aboutsummaryrefslogtreecommitdiffstats
path: root/3rdparty/pybind11/docs/faq.rst
diff options
context:
space:
mode:
Diffstat (limited to '3rdparty/pybind11/docs/faq.rst')
-rw-r--r--3rdparty/pybind11/docs/faq.rst324
1 files changed, 324 insertions, 0 deletions
diff --git a/3rdparty/pybind11/docs/faq.rst b/3rdparty/pybind11/docs/faq.rst
new file mode 100644
index 00000000..4d491fb8
--- /dev/null
+++ b/3rdparty/pybind11/docs/faq.rst
@@ -0,0 +1,324 @@
+Frequently asked questions
+##########################
+
+"ImportError: dynamic module does not define init function"
+===========================================================
+
+1. Make sure that the name specified in PYBIND11_MODULE is identical to the
+filename of the extension library (without prefixes such as .so)
+
+2. If the above did not fix the issue, you are likely using an incompatible
+version of Python (for instance, the extension library was compiled against
+Python 2, while the interpreter is running on top of some version of Python
+3, or vice versa).
+
+"Symbol not found: ``__Py_ZeroStruct`` / ``_PyInstanceMethod_Type``"
+========================================================================
+
+See the first answer.
+
+"SystemError: dynamic module not initialized properly"
+======================================================
+
+See the first answer.
+
+The Python interpreter immediately crashes when importing my module
+===================================================================
+
+See the first answer.
+
+CMake doesn't detect the right Python version
+=============================================
+
+The CMake-based build system will try to automatically detect the installed
+version of Python and link against that. When this fails, or when there are
+multiple versions of Python and it finds the wrong one, delete
+``CMakeCache.txt`` and then invoke CMake as follows:
+
+.. code-block:: bash
+
+ cmake -DPYTHON_EXECUTABLE:FILEPATH=<path-to-python-executable> .
+
+.. _faq_reference_arguments:
+
+Limitations involving reference arguments
+=========================================
+
+In C++, it's fairly common to pass arguments using mutable references or
+mutable pointers, which allows both read and write access to the value
+supplied by the caller. This is sometimes done for efficiency reasons, or to
+realize functions that have multiple return values. Here are two very basic
+examples:
+
+.. code-block:: cpp
+
+ void increment(int &i) { i++; }
+ void increment_ptr(int *i) { (*i)++; }
+
+In Python, all arguments are passed by reference, so there is no general
+issue in binding such code from Python.
+
+However, certain basic Python types (like ``str``, ``int``, ``bool``,
+``float``, etc.) are **immutable**. This means that the following attempt
+to port the function to Python doesn't have the same effect on the value
+provided by the caller -- in fact, it does nothing at all.
+
+.. code-block:: python
+
+ def increment(i):
+ i += 1 # nope..
+
+pybind11 is also affected by such language-level conventions, which means that
+binding ``increment`` or ``increment_ptr`` will also create Python functions
+that don't modify their arguments.
+
+Although inconvenient, one workaround is to encapsulate the immutable types in
+a custom type that does allow modifications.
+
+An other alternative involves binding a small wrapper lambda function that
+returns a tuple with all output arguments (see the remainder of the
+documentation for examples on binding lambda functions). An example:
+
+.. code-block:: cpp
+
+ int foo(int &i) { i++; return 123; }
+
+and the binding code
+
+.. code-block:: cpp
+
+ m.def("foo", [](int i) { int rv = foo(i); return std::make_tuple(rv, i); });
+
+
+How can I reduce the build time?
+================================
+
+It's good practice to split binding code over multiple files, as in the
+following example:
+
+:file:`example.cpp`:
+
+.. code-block:: cpp
+
+ void init_ex1(py::module &);
+ void init_ex2(py::module &);
+ /* ... */
+
+ PYBIND11_MODULE(example, m) {
+ init_ex1(m);
+ init_ex2(m);
+ /* ... */
+ }
+
+:file:`ex1.cpp`:
+
+.. code-block:: cpp
+
+ void init_ex1(py::module &m) {
+ m.def("add", [](int a, int b) { return a + b; });
+ }
+
+:file:`ex2.cpp`:
+
+.. code-block:: cpp
+
+ void init_ex2(py::module &m) {
+ m.def("sub", [](int a, int b) { return a - b; });
+ }
+
+:command:`python`:
+
+.. code-block:: pycon
+
+ >>> import example
+ >>> example.add(1, 2)
+ 3
+ >>> example.sub(1, 1)
+ 0
+
+As shown above, the various ``init_ex`` functions should be contained in
+separate files that can be compiled independently from one another, and then
+linked together into the same final shared object. Following this approach
+will:
+
+1. reduce memory requirements per compilation unit.
