aboutsummaryrefslogtreecommitdiffstats
path: root/3rdparty/python-console/test_cli.cpp
blob: 76d0f251a401e044417e6f03053071329f62ff85 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#include <iostream>
#include <string>
#include "ParseHelper.h"
#include "ParseListener.h"
#include "Interpreter.h"

const std::string STD_PROMPT = ">>> ";
const std::string MULTILINE_PROMPT = "... ";

struct InterpreterRelay : public ParseListener
{
    Interpreter* m_interpreter;

    InterpreterRelay( ):
        m_interpreter( new Interpreter )
    { }

    virtual void parseEvent( const ParseMessage& msg )
    {
        if ( msg.errorCode )
        {
            std::cout << "(" << msg.errorCode << ") " << msg.message << "\n";
            return;
        }
        else
        {
            int err;
            std::string res = m_interpreter->interpret( msg.message, &err );
            std::cout << "(" << msg.errorCode << ") " << res << "\n";
        }
    }
};

int main( int argc, char *argv[] )
{
    Interpreter::Initialize( );
    const std::string* prompt = &STD_PROMPT;
    ParseHelper helper;
    ParseListener* listener = new InterpreterRelay;
    helper.subscribe( listener );

    std::string str;
    std::cout << *prompt;
    std::getline( std::cin, str );
    while ( str != "quit" )
    {
        std::cout << str << "\n";
        helper.process( str );
        if ( helper.buffered( ) )
        {
            prompt = &MULTILINE_PROMPT;
        }
        else
        {
            prompt = &STD_PROMPT;
        }
        std::cout << *prompt;
        std::getline( std::cin, str );
    }

    Interpreter::Finalize( );
    return 0;
}
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
/*
    tests/test_virtual_functions.cpp -- overriding virtual functions from Python

    Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>

    All rights reserved. Use of this source code is governed by a
    BSD-style license that can be found in the LICENSE file.
*/

#include <pybind11/functional.h>

#include "constructor_stats.h"
#include "pybind11_tests.h"

#include <thread>

/* This is an example class that we'll want to be able to extend from Python */
class ExampleVirt {
public:
    explicit ExampleVirt(int state) : state(state) { print_created(this, state); }
    ExampleVirt(const ExampleVirt &e) : state(e.state) { print_copy_created(this); }
    ExampleVirt(ExampleVirt &&e) noexcept : state(e.state) {
        print_move_created(this);
        e.state = 0;
    }
    virtual ~ExampleVirt() { print_destroyed(this); }

    virtual int run(int value) {
        py::print("Original implementation of "
                  "ExampleVirt::run(state={}, value={}, str1={}, str2={})"_s.format(
                      state, value, get_string1(), *get_string2()));
        return state + value;
    }

    virtual bool run_bool() = 0;
    virtual void pure_virtual() = 0;

    // Returning a reference/pointer to a type converted from python (numbers, strings, etc.) is a
    // bit trickier, because the actual int& or std::string& or whatever only exists temporarily,
    // so we have to handle it specially in the trampoline class (see below).
    virtual const std::string &get_string1() { return str1; }
    virtual const std::string *get_string2() { return &str2; }

private:
    int state;
    const std::string str1{"default1"}, str2{"default2"};
};

/* This is a wrapper class that must be generated */
class PyExampleVirt : public ExampleVirt {
public:
    using ExampleVirt::ExampleVirt; /* Inherit constructors */

    int run(int value) override {
        /* Generate wrapping code that enables native function overloading */
        PYBIND11_OVERRIDE(int,         /* Return type */
                          ExampleVirt, /* Parent class */
                          run,         /* Name of function */
                          value        /* Argument(s) */
        );
    }

    bool run_bool() override {
        PYBIND11_OVERRIDE_PURE(bool,        /* Return type */
                               ExampleVirt, /* Parent class */
                               run_bool,    /* Name of function */
                                            /* This function has no arguments. The trailing comma
                                               in the previous line is needed for some compilers */
        );
    }

    void pure_virtual() override {
        PYBIND11_OVERRIDE_PURE(void,         /* Return type */
                               ExampleVirt,  /* Parent class */
                               pure_virtual, /* Name of function */
                                             /* This function has no arguments. The trailing comma
                                                in the previous line is needed for some compilers */
        );
    }

