aboutsummaryrefslogtreecommitdiffstats
path: root/common/parallel_refine.cc
blob: a868ca582fdaec09d8cb4f28bab2ebfec35a5c92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
/*
 *  nextpnr -- Next Generation Place and Route
 *
 *  Copyright (C) 2021-22  gatecat <gatecat@ds0.me>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#include "parallel_refine.h"
#include "log.h"

#if !defined(__wasm)

#include "fast_bels.h"
#include "scope_lock.h"
#include "timing.h"

#include <chrono>
#include <mutex>
#include <queue>
#include <shared_mutex>
#include <thread>

NEXTPNR_NAMESPACE_BEGIN

namespace {
struct Partition
{
    int x0, y0, x1, y1;
    std::vector<CellInfo *> cells;
    Partition() = default;
    explicit Partition(Context *ctx)
    {
        x0 = ctx->getGridDimX();
        y0 = ctx->getGridDimY();
        x1 = 0;
        y1 = 0;
        for (auto &cell : ctx->cells) {
            Loc l = ctx->getBelLocation(cell.second->bel);
            x0 = std::min(x0, l.x);
            x1 = std::max(x1, l.x);
            y0 = std::min(y0, l.y);
            y1 = std::max(y1, l.y);
            cells.push_back(cell.second.get());
        }
    }
    void split(Context *ctx, bool yaxis, float pivot, Partition &l, Partition &r)
    {
        std::sort(cells.begin(), cells.end(), [&](CellInfo *a, CellInfo *b) {
            Loc l0 = ctx->getBelLocation(a->bel), l1 = ctx->getBelLocation(b->bel);
            return yaxis ? (l0.y < l1.y) : (l0.x < l1.x);
        });
        size_t pivot_point = size_t(cells.size() * pivot);
        l.cells.clear();
        r.cells.clear();
        l.cells.reserve(pivot_point);
        r.cells.reserve(cells.size() - pivot_point);
        int pivot_coord = (pivot_point == 0) ? (yaxis ? y1 : x1)
                                             : (yaxis ? ctx->getBelLocation(cells.at(pivot_point - 1)->bel).y
                                                      : ctx->getBelLocation(cells.at(pivot_point - 1)->bel).x);
        for (size_t i = 0; i < cells.size(); i++) {
            Loc loc = ctx->getBelLocation(cells.at(i)->bel);
            ((yaxis ? loc.y : loc.x) <= pivot_coord ? l.cells : r.cells).push_back(cells.at(i));
        }
        if (yaxis) {
            l.x0 = r.x0 = x0;
            l.x1 = r.x1 = x1;
            l.y0 = y0;
            l.y1 = pivot_coord;
            r.y0 = (pivot_coord == y1) ? y1 : (pivot_coord + 1);
            r.y1 = y1;
        } else {
            l.y0 = r.y0 = y0;
            l.y1 = r.y1 = y1;
            l.x0 = x0;
            l.x1 = pivot_coord;
            r.x0 = (pivot_coord == x1) ? x1 : (pivot_coord + 1);
            r.x1 = x1;
        }
    }
};

typedef int64_t wirelen_t;

struct NetBB
{
    // Actual bounding box
    int x0 = 0, x1 = 0, y0 = 0, y1 = 0;
    // Number of cells at each extremity
    int nx0 = 0, nx1 = 0, ny0 = 0, ny1 = 0;
    wirelen_t hpwl(const ParallelRefineCfg &cfg) const
    {
        return wirelen_t(cfg.hpwl_scale_x * (x1 - x0) + cfg.hpwl_scale_y * (y1 - y0));
    }
    static NetBB compute(const Context *ctx, const NetInfo *net, const dict<IdString, BelId> *cell2bel = nullptr)
    {
        NetBB result{};
        if (!net->driver.cell)
            return result;
        auto bel_loc = [&](const CellInfo *cell) {
            BelId bel = cell2bel ? cell2bel->at(cell->name) : cell->bel;
            return ctx->getBelLocation(bel);
        };
        result.nx0 = result.nx1 = result.ny0 = result.ny1 = 1;
        Loc drv_loc = bel_loc(net->driver.cell);
        result.x0 = result.x1 = drv_loc.x;
        result.y0 = result.y1 = drv_loc.y;
        for (auto &usr : net->users) {
            Loc l = bel_loc(usr.cell);
            if (l.x == result.x0)
                ++result.nx0; // on the edge
            else if (l.x < result.x0) {
                result.x0 = l.x; // extends the edge
                result.nx0 = 1;
            }
            if (l.x == result.x1)
                ++result.nx1; // on the edge
            else if (l.x > result.x1) {
                result.x1 = l.x; // extends the edge
                result.nx1 = 1;
            }
            if (l.y == result.y0)
                ++result.ny0; // on the edge
            else if (l.y < result.y0) {
                result.y0 = l.y; // extends the edge
                result.ny0 = 1;
            }
            if (l.y == result.y1)
                ++result.ny1; // on the edge
            else if (l.y > result.y1) {
                result.y1 = l.y; // extends the edge
                result.ny1 = 1;
            }
        }
        return result;
    }
};

