1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
|
/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 David Shah <david@symbioticeda.com>
* Copyright (C) 2018 Eddie Hung <eddieh@ece.ubc.ca>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "timing.h"
#include <algorithm>
#include <boost/range/adaptor/reversed.hpp>
#include <deque>
#include <map>
#include <unordered_map>
#include <utility>
#include "log.h"
#include "util.h"
NEXTPNR_NAMESPACE_BEGIN
namespace {
struct ClockEvent
{
IdString clock;
ClockEdge edge;
bool operator==(const ClockEvent &other) const { return clock == other.clock && edge == other.edge; }
};
struct ClockPair
{
ClockEvent start, end;
bool operator==(const ClockPair &other) const { return start == other.start && end == other.end; }
};
} // namespace
NEXTPNR_NAMESPACE_END
namespace std {
template <> struct hash<NEXTPNR_NAMESPACE_PREFIX ClockEvent>
{
std::size_t operator()(const NEXTPNR_NAMESPACE_PREFIX ClockEvent &obj) const noexcept
{
std::size_t seed = 0;
boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX IdString>()(obj.clock));
boost::hash_combine(seed, hash<int>()(int(obj.edge)));
return seed;
}
};
template <> struct hash<NEXTPNR_NAMESPACE_PREFIX ClockPair>
{
std::size_t operator()(const NEXTPNR_NAMESPACE_PREFIX ClockPair &obj) const noexcept
{
std::size_t seed = 0;
boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX ClockEvent>()(obj.start));
boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX ClockEvent>()(obj.start));
return seed;
}
};
} // namespace std
NEXTPNR_NAMESPACE_BEGIN
typedef std::vector<const PortRef *> PortRefVector;
typedef std::map<int, unsigned> DelayFrequency;
struct CriticalPath
{
PortRefVector ports;
delay_t path_delay;
delay_t path_period;
};
typedef std::unordered_map<ClockPair, CriticalPath> CriticalPathMap;
typedef std::unordered_map<IdString, NetCriticalityInfo> NetCriticalityMap;
struct Timing
{
Context *ctx;
bool net_delays;
bool update;
delay_t min_slack;
CriticalPathMap *crit_path;
DelayFrequency *slack_histogram;
NetCriticalityMap *net_crit;
IdString async_clock;
struct TimingData
{
TimingData() : max_arrival(), max_path_length(), min_remaining_budget() {}
TimingData(delay_t max_arrival) : max_arrival(max_arrival), max_path_length(), min_remaining_budget() {}
delay_t max_arrival;
unsigned max_path_length = 0;
delay_t min_remaining_budget;
bool false_startpoint = false;
std::vector<delay_t> min_required;
std::unordered_map<ClockEvent, delay_t> arrival_time;
};
Timing(Context *ctx, bool net_delays, bool update, CriticalPathMap *crit_path = nullptr,
DelayFrequency *slack_histogram = nullptr, NetCriticalityMap *net_crit = nullptr)
: ctx(ctx), net_delays(net_delays), update(update), min_slack(1.0e12 / ctx->target_freq),
crit_path(crit_path), slack_histogram(slack_histogram), net_crit(net_crit),
async_clock(ctx->id("$async$"))
{
}
delay_t walk_paths()
{
const auto clk_period = ctx->getDelayFromNS(1.0e9 / ctx->target_freq).maxDelay();
// First, compute the topographical order of nets to walk through the circuit, assuming it is a _acyclic_ graph
// TODO(eddieh): Handle the case where it is cyclic, e.g. combinatorial loops
std::vector<NetInfo *> topographical_order;
std::unordered_map<const NetInfo *, std::unordered_map<ClockEvent, TimingData>> net_data;
// In lieu of deleting edges from the graph, simply count the number of fanins to each output port
std::unordered_map<const PortInfo *, unsigned> port_fanin;
std::vector<IdString> input_ports;
std::vector<const PortInfo *> output_ports;
for (auto &cell : ctx->cells) {
input_ports.clear();
output_ports.clear();
for (auto &port : cell.second->ports) {
if (!port.second.net)
continue;
if (port.second.type == PORT_OUT)
output_ports.push_back(&port.second);
else
input_ports.push_back(port.first);
}
for (auto o : output_ports) {
int clocks = 0;
TimingPortClass portClass = ctx->getPortTimingClass(cell.second.get(), o->name, clocks);
// If output port is influenced by a clock (e.g. FF output) then add it to the ordering as a timing
// start-point
if (portClass == TMG_REGISTER_OUTPUT) {
topographical_order.emplace_back(o->net);
for (int i = 0; i < clocks; i++) {
TimingClockingInfo clkInfo = ctx->getPortClockingInfo(cell.second.get(), o->name, i);
const NetInfo *clknet = get_net_or_empty(cell.second.get(), clkInfo.clock_port);
IdString clksig = clknet ? clknet->name : async_clock;
net_data[o->net][ClockEvent{clksig, clknet ? clkInfo.edge : RISING_EDGE}] =
TimingData{clkInfo.clockToQ.maxDelay()};
}
} else {
if (portClass == TMG_STARTPOINT || portClass == TMG_GEN_CLOCK || portClass == TMG_IGNORE) {
