macro_notes:
+
+General notes regarding convenience macros
+==========================================
+
+pybind11 provides a few convenience macros such as
+:func:`PYBIND11_DECLARE_HOLDER_TYPE` and ``PYBIND11_OVERLOAD_*``. Since these
+are "just" macros that are evaluated in the preprocessor (which has no concept
+of types), they *will* get confused by commas in a template argument; for
+example, consider:
+
+.. code-block:: cpp
+
+ PYBIND11_OVERLOAD(MyReturnType<T1, T2>, Class<T3, T4>, func)
+
+The limitation of the C preprocessor interprets this as five arguments (with new
+arguments beginning after each comma) rather than three. To get around this,
+there are two alternatives: you can use a type alias, or you can wrap the type
+using the ``PYBIND11_TYPE`` macro:
+
+.. code-block:: cpp
+
+ // Version 1: using a type alias
+ using ReturnType = MyReturnType<T1, T2>;
+ using ClassType = Class<T3, T4>;
+ PYBIND11_OVERLOAD(ReturnType, ClassType, func);
+
+ // Version 2: using the PYBIND11_TYPE macro:
+ PYBIND11_OVERLOAD(PYBIND11_TYPE(MyReturnType<T1, T2>),
+ PYBIND11_TYPE(Class<T3, T4>), func)
+
+The ``PYBIND11_MAKE_OPAQUE`` macro does *not* require the above workarounds.
+
+.. _gil:
+
+Global Interpreter Lock (GIL)
+=============================
+
+When calling a C++ function from Python, the GIL is always held.
+The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be
+used to acquire and release the global interpreter lock in the body of a C++
+function call. In this way, long-running C++ code can be parallelized using
+multiple Python threads. Taking :ref:`overriding_virtuals` as an example, this
+could be realized as follows (important changes highlighted):
+
+.. code-block:: cpp
+ :emphasize-lines: 8,9,31,32
+
+ class PyAnimal : public Animal {
+ public:
+ /* Inherit the constructors */
+ using Animal::Animal;
+
+ /* Trampoline (need one for each virtual function) */
+ std::string go(int n_times) {
+ /* Acquire GIL before calling Python code */
+ py::gil_scoped_acquire acquire;
+
+ PYBIND11_OVERLOAD_PURE(
+ std::string, /* Return type */
+ Animal, /* Parent class */
+ go, /* Name of function */
+ n_times /* Argument(s) */
+ );
+ }
+ };
+
+ PYBIND11_MODULE(example, m) {
+ py::class_<Animal, PyAnimal> animal(m, "Animal");
+ animal
+ .def(py::init<>())
+ .def("go", &Animal::go);
+
+ py::class_<Dog>(m, "Dog", animal)
+ .def(py::init<>());
+
+ m.def("call_go", [](Animal *animal) -> std::string {
+ /* Release GIL before calling into (potentially long-running) C++ code */
+ py::gil_scoped_release release;
+ return call_go(animal);
+ });
+ }
+
+The ``call_go`` wrapper can also be simplified using the `call_guard` policy
+(see :ref:`call_policies`) which yields the same result:
+
+.. code-block:: cpp
+
+ m.def("call_go", &call_go, py::call_guard<py::gil_scoped_release>());
+
+
+Binding sequence data types, iterators, the slicing protocol, etc.
+==================================================================
+
+Please refer to the supplemental example for details.
+
+.. seealso::
+
+ The file :file:`tests/test_sequences_and_iterators.cpp` contains a
+ complete example that shows how to bind a sequence data type, including
+ length queries (``__len__``), iterators (``__iter__``), the slicing
+ protocol and other kinds of useful operations.
+
+
+Partitioning code over multiple extension modules
+=================================================
+
+It's straightforward to split binding code over multiple extension modules,
+while referencing types that are declared elsewhere. Everything "just" works
+without any special precautions. One exception to this rule occurs when
+extending a type declared in another extension module. Recall the basic example
+from Section :ref:`inheritance`.
+
+.. code-block:: cpp
+
+ py::class_<Pet> pet(m, "Pet");
+ pet.def(py::init<const std::string &>())
+ .def_readwrite("name", &Pet::name);
+
+ py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
+ .def(py::init<const std::string &>())
+ .def("bark", &Dog::bark);
+
+Suppose now that ``Pet`` bindings are defined in a module named ``basic``,
+whereas the ``Dog`` bindings are defined somewhere else. The challenge is of
+course that the variable ``pet`` is not available anymore though it is needed
+to indicate the inheritance relationship to the constructor of ``class_<Dog>``.
+However, it can be acquired as follows:
+
+.. code-block:: cpp
+
+ py::object pet = (py::object) py::module::import("basic").attr("Pet");
+
+ py::class_<Dog>(m, "Dog", pet)
+ .def(py::init<const std::string &>())
+ .def("bark", &Dog::bark);
+
+Alternatively, you can specify the base class as a template parameter option to
+``class_``, which performs an automated lookup of the corresponding Python
+type. Like the above code, however, this also requires invoking the ``import``
+function once to ensure that the pybind11 binding code of the module ``basic``
+has been executed:
+
+.. code-block:: cpp
+
+ py::module::import("basic");
+
+ py::class_<Dog, Pet>(m, "Dog")
+ .def(py::init<const std::string &>())
+ .def("bark", &Dog::bark);
+
+Naturally, both methods will fail when there are cyclic dependencies.
+
+Note that pybind11 code compiled with hidden-by-default symbol visibility (e.g.