struct GlobalState
{
    explicit GlobalState(Context *ctx, ParallelRefineCfg cfg) : ctx(ctx), cfg(cfg), bels(ctx, false, 64), tmg(ctx){};
    Context *ctx;
    ParallelRefineCfg cfg;
    FastBels bels;
    std::vector<NetInfo *> flat_nets; // flat array of all nets in the design for fast referencing by index
    std::vector<NetBB> last_bounds;
    std::vector<std::vector<double>> last_tmg_costs;
    dict<IdString, NetBB> region_bounds;
    TimingAnalyser tmg;

    std::shared_timed_mutex archapi_mutex;

    double temperature = 1e-7;
    int radius = 3;

    wirelen_t total_wirelen = 0;
    double total_timing_cost = 0;

    double get_timing_cost(const NetInfo *net, store_index<PortRef> user,
                           const dict<IdString, BelId> *cell2bel = nullptr)
    {
        if (!net->driver.cell)
            return 0;
        const auto &sink = net->users.at(user);
        IdString driver_pin, sink_pin;
        // Pick the first pin for a prediction; assume all will be similar enouhg
        for (auto pin : ctx->getBelPinsForCellPin(net->driver.cell, net->driver.port)) {
            driver_pin = pin;
            break;
        }
        for (auto pin : ctx->getBelPinsForCellPin(sink.cell, sink.port)) {
            sink_pin = pin;
            break;
        }
        float crit = tmg.get_criticality(CellPortKey(sink));
        BelId src_bel = cell2bel ? cell2bel->at(net->driver.cell->name) : net->driver.cell->bel;
        BelId dst_bel = cell2bel ? cell2bel->at(sink.cell->name) : sink.cell->bel;
        double delay = ctx->getDelayNS(ctx->predictDelay(src_bel, driver_pin, dst_bel, sink_pin));
        return delay * std::pow(crit, cfg.crit_exp);
    }

    bool skip_net(const NetInfo *net) const
    {
        if (!net->driver.cell)
            return true;
        if (ctx->getBelGlobalBuf(net->driver.cell->bel))
            return true;
        return false;
    }
    bool timing_skip_net(const NetInfo *net) const
    {
        if (!net->driver.cell)
            return true;
        int cc;
        auto cls = ctx->getPortTimingClass(net->driver.cell, net->driver.port, cc);
        if (cls == TMG_IGNORE || cls == TMG_GEN_CLOCK)
            return true;
        return false;
    }
    // ....
};

struct ThreadState
{
    Context *ctx;         // Nextpnr context pointer
    GlobalState &g;       // Refinement engine state
    int idx;              // Index of the thread
    DeterministicRNG rng; // Local RNG
    // The cell partition that the thread works on
    Partition p;
    // Mapping from design-wide net index to thread-wide net index -- not all nets are in all partitions, so we can
    // optimise
    std::vector<int> thread_net_idx;
    // List of nets inside the partition; and their committed bounding boxes & timing costs from the thread's
    // perspective
    std::vector<NetInfo *> thread_nets;
    std::vector<NetBB> net_bounds;
    std::vector<std::vector<double>> arc_tmg_cost;
    std::vector<bool> ignored_nets, tmg_ignored_nets;
    bool arch_state_dirty = false;
    // Our local cell-bel map; that won't be affected by out-of-partition moves
    dict<IdString, BelId> local_cell2bel;

    // Data on an inflight move
    dict<IdString, std::pair<BelId, BelId>> moved_cells; // cell -> (old; new)
    // For cluster moves only
    std::vector<std::pair<CellInfo *, Loc>> cell_rel;
    // For incremental wirelength and delay updates
    wirelen_t wirelen_delta = 0;
    double timing_delta = 0;