    // We can return reference types for compatibility with C++ virtual interfaces that do so, but
    // note they have some significant limitations (see the documentation).
    const std::string &get_string1() override {
        PYBIND11_OVERRIDE(const std::string &, /* Return type */
                          ExampleVirt,         /* Parent class */
                          get_string1,         /* Name of function */
                                               /* (no arguments) */
        );
    }

    const std::string *get_string2() override {
        PYBIND11_OVERRIDE(const std::string *, /* Return type */
                          ExampleVirt,         /* Parent class */
                          get_string2,         /* Name of function */
                                               /* (no arguments) */
        );
    }
};

class NonCopyable {
public:
    NonCopyable(int a, int b) : value{new int(a * b)} { print_created(this, a, b); }
    NonCopyable(NonCopyable &&o) noexcept : value{std::move(o.value)} { print_move_created(this); }
    NonCopyable(const NonCopyable &) = delete;
    NonCopyable() = delete;
    void operator=(const NonCopyable &) = delete;
    void operator=(NonCopyable &&) = delete;
    std::string get_value() const {
        if (value) {
            return std::to_string(*value);
        }
        return "(null)";
    }
    ~NonCopyable() { print_destroyed(this); }

private:
    std::unique_ptr<int> value;
};

// This is like the above, but is both copy and movable.  In effect this means it should get moved
// when it is not referenced elsewhere, but copied if it is still referenced.
class Movable {
public:
    Movable(int a, int b) : value{a + b} { print_created(this, a, b); }
    Movable(const Movable &m) : value{m.value} { print_copy_created(this); }
    Movable(Movable &&m) noexcept : value{m.value} { print_move_created(this); }
    std::string get_value() const { return std::to_string(value); }
    ~Movable() { print_destroyed(this); }

private:
    int value;
};

class NCVirt {
public:
    virtual ~NCVirt() = default;
    NCVirt() = default;
    NCVirt(const NCVirt &) = delete;
    virtual NonCopyable get_noncopyable(int a, int b) { return NonCopyable(a, b); }
    virtual Movable get_movable(int a, int b) = 0;

    std::string print_nc(int a, int b) { return get_noncopyable(a, b).get_value(); }
    std::string print_movable(int a, int b) { return get_movable(a, b).get_value(); }
};
class NCVirtTrampoline : public NCVirt {
#if !defined(__INTEL_COMPILER) && !defined(__CUDACC__) && !defined(__PGIC__)
    NonCopyable get_noncopyable(int a, int b) override {
        PYBIND11_OVERRIDE(NonCopyable, NCVirt, get_noncopyable, a, b);
    }
#endif
    Movable get_movable(int a, int b) override {
        PYBIND11_OVERRIDE_PURE(Movable, NCVirt, get_movable, a, b);
    }
};

struct Base {
    virtual std::string dispatch() const = 0;
    virtual ~Base() = default;
    Base() = default;
    Base(const Base &) = delete;
};

struct DispatchIssue : Base {
    std::string dispatch() const override {
        PYBIND11_OVERRIDE_PURE(std::string, Base, dispatch, /* no arguments */);
    }
};

// An abstract adder class that uses visitor pattern to add two data
// objects and send the result to the visitor functor
struct AdderBase {
    struct Data {};
    using DataVisitor = std::function<void(const Data &)>;

    virtual void
    operator()(const Data &first, const Data &second, const DataVisitor &visitor) const = 0;
    virtual ~AdderBase() = default;
    AdderBase() = default;
    AdderBase(const AdderBase &) = delete;
};

struct Adder : AdderBase {
    void
    operator()(const Data &first, const Data &second, const DataVisitor &visitor) const override {
        PYBIND11_OVERRIDE_PURE_NAME(
            void, AdderBase, "__call__", operator(), first, second, visitor);
    }
};

static void test_gil() {
    {
        py::gil_scoped_acquire lock;
        py::print("1st lock acquired");
    }