+via the command line flag ``-fvisibility=hidden`` on GCC/Clang), which is
+required for proper pybind11 functionality, can interfere with the ability to
+access types defined in another extension module. Working around this requires
+manually exporting types that are accessed by multiple extension modules;
+pybind11 provides a macro to do just this:
+
+.. code-block:: cpp
+
+ class PYBIND11_EXPORT Dog : public Animal {
+ ...
+ };
+
+Note also that it is possible (although would rarely be required) to share arbitrary
+C++ objects between extension modules at runtime. Internal library data is shared
+between modules using capsule machinery [#f6]_ which can be also utilized for
+storing, modifying and accessing user-defined data. Note that an extension module
+will "see" other extensions' data if and only if they were built with the same
+pybind11 version. Consider the following example:
+
+.. code-block:: cpp
+
+ auto data = (MyData *) py::get_shared_data("mydata");
+ if (!data)
+ data = (MyData *) py::set_shared_data("mydata", new MyData(42));
+
+If the above snippet was used in several separately compiled extension modules,
+the first one to be imported would create a ``MyData`` instance and associate
+a ``"mydata"`` key with a pointer to it. Extensions that are imported later
+would be then able to access the data behind the same pointer.
+
+.. [#f6] https://docs.python.org/3/extending/extending.html#using-capsules
+
+Module Destructors
+==================
+
+pybind11 does not provide an explicit mechanism to invoke cleanup code at
+module destruction time. In rare cases where such functionality is required, it
+is possible to emulate it using Python capsules or weak references with a
+destruction callback.
+
+.. code-block:: cpp
+
+ auto cleanup_callback = []() {
+ // perform cleanup here -- this function is called with the GIL held
+ };
+
+ m.add_object("_cleanup", py::capsule(cleanup_callback));
+
+This approach has the potential downside that instances of classes exposed
+within the module may still be alive when the cleanup callback is invoked
+(whether this is acceptable will generally depend on the application).
+
+Alternatively, the capsule may also be stashed within a type object, which
+ensures that it not called before all instances of that type have been
+collected:
+
+.. code-block:: cpp
+
+ auto cleanup_callback = []() { /* ... */ };
+ m.attr("BaseClass").attr("_cleanup") = py::capsule(cleanup_callback);
+
+Both approaches also expose a potentially dangerous ``_cleanup`` attribute in
+Python, which may be undesirable from an API standpoint (a premature explicit
+call from Python might lead to undefined behavior). Yet another approach that
+avoids this issue involves weak reference with a cleanup callback:
+
+.. code-block:: cpp
+
+ // Register a callback function that is invoked when the BaseClass object is colelcted
+ py::cpp_function cleanup_callback(
+ [](py::handle weakref) {
+ // perform cleanup here -- this function is called with the GIL held
+
+ weakref.dec_ref(); // release weak reference
+ }
+ );
+
+ // Create a weak reference with a cleanup callback and initially leak it
+ (void) py::weakref(m.attr("BaseClass"), cleanup_callback).release();
+
+.. note::
+
+ PyPy (at least version 5.9) does not garbage collect objects when the
+ interpreter exits. An alternative approach (which also works on CPython) is to use
+ the :py:mod:`atexit` module [#f7]_, for example:
+
+ .. code-block:: cpp
+
+ auto atexit = py::module::import("atexit");
+ atexit.attr("register")(py::cpp_function([]() {
+ // perform cleanup here -- this function is called with the GIL held
+ }));
+
+ .. [#f7] https://docs.python.org/3/library/atexit.html
+
+
+Generating documentation using Sphinx
+=====================================
+
+Sphinx [#f4]_ has the ability to inspect the signatures and documentation
+strings in pybind11-based extension modules to automatically generate beautiful
+documentation in a variety formats. The python_example repository [#f5]_ contains a
+simple example repository which uses this approach.
+
+There are two potential gotchas when using this approach: first, make sure that
+the resulting strings do not contain any :kbd:`TAB` characters, which break the
+docstring parsing routines. You may want to use C++11 raw string literals,
+which are convenient for multi-line comments. Conveniently, any excess
+indentation will be automatically be removed by Sphinx. However, for this to
+work, it is important that all lines are indented consistently, i.e.:
+
+.. code-block:: cpp
+
+ // ok
+ m.def("foo", &foo, R"mydelimiter(
+ The foo function
+
+ Parameters
+ ----------
+ )mydelimiter");
+
+ // *not ok*
+ m.def("foo", &foo, R"mydelimiter(The foo function
+
+ Parameters
+ ----------
+ )mydelimiter");
+
+By default, pybind11 automatically generates and prepends a signature to the docstring of a function
+registered with ``module::def()`` and ``class_::def()``. Sometimes this
+behavior is not desirable, because you want to provide your own signature or remove
+the docstring completely to exclude the function from the Sphinx documentation.
+The class ``options`` allows you to selectively suppress auto-generated signatures:
+
+.. code-block:: cpp
+
+ PYBIND11_MODULE(example, m) {
+ py::options options;
+ options.disable_function_signatures();
+
+ m.def("add", [](int a, int b) { return a + b; }, "A function which adds two numbers");
+ }
+
+Note that changes to the settings affect only function bindings created during the
+lifetime of the ``options`` instance. When it goes out of scope at the end of the module's init function,
+the default settings are restored to prevent unwanted side effects.
+
+.. [#f4] http://www.sphinx-doc.org
+.. [#f5] http://github.com/pybind/python_example