    // Total made and accepted moved
    int n_move = 0, n_accept = 0;

    enum BoundChange
    {
        NO_CHANGE,
        CELL_MOVED_INWARDS,
        CELL_MOVED_OUTWARDS,
        FULL_RECOMPUTE
    };
    // Wirelen related are handled on a per-axis basis to reduce
    struct AxisChanges
    {
        std::vector<int> bounds_changed_nets;
        std::vector<BoundChange> already_bounds_changed;
    };
    std::array<AxisChanges, 2> axes;
    std::vector<NetBB> new_net_bounds;

    std::vector<std::vector<bool>> already_timing_changed;
    std::vector<std::pair<int, store_index<PortRef>>> timing_changed_arcs;
    std::vector<double> new_timing_costs;

    ThreadState(Context *ctx, GlobalState &g, int idx) : ctx(ctx), g(g), idx(idx){};
    void set_partition(const Partition &part)
    {
        p = part;
        thread_nets.clear();
        thread_net_idx.resize(g.flat_nets.size());
        std::fill(thread_net_idx.begin(), thread_net_idx.end(), -1);
        // Determine the set of nets that are within the thread; and therefore we care about
        for (auto thread_cell : part.cells) {
            for (auto &port : thread_cell->ports) {
                if (!port.second.net)
                    continue;
                int global_idx = port.second.net->udata;
                auto &thread_idx = thread_net_idx.at(global_idx);
                // Already added to the set
                if (thread_idx != -1)
                    continue;
                thread_idx = thread_nets.size();
                thread_nets.push_back(port.second.net);
            }
        }
        tmg_ignored_nets.clear();
        ignored_nets.clear();
        for (auto tn : thread_nets) {
            ignored_nets.push_back(g.skip_net(tn));
            tmg_ignored_nets.push_back(g.timing_skip_net(tn));
        }
        // Set up the original cell-bel map for all nets inside the thread
        local_cell2bel.clear();
        for (NetInfo *net : thread_nets) {
            if (net->driver.cell)
                local_cell2bel[net->driver.cell->name] = net->driver.cell->bel;
            for (auto &usr : net->users)
                local_cell2bel[usr.cell->name] = usr.cell->bel;
        }
    }
    void setup_initial_state()
    {
        // Setup initial net bounding boxes and timing costs
        net_bounds.clear();
        arc_tmg_cost.clear();
        for (auto tn : thread_nets) {
            net_bounds.push_back(g.last_bounds.at(tn->udata));
            arc_tmg_cost.push_back(g.last_tmg_costs.at(tn->udata));
        }
        new_net_bounds = net_bounds;
        for (int j = 0; j < 2; j++) {
            auto &a = axes.at(j);
            a.already_bounds_changed.resize(net_bounds.size());
        }
        already_timing_changed.clear();
        already_timing_changed.resize(net_bounds.size());
        for (size_t i = 0; i < thread_nets.size(); i++)
            already_timing_changed.at(i) = std::vector<bool>(thread_nets.at(i)->users.capacity());
    }
    bool bounds_check(BelId bel)
    {
        Loc l = ctx->getBelLocation(bel);
        if (l.x < p.x0 || l.x > p.x1 || l.y < p.y0 || l.y > p.y1)
            return false;
        return true;
    }
    bool bind_move()
    {
        std::unique_lock<std::shared_timed_mutex> l(g.archapi_mutex);
        for (auto &entry : moved_cells) {
            ctx->unbindBel(entry.second.first);
        }
        bool success = true;
        for (auto &entry : moved_cells) {
            // Make sure targets are available before we bind them
            if (!ctx->checkBelAvail(entry.second.second)) {
                success = false;
                break;
            }
            ctx->bindBel(entry.second.second, ctx->cells.at(entry.first).get(), STRENGTH_WEAK);
        }
        arch_state_dirty = true;
        return success;
    }
    bool check_validity()
    {
        std::shared_lock<std::shared_timed_mutex> l(g.archapi_mutex);
        bool result = true;
        for (auto e : moved_cells) {
            if (!ctx->isBelLocationValid(e.second.first)) {
                // Have to check old; too; as unbinding a bel could make a placement illegal by virtue of no longer
                // enabling dedicated routes to be used
                result = false;
                break;
            }
            if (!ctx->isBelLocationValid(e.second.second)) {
                result = false;
                break;
            }
        }
        return result;
    }
    void revert_move()
    {
        if (arch_state_dirty) {
            // If changes to the arch state were made, revert them by restoring original cell bindings
            std::unique_lock<std::shared_timed_mutex> l(g.archapi_mutex);
            for (auto &entry : moved_cells) {
                BelId curr_bound = ctx->cells.at(entry.first)->bel;
                if (curr_bound != BelId())
                    ctx->unbindBel(curr_bound);
            }
            for (auto &entry : moved_cells) {
                ctx->bindBel(entry.second.first, ctx->cells.at(entry.first).get(), STRENGTH_WEAK);
            }
            arch_state_dirty = false;
        }
        for (auto &entry : moved_cells)
            local_cell2bel[entry.first] = entry.second.first;
    }
    void commit_move()
    {
        arch_state_dirty = false;
        for (auto &axis : axes) {
            for (auto bc : axis.bounds_changed_nets) {
                // Commit updated net bounds
                net_bounds.at(bc) = new_net_bounds.at(bc);
            }
        }
        if (g.cfg.timing_driven) {
            NPNR_ASSERT(timing_changed_arcs.size() == new_timing_costs.size());
            for (size_t i = 0; i < timing_changed_arcs.size(); i++) {
                auto arc = timing_changed_arcs.at(i);
                arc_tmg_cost.at(arc.first).at(arc.second.idx()) = new_timing_costs.at(i);
            }
        }
    }
    void compute_changes_for_cell(CellInfo *cell, BelId old_bel, BelId new_bel)
    {
        Loc new_loc = ctx->getBelLocation(new_bel);
        Loc old_loc = ctx->getBelLocation(old_bel);
        for (const auto &port : cell->ports) {
            NetInfo *pn = port.second.net;
            if (!pn)
                continue;
            int idx = thread_net_idx.at(pn->udata);
            if (ignored_nets.at(idx))
                continue;
            NetBB &new_bounds = new_net_bounds.at(idx);