    {
        py::gil_scoped_acquire lock;
        py::print("2nd lock acquired");
    }
}

static void test_gil_from_thread() {
    py::gil_scoped_release release;

    std::thread t(test_gil);
    t.join();
}

class test_override_cache_helper {

public:
    virtual int func() { return 0; }

    test_override_cache_helper() = default;
    virtual ~test_override_cache_helper() = default;
    // Non-copyable
    test_override_cache_helper &operator=(test_override_cache_helper const &Right) = delete;
    test_override_cache_helper(test_override_cache_helper const &Copy) = delete;
};

class test_override_cache_helper_trampoline : public test_override_cache_helper {
    int func() override { PYBIND11_OVERRIDE(int, test_override_cache_helper, func); }
};

inline int test_override_cache(std::shared_ptr<test_override_cache_helper> const &instance) {
    return instance->func();
}

// Forward declaration (so that we can put the main tests here; the inherited virtual approaches
// are rather long).
void initialize_inherited_virtuals(py::module_ &m);

TEST_SUBMODULE(virtual_functions, m) {
    // test_override
    py::class_<ExampleVirt, PyExampleVirt>(m, "ExampleVirt")
        .def(py::init<int>())
        /* Reference original class in function definitions */
        .def("run", &ExampleVirt::run)
        .def("run_bool", &ExampleVirt::run_bool)
        .def("pure_virtual", &ExampleVirt::pure_virtual);

    py::class_<NonCopyable>(m, "NonCopyable").def(py::init<int, int>());

    py::class_<Movable>(m, "Movable").def(py::init<int, int>());

    // test_move_support
#if !defined(__INTEL_COMPILER) && !defined(__CUDACC__) && !defined(__PGIC__)
    py::class_<NCVirt, NCVirtTrampoline>(m, "NCVirt")
        .def(py::init<>())
        .def("get_noncopyable", &NCVirt::get_noncopyable)
        .def("get_movable", &NCVirt::get_movable)
        .def("print_nc", &NCVirt::print_nc)
        .def("print_movable", &NCVirt::print_movable);
#endif

    m.def("runExampleVirt", [](ExampleVirt *ex, int value) { return ex->run(value); });
    m.def("runExampleVirtBool", [](ExampleVirt *ex) { return ex->run_bool(); });
    m.def("runExampleVirtVirtual", [](ExampleVirt *ex) { ex->pure_virtual(); });

    m.def("cstats_debug", &ConstructorStats::get<ExampleVirt>);
    initialize_inherited_virtuals(m);

    // test_alias_delay_initialization1
    // don't invoke Python dispatch classes by default when instantiating C++ classes
    // that were not extended on the Python side
    struct A {
        A() = default;
        A(const A &) = delete;
        virtual ~A() = default;
        virtual void f() { py::print("A.f()"); }
    };

    struct PyA : A {
        PyA() { py::print("PyA.PyA()"); }
        PyA(const PyA &) = delete;
        ~PyA() override { py::print("PyA.~PyA()"); }

        void f() override {
            py::print("PyA.f()");
            // This convolution just gives a `void`, but tests that PYBIND11_TYPE() works to
            // protect a type containing a ,
            PYBIND11_OVERRIDE(PYBIND11_TYPE(typename std::enable_if<true, void>::type), A, f);
        }
    };

    py::class_<A, PyA>(m, "A").def(py::init<>()).def("f", &A::f);

    m.def("call_f", [](A *a) { a->f(); });

    // test_alias_delay_initialization2
    // ... unless we explicitly request it, as in this example:
    struct A2 {
        A2() = default;
        A2(const A2 &) = delete;
        virtual ~A2() = default;
        virtual void f() { py::print("A2.f()"); }
    };

    struct PyA2 : A2 {
        PyA2() { py::print("PyA2.PyA2()"); }
        PyA2(const PyA2 &) = delete;
        ~PyA2() override { py::print("PyA2.~PyA2()"); }
        void f() override {
            py::print("PyA2.f()");
            PYBIND11_OVERRIDE(void, A2, f);
        }
    };

    py::class_<A2, PyA2>(m, "A2")
        .def(py::init_alias<>())
        .def(py::init([](int) { return new PyA2(); }))
        .def("f", &A2::f);

    m.def("call_f", [](A2 *a2) { a2->f(); });