topographical_order.emplace_back(o->net);
TimingData td;
td.false_startpoint = (portClass == TMG_GEN_CLOCK || portClass == TMG_IGNORE);
td.max_arrival = 0;
net_data[o->net][ClockEvent{async_clock, RISING_EDGE}] = td;
}
// Don't analyse paths from a clock input to other pins - they will be considered by the
// special-case handling register input/output class ports
if (portClass == TMG_CLOCK_INPUT)
continue;
// Otherwise, for all driven input ports on this cell, if a timing arc exists between the input and
// the current output port, increment fanin counter
for (auto i : input_ports) {
DelayInfo comb_delay;
bool is_path = ctx->getCellDelay(cell.second.get(), i, o->name, comb_delay);
if (is_path)
port_fanin[o]++;
}
}
}
}
std::deque<NetInfo *> queue(topographical_order.begin(), topographical_order.end());
// Now walk the design, from the start points identified previously, building up a topographical order
while (!queue.empty()) {
const auto net = queue.front();
queue.pop_front();
for (auto &usr : net->users) {
int user_clocks;
TimingPortClass usrClass = ctx->getPortTimingClass(usr.cell, usr.port, user_clocks);
if (usrClass == TMG_IGNORE || usrClass == TMG_CLOCK_INPUT)
continue;
for (auto &port : usr.cell->ports) {
if (port.second.type != PORT_OUT || !port.second.net)
continue;
int port_clocks;
TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, port.first, port_clocks);
// Skip if this is a clocked output (but allow non-clocked ones)
if (portClass == TMG_REGISTER_OUTPUT || portClass == TMG_STARTPOINT || portClass == TMG_IGNORE ||
portClass == TMG_GEN_CLOCK)
continue;
DelayInfo comb_delay;
bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay);
if (!is_path)
continue;
// Decrement the fanin count, and only add to topographical order if all its fanins have already
// been visited
auto it = port_fanin.find(&port.second);
NPNR_ASSERT(it != port_fanin.end());
if (--it->second == 0) {
topographical_order.emplace_back(port.second.net);
queue.emplace_back(port.second.net);
port_fanin.erase(it);
}
}
}
}
// Sanity check to ensure that all ports where fanins were recorded were indeed visited
if (!port_fanin.empty() && !bool_or_default(ctx->settings, ctx->id("timing/ignoreLoops"), false)) {
for (auto fanin : port_fanin) {
NetInfo *net = fanin.first->net;
if (net != nullptr) {
log_info(" remaining fanin includes %s (net %s)\n", fanin.first->name.c_str(ctx),
net->name.c_str(ctx));
if (net->driver.cell != nullptr)
log_info(" driver = %s.%s\n", net->driver.cell->name.c_str(ctx),
net->driver.port.c_str(ctx));
for (auto net_user : net->users)
log_info(" user: %s.%s\n", net_user.cell->name.c_str(ctx), net_user.port.c_str(ctx));
} else {
log_info(" remaining fanin includes %s (no net)\n", fanin.first->name.c_str(ctx));
}
}
if (ctx->force)
log_warning("timing analysis failed due to presence of combinatorial loops, incomplete specification "
"of timing ports, etc.\n");
else
log_error("timing analysis failed due to presence of combinatorial loops, incomplete specification of "
"timing ports, etc.\n");
}
// Go forwards topographically to find the maximum arrival time and max path length for each net
for (auto net : topographical_order) {
if (!net_data.count(net))
continue;
auto &nd_map = net_data.at(net);
for (auto &startdomain : nd_map) {
ClockEvent start_clk = startdomain.first;
auto &nd = startdomain.second;
if (nd.false_startpoint)
continue;
const auto net_arrival = nd.max_arrival;
const auto net_length_plus_one = nd.max_path_length + 1;
nd.min_remaining_budget = clk_period;
for (auto &usr : net->users) {
int port_clocks;
TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, port_clocks);
auto net_delay = net_delays ? ctx->getNetinfoRouteDelay(net, usr) : delay_t();
auto usr_arrival = net_arrival + net_delay;
if (portClass == TMG_ENDPOINT || portClass == TMG_IGNORE || portClass == TMG_CLOCK_INPUT) {
// Skip
} else {
auto budget_override = ctx->getBudgetOverride(net, usr, net_delay);
// Iterate over all output ports on the same cell as the sink
for (auto port : usr.cell->ports) {
if (port.second.type != PORT_OUT || !port.second.net)
continue;
DelayInfo comb_delay;
// Look up delay through this path
bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay);
if (!is_path)
continue;
auto &data = net_data[port.second.net][start_clk];
auto &arrival = data.max_arrival;
arrival = std::max(arrival, usr_arrival + comb_delay.maxDelay());
if (!budget_override) { // Do not increment path length if budget overriden since it doesn't
// require a share of the slack
auto &path_length = data.max_path_length;