            // For the x-axis (i=0) and y-axis (i=1)
            for (int i = 0; i < 2; i++) {
                auto &axis = axes.at(i);
                // New and old on this axis
                int new_pos = i ? new_loc.y : new_loc.x, old_pos = i ? old_loc.y : old_loc.x;
                // References to updated bounding box entries
                auto &b0 = i ? new_bounds.y0 : new_bounds.x0;
                auto &n0 = i ? new_bounds.ny0 : new_bounds.nx0;
                auto &b1 = i ? new_bounds.y1 : new_bounds.x1;
                auto &n1 = i ? new_bounds.ny1 : new_bounds.nx1;
                auto &change = axis.already_bounds_changed.at(idx);
                // Lower bound
                if (new_pos < b0) {
                    // Further out than current lower bound
                    b0 = new_pos;
                    n0 = 1;
                    if (change == NO_CHANGE) {
                        change = CELL_MOVED_OUTWARDS;
                        axis.bounds_changed_nets.push_back(idx);
                    }
                } else if (new_pos == b0 && old_pos > b0) {
                    // Moved from inside into current bound
                    ++n0;
                    if (change == NO_CHANGE) {
                        change = CELL_MOVED_OUTWARDS;
                        axis.bounds_changed_nets.push_back(idx);
                    }
                } else if (old_pos == b0 && new_pos > b0) {
                    // Moved from current bound to inside
                    if (change == NO_CHANGE)
                        axis.bounds_changed_nets.push_back(idx);
                    if (n0 == 1) {
                        // Was the last cell on the bound; have to do a full recompute
                        change = FULL_RECOMPUTE;
                    } else {
                        --n0;
                        if (change == NO_CHANGE)
                            change = CELL_MOVED_INWARDS;
                    }
                }
                // Upper bound
                if (new_pos > b1) {
                    // Further out than current upper bound
                    b1 = new_pos;
                    n1 = new_pos;
                    if (change == NO_CHANGE) {
                        change = CELL_MOVED_OUTWARDS;
                        axis.bounds_changed_nets.push_back(idx);
                    }
                } else if (new_pos == b1 && old_pos < b1) {
                    // Moved onto current bound
                    ++n1;
                    if (change == NO_CHANGE) {
                        change = CELL_MOVED_OUTWARDS;
                        axis.bounds_changed_nets.push_back(idx);
                    }
                } else if (old_pos == b1 && new_pos < b1) {
                    // Moved from current bound to inside
                    if (change == NO_CHANGE)
                        axis.bounds_changed_nets.push_back(idx);
                    if (n1 == 1) {
                        // Was the last cell on the bound; have to do a full recompute
                        change = FULL_RECOMPUTE;
                    } else {
                        --n1;
                        if (change == NO_CHANGE)
                            change = CELL_MOVED_INWARDS;
                    }
                }
            }
            // Timing updates if timing driven
            if (g.cfg.timing_driven && !tmg_ignored_nets.at(idx)) {
                if (port.second.type == PORT_OUT) {
                    int cc;
                    TimingPortClass cls = ctx->getPortTimingClass(cell, port.first, cc);
                    if (cls != TMG_IGNORE) {
                        for (auto usr : pn->users.enumerate())
                            if (!already_timing_changed.at(idx).at(usr.index.idx())) {
                                timing_changed_arcs.emplace_back(std::make_pair(idx, usr.index));
                                already_timing_changed.at(idx).at(usr.index.idx()) = true;
                            }
                    }
                } else {
                    auto usr = port.second.user_idx;
                    if (!already_timing_changed.at(idx).at(usr.idx())) {
                        timing_changed_arcs.emplace_back(std::make_pair(idx, usr));
                        already_timing_changed.at(idx).at(usr.idx()) = true;
                    }
                }
            }
        }
    }
    void compute_total_change()
    {
        auto &xa = axes.at(0), &ya = axes.at(1);
        for (auto &bc : xa.bounds_changed_nets)
            if (xa.already_bounds_changed.at(bc) == FULL_RECOMPUTE)
                new_net_bounds.at(bc) = NetBB::compute(ctx, thread_nets.at(bc), &local_cell2bel);
        for (auto &bc : ya.bounds_changed_nets)
            if (xa.already_bounds_changed.at(bc) != FULL_RECOMPUTE &&
                ya.already_bounds_changed.at(bc) == FULL_RECOMPUTE)
                new_net_bounds.at(bc) = NetBB::compute(ctx, thread_nets.at(bc), &local_cell2bel);
        for (auto &bc : xa.bounds_changed_nets)
            wirelen_delta += (new_net_bounds.at(bc).hpwl(g.cfg) - net_bounds.at(bc).hpwl(g.cfg));
        for (auto &bc : ya.bounds_changed_nets)
            if (xa.already_bounds_changed.at(bc) == NO_CHANGE)
                wirelen_delta += (new_net_bounds.at(bc).hpwl(g.cfg) - net_bounds.at(bc).hpwl(g.cfg));
        if (g.cfg.timing_driven) {
            NPNR_ASSERT(new_timing_costs.empty());
            for (auto arc : timing_changed_arcs) {
                double new_cost = g.get_timing_cost(thread_nets.at(arc.first), arc.second, &local_cell2bel);
                timing_delta += (new_cost - arc_tmg_cost.at(arc.first).at(arc.second.idx()));
                new_timing_costs.push_back(new_cost);
            }
        }
    }
    void reset_move_state()
    {
        moved_cells.clear();
        cell_rel.clear();
        for (auto &axis : axes) {
            for (auto bc : axis.bounds_changed_nets) {
                new_net_bounds.at(bc) = net_bounds.at(bc);
                axis.already_bounds_changed[bc] = NO_CHANGE;
            }
            axis.bounds_changed_nets.clear();
        }
        for (auto &arc : timing_changed_arcs) {
            already_timing_changed.at(arc.first).at(arc.second.idx()) = false;
        }
        timing_changed_arcs.clear();
        new_timing_costs.clear();
        wirelen_delta = 0;
        timing_delta = 0;
    }