+
+2. enable parallel builds (if desired).
+
+3. allow for faster incremental builds. For instance, when a single class
+ definition is changed, only a subset of the binding code will generally need
+ to be recompiled.
+
+"recursive template instantiation exceeded maximum depth of 256"
+================================================================
+
+If you receive an error about excessive recursive template evaluation, try
+specifying a larger value, e.g. ``-ftemplate-depth=1024`` on GCC/Clang. The
+culprit is generally the generation of function signatures at compile time
+using C++14 template metaprogramming.
+
+.. _`faq:hidden_visibility`:
+
+"‘SomeClass’ declared with greater visibility than the type of its field ‘SomeClass::member’ [-Wattributes]"
+============================================================================================================
+
+This error typically indicates that you are compiling without the required
+``-fvisibility`` flag. pybind11 code internally forces hidden visibility on
+all internal code, but if non-hidden (and thus *exported*) code attempts to
+include a pybind type (for example, ``py::object`` or ``py::list``) you can run
+into this warning.
+
+To avoid it, make sure you are specifying ``-fvisibility=hidden`` when
+compiling pybind code.
+
+As to why ``-fvisibility=hidden`` is necessary, because pybind modules could
+have been compiled under different versions of pybind itself, it is also
+important that the symbols defined in one module do not clash with the
+potentially-incompatible symbols defined in another. While Python extension
+modules are usually loaded with localized symbols (under POSIX systems
+typically using ``dlopen`` with the ``RTLD_LOCAL`` flag), this Python default
+can be changed, but even if it isn't it is not always enough to guarantee
+complete independence of the symbols involved when not using
+``-fvisibility=hidden``.
+
+Additionally, ``-fvisiblity=hidden`` can deliver considerably binary size
+savings. (See the following section for more details).
+
+
+.. _`faq:symhidden`:
+
+How can I create smaller binaries?
+==================================
+
+To do its job, pybind11 extensively relies on a programming technique known as
+*template metaprogramming*, which is a way of performing computation at compile
+time using type information. Template metaprogamming usually instantiates code
+involving significant numbers of deeply nested types that are either completely
+removed or reduced to just a few instructions during the compiler's optimization
+phase. However, due to the nested nature of these types, the resulting symbol
+names in the compiled extension library can be extremely long. For instance,
+the included test suite contains the following symbol:
+
+.. only:: html
+
+ .. code-block:: none
+
+ _​_​Z​N​8​p​y​b​i​n​d​1​1​1​2​c​p​p​_​f​u​n​c​t​i​o​n​C​1​I​v​8​E​x​a​m​p​l​e​2​J​R​N​S​t​3​_​_​1​6​v​e​c​t​o​r​I​N​S​3​_​1​2​b​a​s​i​c​_​s​t​r​i​n​g​I​w​N​S​3​_​1​1​c​h​a​r​_​t​r​a​i​t​s​I​w​E​E​N​S​3​_​9​a​l​l​o​c​a​t​o​r​I​w​E​E​E​E​N​S​8​_​I​S​A​_​E​E​E​E​E​J​N​S​_​4​n​a​m​e​E​N​S​_​7​s​i​b​l​i​n​g​E​N​S​_​9​i​s​_​m​e​t​h​o​d​E​A​2​8​_​c​E​E​E​M​T​0​_​F​T​_​D​p​T​1​_​E​D​p​R​K​T​2​_
+
+.. only:: not html
+
+ .. code-block:: cpp
+
+ __ZN8pybind1112cpp_functionC1Iv8Example2JRNSt3__16vectorINS3_12basic_stringIwNS3_11char_traitsIwEENS3_9allocatorIwEEEENS8_ISA_EEEEEJNS_4nameENS_7siblingENS_9is_methodEA28_cEEEMT0_FT_DpT1_EDpRKT2_
+
+which is the mangled form of the following function type:
+
+.. code-block:: cpp
+
+ pybind11::cpp_function::cpp_function<void, Example2, std::__1::vector<std::__1::basic_string<wchar_t, std::__1::char_traits<wchar_t>, std::__1::allocator<wchar_t> >, std::__1::allocator<std::__1::basic_string<wchar_t, std::__1::char_traits<wchar_t>, std::__1::allocator<wchar_t> > > >&, pybind11::name, pybind11::sibling, pybind11::is_method, char [28]>(void (Example2::*)(std::__1::vector<std::__1::basic_string<wchar_t, std::__1::char_traits<wchar_t>, std::__1::allocator<wchar_t> >, std::__1::allocator<std::__1::basic_string<wchar_t, std::__1::char_traits<wchar_t>, std::__1::allocator<wchar_t> > > >&), pybind11::name const&, pybind11::sibling const&, pybind11::is_method const&, char const (&) [28])
+
+The memory needed to store just the mangled name of this function (196 bytes)
+is larger than the actual piece of code (111 bytes) it represents! On the other
+hand, it's silly to even give this function a name -- after all, it's just a
+tiny cog in a bigger piece of machinery that is not exposed to the outside
+world. So we'll generally only want to export symbols for those functions which
+are actually called from the outside.