    // test_dispatch_issue
    // #159: virtual function dispatch has problems with similar-named functions
    py::class_<Base, DispatchIssue>(m, "DispatchIssue")
        .def(py::init<>())
        .def("dispatch", &Base::dispatch);

    m.def("dispatch_issue_go", [](const Base *b) { return b->dispatch(); });

    // test_recursive_dispatch_issue
    // #3357: Recursive dispatch fails to find python function override
    pybind11::class_<AdderBase, Adder>(m, "Adder")
        .def(pybind11::init<>())
        .def("__call__", &AdderBase::operator());

    pybind11::class_<AdderBase::Data>(m, "Data").def(pybind11::init<>());

    m.def("add2",
          [](const AdderBase::Data &first,
             const AdderBase::Data &second,
             const AdderBase &adder,
             const AdderBase::DataVisitor &visitor) { adder(first, second, visitor); });

    m.def("add3",
          [](const AdderBase::Data &first,
             const AdderBase::Data &second,
             const AdderBase::Data &third,
             const AdderBase &adder,
             const AdderBase::DataVisitor &visitor) {
              adder(first, second, [&](const AdderBase::Data &first_plus_second) {
                  // NOLINTNEXTLINE(readability-suspicious-call-argument)
                  adder(first_plus_second, third, visitor);
              });
          });

    // test_override_ref
    // #392/397: overriding reference-returning functions
    class OverrideTest {
    public:
        struct A {
            std::string value = "hi";
        };
        std::string v;
        A a;
        explicit OverrideTest(const std::string &v) : v{v} {}
        OverrideTest() = default;
        OverrideTest(const OverrideTest &) = delete;
        virtual std::string str_value() { return v; }
        virtual std::string &str_ref() { return v; }
        virtual A A_value() { return a; }
        virtual A &A_ref() { return a; }
        virtual ~OverrideTest() = default;
    };

    class PyOverrideTest : public OverrideTest {
    public:
        using OverrideTest::OverrideTest;
        std::string str_value() override {
            PYBIND11_OVERRIDE(std::string, OverrideTest, str_value);
        }
        // Not allowed (enabling the below should hit a static_assert failure): we can't get a
        // reference to a python numeric value, since we only copy values in the numeric type
        // caster:
#ifdef PYBIND11_NEVER_DEFINED_EVER
        std::string &str_ref() override {
            PYBIND11_OVERRIDE(std::string &, OverrideTest, str_ref);
        }
#endif
        // But we can work around it like this:
    private:
        std::string _tmp;
        std::string str_ref_helper() { PYBIND11_OVERRIDE(std::string, OverrideTest, str_ref); }

    public:
        std::string &str_ref() override { return _tmp = str_ref_helper(); }

        A A_value() override { PYBIND11_OVERRIDE(A, OverrideTest, A_value); }
        A &A_ref() override { PYBIND11_OVERRIDE(A &, OverrideTest, A_ref); }
    };

    py::class_<OverrideTest::A>(m, "OverrideTest_A")
        .def_readwrite("value", &OverrideTest::A::value);
    py::class_<OverrideTest, PyOverrideTest>(m, "OverrideTest")
        .def(py::init<const std::string &>())
        .def("str_value", &OverrideTest::str_value)
#ifdef PYBIND11_NEVER_DEFINED_EVER
        .def("str_ref", &OverrideTest::str_ref)
#endif
        .def("A_value", &OverrideTest::A_value)
        .def("A_ref", &OverrideTest::A_ref);

    py::class_<test_override_cache_helper,
               test_override_cache_helper_trampoline,
               std::shared_ptr<test_override_cache_helper>>(m, "test_override_cache_helper")
        .def(py::init_alias<>())
        .def("func", &test_override_cache_helper::func);