    bool accept_move()
    {
        static constexpr double epsilon = 1e-20;
        double delta = g.cfg.lambda * (timing_delta / std::max<double>(epsilon, g.total_timing_cost)) +
                       (1.0 - g.cfg.lambda) * (double(wirelen_delta) / std::max<double>(epsilon, g.total_wirelen));
        return delta < 0 ||
               (g.temperature > 1e-8 && (rng.rng() / float(0x3fffffff)) <= std::exp(-delta / g.temperature));
    }

    bool add_to_move(CellInfo *cell, BelId old_bel, BelId new_bel)
    {
        if (!bounds_check(old_bel) || !bounds_check(new_bel))
            return false;
        if (!ctx->isValidBelForCellType(cell->type, new_bel))
            return false;
        NPNR_ASSERT(!moved_cells.count(cell->name));
        moved_cells[cell->name] = std::make_pair(old_bel, new_bel);
        local_cell2bel[cell->name] = new_bel;
        compute_changes_for_cell(cell, old_bel, new_bel);
        return true;
    }

    bool single_cell_swap(CellInfo *cell, BelId new_bel)
    {
        NPNR_ASSERT(moved_cells.empty());
        BelId old_bel = cell->bel;
        CellInfo *bound = ctx->getBoundBelCell(new_bel);
        if (bound && (bound->belStrength > STRENGTH_STRONG || bound->cluster != ClusterId()))
            return false;
        if (!add_to_move(cell, old_bel, new_bel))
            goto fail;
        if (bound && !add_to_move(bound, new_bel, old_bel))
            goto fail;
        compute_total_change();
        // SA acceptance criteria