+
+This can be achieved by specifying the parameter ``-fvisibility=hidden`` to GCC
+and Clang, which sets the default symbol visibility to *hidden*, which has a
+tremendous impact on the final binary size of the resulting extension library.
+(On Visual Studio, symbols are already hidden by default, so nothing needs to
+be done there.)
+
+In addition to decreasing binary size, ``-fvisibility=hidden`` also avoids
+potential serious issues when loading multiple modules and is required for
+proper pybind operation. See the previous FAQ entry for more details.
+
+Working with ancient Visual Studio 2008 builds on Windows
+=========================================================
+
+The official Windows distributions of Python are compiled using truly
+ancient versions of Visual Studio that lack good C++11 support. Some users
+implicitly assume that it would be impossible to load a plugin built with
+Visual Studio 2015 into a Python distribution that was compiled using Visual
+Studio 2008. However, no such issue exists: it's perfectly legitimate to
+interface DLLs that are built with different compilers and/or C libraries.
+Common gotchas to watch out for involve not ``free()``-ing memory region
+that that were ``malloc()``-ed in another shared library, using data
+structures with incompatible ABIs, and so on. pybind11 is very careful not
+to make these types of mistakes.
+
+How can I properly handle Ctrl-C in long-running functions?
+===========================================================
+
+Ctrl-C is received by the Python interpreter, and holds it until the GIL
+is released, so a long-running function won't be interrupted.
+
+To interrupt from inside your function, you can use the ``PyErr_CheckSignals()``
+function, that will tell if a signal has been raised on the Python side. This
+function merely checks a flag, so its impact is negligible. When a signal has
+been received, you must either explicitly interrupt execution by throwing
+``py::error_already_set`` (which will propagate the existing
+``KeyboardInterrupt``), or clear the error (which you usually will not want):
+
+.. code-block:: cpp
+
+ PYBIND11_MODULE(example, m)
+ {
+ m.def("long running_func", []()
+ {
+ for (;;) {
+ if (PyErr_CheckSignals() != 0)
+ throw py::error_already_set();
+ // Long running iteration
+ }
+ });
+ }
+
+Inconsistent detection of Python version in CMake and pybind11
+==============================================================
+
+The functions ``find_package(PythonInterp)`` and ``find_package(PythonLibs)`` provided by CMake
+for Python version detection are not used by pybind11 due to unreliability and limitations that make
+them unsuitable for pybind11's needs. Instead pybind provides its own, more reliable Python detection
+CMake code. Conflicts can arise, however, when using pybind11 in a project that *also* uses the CMake
+Python detection in a system with several Python versions installed.
+
+This difference may cause inconsistencies and errors if *both* mechanisms are used in the same project. Consider the following
+Cmake code executed in a system with Python 2.7 and 3.x installed:
+
+.. code-block:: cmake
+
+ find_package(PythonInterp)
+ find_package(PythonLibs)
+ find_package(pybind11)
+
+It will detect Python 2.7 and pybind11 will pick it as well.
+
+In contrast this code:
+
+.. code-block:: cmake
+
+ find_package(pybind11)
+ find_package(PythonInterp)
+ find_package(PythonLibs)
+
+will detect Python 3.x for pybind11 and may crash on ``find_package(PythonLibs)`` afterwards.
+
+It is advised to avoid using ``find_package(PythonInterp)`` and ``find_package(PythonLibs)`` from CMake and rely
+on pybind11 in detecting Python version. If this is not possible CMake machinery should be called *before* including pybind11.
+
+How to cite this project?
+=========================
+
+We suggest the following BibTeX template to cite pybind11 in scientific
+discourse:
+
+.. code-block:: bash
+
+ @misc{pybind11,
+ author = {Wenzel Jakob and Jason Rhinelander and Dean Moldovan},
+ year = {2017},
+ note = {https://github.com/pybind/pybind11},
+ title = {pybind11 -- Seamless operability between C++11 and Python}
+ }