    m.def("test_override_cache", test_override_cache);
}

// Inheriting virtual methods.  We do two versions here: the repeat-everything version and the
// templated trampoline versions mentioned in docs/advanced.rst.
//
// These base classes are exactly the same, but we technically need distinct
// classes for this example code because we need to be able to bind them
// properly (pybind11, sensibly, doesn't allow us to bind the same C++ class to
// multiple python classes).
class A_Repeat {
#define A_METHODS                                                                                 \
public:                                                                                           \
    virtual int unlucky_number() = 0;                                                             \
    virtual std::string say_something(unsigned times) {                                           \
        std::string s = "";                                                                       \
        for (unsigned i = 0; i < times; ++i)                                                      \
            s += "hi";                                                                            \
        return s;                                                                                 \
    }                                                                                             \
    std::string say_everything() {                                                                \
        return say_something(1) + " " + std::to_string(unlucky_number());                         \
    }
    A_METHODS
    A_Repeat() = default;
    A_Repeat(const A_Repeat &) = delete;
    virtual ~A_Repeat() = default;
};
class B_Repeat : public A_Repeat {
#define B_METHODS                                                                                 \
public:                                                                                           \
    int unlucky_number() override { return 13; }                                                  \
    std::string say_something(unsigned times) override {                                          \
        return "B says hi " + std::to_string(times) + " times";                                   \
    }                                                                                             \
    virtual double lucky_number() { return 7.0; }
    B_METHODS
};
class C_Repeat : public B_Repeat {
#define C_METHODS                                                                                 \
public:                                                                                           \
    int unlucky_number() override { return 4444; }                                                \
    double lucky_number() override { return 888; }
    C_METHODS
};
class D_Repeat : public C_Repeat {
#define D_METHODS // Nothing overridden.
    D_METHODS
};

// Base classes for templated inheritance trampolines.  Identical to the repeat-everything version:
class A_Tpl {
    A_METHODS;
    A_Tpl() = default;
    A_Tpl(const A_Tpl &) = delete;
    virtual ~A_Tpl() = default;
};
class B_Tpl : public A_Tpl {
    B_METHODS
};
class C_Tpl : public B_Tpl {
    C_METHODS
};
class D_Tpl : public C_Tpl {
    D_METHODS
};

// Inheritance approach 1: each trampoline gets every virtual method (11 in total)
class PyA_Repeat : public A_Repeat {
public:
    using A_Repeat::A_Repeat;
    int unlucky_number() override { PYBIND11_OVERRIDE_PURE(int, A_Repeat, unlucky_number, ); }
    std::string say_something(unsigned times) override {
        PYBIND11_OVERRIDE(std::string, A_Repeat, say_something, times);
    }
};
class PyB_Repeat : public B_Repeat {
public:
    using B_Repeat::B_Repeat;
    int unlucky_number() override { PYBIND11_OVERRIDE(int, B_Repeat, unlucky_number, ); }
    std::string say_something(unsigned times) override {
        PYBIND11_OVERRIDE(std::string, B_Repeat, say_something, times);
    }
    double lucky_number() override { PYBIND11_OVERRIDE(double, B_Repeat, lucky_number, ); }
};
class PyC_Repeat : public C_Repeat {
public:
    using C_Repeat::C_Repeat;
    int unlucky_number() override { PYBIND11_OVERRIDE(int, C_Repeat, unlucky_number, ); }
    std::string say_something(unsigned times) override {
        PYBIND11_OVERRIDE(std::string, C_Repeat, say_something, times);
    }
    double lucky_number() override { PYBIND11_OVERRIDE(double, C_Repeat, lucky_number, ); }
};
class PyD_Repeat : public D_Repeat {
public:
    using D_Repeat::D_Repeat;
    int unlucky_number() override { PYBIND11_OVERRIDE(int, D_Repeat, unlucky_number, ); }
    std::string say_something(unsigned times) override {
        PYBIND11_OVERRIDE(std::string, D_Repeat, say_something, times);
    }
    double lucky_number() override { PYBIND11_OVERRIDE(double, D_Repeat, lucky_number, ); }
};