        if (!accept_move()) {
            // SA fail
            goto fail;
        }
        // Check validity rules
        if (!bind_move())
            goto fail;
        if (!check_validity())
            goto fail;
        // Accepted!
        commit_move();
        reset_move_state();
        return true;
    fail:
        revert_move();
        reset_move_state();
        return false;
    }

    bool chain_swap(CellInfo *root_cell, BelId new_root_bel)
    {
        NPNR_ASSERT(moved_cells.empty());
        std::queue<std::pair<ClusterId, BelId>> displaced_clusters;
        pool<BelId> used_bels;
        displaced_clusters.emplace(root_cell->cluster, new_root_bel);
        while (!displaced_clusters.empty()) {
            std::vector<std::pair<CellInfo *, BelId>> dest_bels;
            auto cursor = displaced_clusters.front();
            displaced_clusters.pop();
            if (!ctx->getClusterPlacement(cursor.first, cursor.second, dest_bels))
                goto fail;
            for (const auto &db : dest_bels) {
                BelId old_bel = db.first->bel;
                if (moved_cells.count(db.first->name))
                    goto fail;
                if (!add_to_move(db.first, old_bel, db.second))
                    goto fail;
                if (used_bels.count(db.second))
                    goto fail;
                used_bels.insert(db.second);

                CellInfo *bound = ctx->getBoundBelCell(db.second);
                if (bound) {
                    if (moved_cells.count(bound->name)) {
                        // Don't move a cell multiple times in the same go
                        goto fail;
                    } else if (bound->belStrength > STRENGTH_STRONG) {
                        goto fail;
                    } else if (bound->cluster != ClusterId()) {
                        // Displace the entire cluster
                        Loc old_loc = ctx->getBelLocation(old_bel);
                        Loc bound_loc = ctx->getBelLocation(bound->bel);
                        Loc root_loc = ctx->getBelLocation(ctx->getClusterRootCell(bound->cluster)->bel);
                        BelId new_root = ctx->getBelByLocation(Loc(old_loc.x + (root_loc.x - bound_loc.x),
                                                                   old_loc.y + (root_loc.y - bound_loc.y),
                                                                   old_loc.z + (root_loc.z - bound_loc.z)));
                        if (new_root == BelId())
                            goto fail;
                        displaced_clusters.emplace(bound->cluster, new_root);
                    } else {
                        // Single cell swap
                        if (used_bels.count(old_bel))
                            goto fail;
                        used_bels.insert(old_bel);
                        if (!add_to_move(bound, bound->bel, old_bel))
                            goto fail;
                    }
                } else if (!ctx->checkBelAvail(db.second)) {
                    goto fail;
                }
            }
        }
        compute_total_change();
        // SA acceptance criteria

        if (!accept_move()) {
            // SA fail
            goto fail;
        }
        // Check validity rules
        if (!bind_move())
            goto fail;
        if (!check_validity())
            goto fail;
        // Accepted!
        commit_move();
        reset_move_state();
        return true;
    fail:
        revert_move();
        reset_move_state();
        return false;
    }

    BelId random_bel_for_cell(CellInfo *cell, int force_z = -1)
    {
        IdString targetType = cell->type;
        Loc curr_loc = ctx->getBelLocation(cell->bel);
        int count = 0;

        int dx = g.radius, dy = g.radius;
        if (cell->region != nullptr && cell->region->constr_bels) {
            dx = std::min(g.cfg.hpwl_scale_x * g.radius,
                          (g.region_bounds[cell->region->name].x1 - g.region_bounds[cell->region->name].x0) + 1);
            dy = std::min(g.cfg.hpwl_scale_y * g.radius,
                          (g.region_bounds[cell->region->name].y1 - g.region_bounds[cell->region->name].y0) + 1);
            // Clamp location to within bounds
            curr_loc.x = std::max(g.region_bounds[cell->region->name].x0, curr_loc.x);
            curr_loc.x = std::min(g.region_bounds[cell->region->name].x1, curr_loc.x);
            curr_loc.y = std::max(g.region_bounds[cell->region->name].y0, curr_loc.y);
            curr_loc.y = std::min(g.region_bounds[cell->region->name].y1, curr_loc.y);
        }

        FastBels::FastBelsData *bel_data;
        auto type_cnt = g.bels.getBelsForCellType(targetType, &bel_data);

        while (true) {
            int nx = rng.rng(2 * dx + 1) + std::max(curr_loc.x - dx, 0);
            int ny = rng.rng(2 * dy + 1) + std::max(curr_loc.y - dy, 0);
            if (type_cnt < 64)
                nx = ny = 0;
            if (nx >= int(bel_data->size()))
                continue;
            if (ny >= int(bel_data->at(nx).size()))
                continue;
            const auto &fb = bel_data->at(nx).at(ny);
            if (fb.size() == 0)
                continue;
            BelId bel = fb.at(rng.rng(int(fb.size())));
            if (!bounds_check(bel))
                continue;
            if (force_z != -1) {
                Loc loc = ctx->getBelLocation(bel);
                if (loc.z != force_z)
                    continue;
            }
            if (!cell->testRegion(bel))
                continue;
            count++;
            return bel;
        }
    }

    void run_iter()
    {
        setup_initial_state();
        n_accept = 0;
        n_move = 0;
        for (int m = 0; m < g.cfg.inner_iters; m++) {
            for (auto cell : p.cells) {
                if (cell->belStrength > STRENGTH_STRONG)
                    continue;
                if (cell->cluster != ClusterId()) {
                    if (cell != ctx->getClusterRootCell(cell->cluster))
                        continue; // only move cluster root
                    Loc old_loc = ctx->getBelLocation(cell->bel);
                    BelId new_root = random_bel_for_cell(cell, old_loc.z);
                    if (new_root == BelId() || new_root == cell->bel)
                        continue;
                    ++n_move;
                    if (chain_swap(cell, new_root))
                        ++n_accept;
                } else {
                    BelId new_bel = random_bel_for_cell(cell);
                    if (new_bel == BelId() || new_bel == cell->bel)
                        continue;
                    ++n_move;
                    if (single_cell_swap(cell, new_bel))
                        ++n_accept;
                }
            }
        }
    }
};

struct ParallelRefine
{
    Context *ctx;
    GlobalState g;
    std::vector<ThreadState> t;
    ParallelRefine(Context *ctx, ParallelRefineCfg cfg) : ctx(ctx), g(ctx, cfg)
    {
        g.flat_nets.reserve(ctx->nets.size());
        for (auto &net : ctx->nets) {
            net.second->udata = g.flat_nets.size();
            g.flat_nets.push_back(net.second.get());
        }
        // Setup per thread context
        for (int i = 0; i < cfg.threads; i++) {
            t.emplace_back(ctx, g, i);
        }
        // Setup region bounds
        for (auto &region : ctx->region) {
            Region *r = region.second.get();
            NetBB bb;
            if (r->constr_bels) {
                bb.x0 = std::numeric_limits<int>::max();
                bb.x1 = std::numeric_limits<int>::min();
                bb.y0 = std::numeric_limits<int>::max();
                bb.y1 = std::numeric_limits<int>::min();
                for (auto bel : r->bels) {
                    Loc loc = ctx->getBelLocation(bel);
                    bb.x0 = std::min(bb.x0, loc.x);
                    bb.x1 = std::max(bb.x1, loc.x);
                    bb.y0 = std::min(bb.y0, loc.y);
                    bb.y1 = std::max(bb.y1, loc.y);
                }
            } else {
                bb.x0 = 0;
                bb.y0 = 0;
                bb.x1 = ctx->getGridDimX();
                bb.y1 = ctx->getGridDimY();
            }
            g.region_bounds[r->name] = bb;
        }
        // Setup fast bels map
        pool<IdString> cell_types_in_use;
        for (auto &cell : ctx->cells) {
            IdString cell_type = cell.second->type;
            cell_types_in_use.insert(cell_type);
        }

        for (auto cell_type : cell_types_in_use) {
            g.bels.addCellType(cell_type);
        }
    };
    std::vector<Partition> parts;
    void do_partition()
    {
        parts.clear();
        parts.emplace_back(ctx);
        bool yaxis = false;
        while (parts.size() < t.size()) {
            std::vector<Partition> next(parts.size() * 2);
            for (size_t i = 0; i < parts.size(); i++) {
                // Randomly permute pivot every iteration so we get different thread boundaries
                const float delta = 0.1;
                float pivot = (0.5 - (delta / 2)) + (delta / 2) * (ctx->rng(10000) / 10000.0f);
                parts.at(i).split(ctx, yaxis, pivot, next.at(i * 2), next.at(i * 2 + 1));
            }
            std::swap(parts, next);
            yaxis = !yaxis;
        }