// Inheritance approach 2: templated trampoline classes.
//
// Advantages:
// - we have only 2 (template) class and 4 method declarations (one per virtual method, plus one
//   for any override of a pure virtual method), versus 4 classes and 6 methods (MI) or 4 classes
//   and 11 methods (repeat).
// - Compared to MI, we also don't have to change the non-trampoline inheritance to virtual, and
//   can properly inherit constructors.
//
// Disadvantage:
// - the compiler must still generate and compile 14 different methods (more, even, than the 11
//   required for the repeat approach) instead of the 6 required for MI.  (If there was no pure
//   method (or no pure method override), the number would drop down to the same 11 as the repeat
//   approach).
template <class Base = A_Tpl>
class PyA_Tpl : public Base {
public:
    using Base::Base; // Inherit constructors
    int unlucky_number() override { PYBIND11_OVERRIDE_PURE(int, Base, unlucky_number, ); }
    std::string say_something(unsigned times) override {
        PYBIND11_OVERRIDE(std::string, Base, say_something, times);
    }
};
template <class Base = B_Tpl>
class PyB_Tpl : public PyA_Tpl<Base> {
public:
    using PyA_Tpl<Base>::PyA_Tpl; // Inherit constructors (via PyA_Tpl's inherited constructors)
    // NOLINTNEXTLINE(bugprone-parent-virtual-call)
    int unlucky_number() override { PYBIND11_OVERRIDE(int, Base, unlucky_number, ); }
    double lucky_number() override { PYBIND11_OVERRIDE(double, Base, lucky_number, ); }
};
// Since C_Tpl and D_Tpl don't declare any new virtual methods, we don't actually need these
// (we can use PyB_Tpl<C_Tpl> and PyB_Tpl<D_Tpl> for the trampoline classes instead):
/*
template <class Base = C_Tpl> class PyC_Tpl : public PyB_Tpl<Base> {
public:
    using PyB_Tpl<Base>::PyB_Tpl;
};
template <class Base = D_Tpl> class PyD_Tpl : public PyC_Tpl<Base> {
public:
    using PyC_Tpl<Base>::PyC_Tpl;
};
*/

void initialize_inherited_virtuals(py::module_ &m) {
    // test_inherited_virtuals

    // Method 1: repeat
    py::class_<A_Repeat, PyA_Repeat>(m, "A_Repeat")
        .def(py::init<>())
        .def("unlucky_number", &A_Repeat::unlucky_number)
        .def("say_something", &A_Repeat::say_something)
        .def("say_everything", &A_Repeat::say_everything);
    py::class_<B_Repeat, A_Repeat, PyB_Repeat>(m, "B_Repeat")
        .def(py::init<>())
        .def("lucky_number", &B_Repeat::lucky_number);
    py::class_<C_Repeat, B_Repeat, PyC_Repeat>(m, "C_Repeat").def(py::init<>());
    py::class_<D_Repeat, C_Repeat, PyD_Repeat>(m, "D_Repeat").def(py::init<>());

    // test_
    // Method 2: Templated trampolines
    py::class_<A_Tpl, PyA_Tpl<>>(m, "A_Tpl")
        .def(py::init<>())
        .def("unlucky_number", &A_Tpl::unlucky_number)
        .def("say_something", &A_Tpl::say_something)
        .def("say_everything", &A_Tpl::say_everything);
    py::class_<B_Tpl, A_Tpl, PyB_Tpl<>>(m, "B_Tpl")
        .def(py::init<>())
        .def("lucky_number", &B_Tpl::lucky_number);
    py::class_<C_Tpl, B_Tpl, PyB_Tpl<C_Tpl>>(m, "C_Tpl").def(py::init<>());
    py::class_<D_Tpl, C_Tpl, PyB_Tpl<D_Tpl>>(m, "D_Tpl").def(py::init<>());

    // Fix issue #1454 (crash when acquiring/releasing GIL on another thread in Python 2.7)
    m.def("test_gil", &test_gil);
    m.def("test_gil_from_thread", &test_gil_from_thread);
};