        NPNR_ASSERT(parts.size() == t.size());
        // TODO: thread pool to make this worthwhile...
        std::vector<std::thread> workers;
        for (size_t i = 0; i < t.size(); i++) {
            workers.emplace_back([i, this]() { t.at(i).set_partition(parts.at(i)); });
        }
        for (auto &w : workers)
            w.join();
    }

    void update_global_costs()
    {
        g.last_bounds.resize(g.flat_nets.size());
        g.last_tmg_costs.resize(g.flat_nets.size());
        g.total_wirelen = 0;
        g.total_timing_cost = 0;
        for (size_t i = 0; i < g.flat_nets.size(); i++) {
            NetInfo *ni = g.flat_nets.at(i);
            if (g.skip_net(ni))
                continue;
            g.last_bounds.at(i) = NetBB::compute(ctx, ni);
            g.total_wirelen += g.last_bounds.at(i).hpwl(g.cfg);
            if (!g.timing_skip_net(ni)) {
                auto &tc = g.last_tmg_costs.at(i);
                tc.resize(ni->users.capacity());
                for (auto usr : ni->users.enumerate()) {
                    tc.at(usr.index.idx()) = g.get_timing_cost(ni, usr.index);
                    g.total_timing_cost += tc.at(usr.index.idx());
                }
            }
        }
    }
    void run()
    {

        ScopeLock<Context> lock(ctx);
        auto refine_start = std::chrono::high_resolution_clock::now();

        g.tmg.setup_only = true;
        g.tmg.setup();
        do_partition();
        log_info("Running parallel refinement with %d threads.\n", int(t.size()));
        int iter = 1;
        bool done = false;
        update_global_costs();
        double avg_wirelen = g.total_wirelen;
        wirelen_t min_wirelen = g.total_wirelen;
        while (true) {
            if (iter > 1) {
                if (g.total_wirelen >= min_wirelen) {
                    done = true;
                } else if (g.total_wirelen < min_wirelen) {
                    min_wirelen = g.total_wirelen;
                }
                int n_accept = 0, n_move = 0;
                for (auto &t_data : t) {
                    n_accept += t_data.n_accept;
                    n_move += t_data.n_move;
                }
                double r_accept = n_accept / double(n_move);
                if (g.total_wirelen < (0.95 * avg_wirelen) && g.total_wirelen > 0) {
                    avg_wirelen = 0.8 * avg_wirelen + 0.2 * g.total_wirelen;
                } else {
                    if (r_accept > 0.15 && g.radius > 1) {
                        g.temperature *= 0.95;
                    } else {
                        g.temperature *= 0.8;
                    }
                }
                if ((iter % 10) == 0 && g.radius > 1)
                    --g.radius;
            }

            if ((iter == 1) || ((iter % 5) == 0) || done)
                log_info("  at iteration #%d: temp = %f, timing cost = "
                         "%.0f, wirelen = %.0f\n",
                         iter, g.temperature, double(g.total_timing_cost), double(g.total_wirelen));

            if (done)
                break;

            do_partition();

            std::vector<std::thread> workers;
            workers.reserve(t.size());
            for (int j = 0; j < int(t.size()); j++)
                workers.emplace_back([this, j]() { t.at(j).run_iter(); });
            for (auto &w : workers)
                w.join();
            g.tmg.run();
            update_global_costs();
            iter++;
            ctx->yield();
        }
        auto refine_end = std::chrono::high_resolution_clock::now();
        log_info("Placement refine time %.02fs\n", std::chrono::duration<float>(refine_end - refine_start).count());
    }
};
} // namespace

ParallelRefineCfg::ParallelRefineCfg(Context *ctx)
{
    timing_driven = ctx->setting<bool>("timing_driven");
    threads = ctx->setting<int>("threads", 8);
    // snap to nearest power of two; and minimum thread size
    int actual_threads = 1;
    while ((actual_threads * 2) <= threads && (int(ctx->cells.size()) / (actual_threads * 2)) >= min_thread_size)
        actual_threads *= 2;
    threads = actual_threads;
    hpwl_scale_x = 1;
    hpwl_scale_y = 1;
}

bool parallel_refine(Context *ctx, ParallelRefineCfg cfg)
{
    // TODO
    ParallelRefine refine(ctx, cfg);
    refine.run();
    timing_analysis(ctx);
    return true;
}

NEXTPNR_NAMESPACE_END

#else /* !defined(__wasm) */

NEXTPNR_NAMESPACE_BEGIN

bool parallel_refine(Context *ctx, ParallelRefineCfg cfg) { log_abort(); }

NEXTPNR_NAMESPACE_END

#endif