path_length = std::max(path_length, net_length_plus_one);
}
}
}
}
}
}
std::unordered_map<ClockPair, std::pair<delay_t, NetInfo *>> crit_nets;
// Now go backwards topographically to determine the minimum path slack, and to distribute all path slack evenly
// between all nets on the path
for (auto net : boost::adaptors::reverse(topographical_order)) {
if (!net_data.count(net))
continue;
auto &nd_map = net_data.at(net);
for (auto &startdomain : nd_map) {
auto &nd = startdomain.second;
// Ignore false startpoints
if (nd.false_startpoint)
continue;
const delay_t net_length_plus_one = nd.max_path_length + 1;
auto &net_min_remaining_budget = nd.min_remaining_budget;
for (auto &usr : net->users) {
auto net_delay = net_delays ? ctx->getNetinfoRouteDelay(net, usr) : delay_t();
auto budget_override = ctx->getBudgetOverride(net, usr, net_delay);
int port_clocks;
TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, port_clocks);
if (portClass == TMG_REGISTER_INPUT || portClass == TMG_ENDPOINT) {
auto process_endpoint = [&](IdString clksig, ClockEdge edge, delay_t setup) {
const auto net_arrival = nd.max_arrival;
const auto endpoint_arrival = net_arrival + net_delay + setup;
delay_t period;
// Set default period
if (edge == startdomain.first.edge) {
period = clk_period;
} else {
period = clk_period / 2;
}
if (clksig != async_clock) {
if (ctx->nets.at(clksig)->clkconstr) {
if (edge == startdomain.first.edge) {
// same edge
period = ctx->nets.at(clksig)->clkconstr->period.minDelay();
} else if (edge == RISING_EDGE) {
// falling -> rising
period = ctx->nets.at(clksig)->clkconstr->low.minDelay();
} else if (edge == FALLING_EDGE) {
// rising -> falling
period = ctx->nets.at(clksig)->clkconstr->high.minDelay();
}
}
}
auto path_budget = period - endpoint_arrival;
if (update) {
auto budget_share = budget_override ? 0 : path_budget / net_length_plus_one;
usr.budget = std::min(usr.budget, net_delay + budget_share);
net_min_remaining_budget =
std::min(net_min_remaining_budget, path_budget - budget_share);
}
if (path_budget < min_slack)
min_slack = path_budget;
if (slack_histogram) {
int slack_ps = ctx->getDelayNS(path_budget) * 1000;
(*slack_histogram)[slack_ps]++;
}
ClockEvent dest_ev{clksig, edge};
ClockPair clockPair{startdomain.first, dest_ev};
nd.arrival_time[dest_ev] = std::max(nd.arrival_time[dest_ev], endpoint_arrival);
if (crit_path) {
if (!crit_nets.count(clockPair) || crit_nets.at(clockPair).first < endpoint_arrival) {
crit_nets[clockPair] = std::make_pair(endpoint_arrival, net);
(*crit_path)[clockPair].path_delay = endpoint_arrival;
(*crit_path)[clockPair].path_period = period;
(*crit_path)[clockPair].ports.clear();
(*crit_path)[clockPair].ports.push_back(&usr);
}
}
};
if (portClass == TMG_REGISTER_INPUT) {
for (int i = 0; i < port_clocks; i++) {
TimingClockingInfo clkInfo = ctx->getPortClockingInfo(usr.cell, usr.port, i);
const NetInfo *clknet = get_net_or_empty(usr.cell, clkInfo.clock_port);
IdString clksig = clknet ? clknet->name : async_clock;
process_endpoint(clksig, clknet ? clkInfo.edge : RISING_EDGE, clkInfo.setup.maxDelay());
}
} else {
process_endpoint(async_clock, RISING_EDGE, 0);
}
} else if (update) {
// Iterate over all output ports on the same cell as the sink
for (const auto &port : usr.cell->ports) {
if (port.second.type != PORT_OUT || !port.second.net)
continue;
DelayInfo comb_delay;
bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay);
if (!is_path)
continue;
if (net_data.count(port.second.net) &&
net_data.at(port.second.net).count(startdomain.first)) {
auto path_budget =
net_data.at(port.second.net).at(startdomain.first).min_remaining_budget;
auto budget_share = budget_override ? 0 : path_budget / net_length_plus_one;
usr.budget = std::min(usr.budget, net_delay + budget_share);
net_min_remaining_budget =
std::min(net_min_remaining_budget, path_budget - budget_share);
}
}
}
}
}
}
if (crit_path) {
// Walk backwards from the most critical net
for (auto crit_pair : crit_nets) {
NetInfo *crit_net = crit_pair.second.second;
auto &cp_ports = (*crit_path)[crit_pair.first].ports;
while (crit_net) {
const PortInfo *crit_ipin = nullptr;
delay_t max_arrival = std::numeric_limits<delay_t>::min();
// Look at all input ports on its driving cell
for (const auto &port : crit_net->driver.cell->ports) {
if (port.second.type != PORT_IN || !port.second.net)
continue;
DelayInfo comb_delay;
bool is_path =
ctx->getCellDelay(crit_net->driver.cell, port.first, crit_net->driver.port, comb_delay);
if (!is_path)
continue;
// If input port is influenced by a clock, skip
int port_clocks;
TimingPortClass portClass =
ctx->getPortTimingClass(crit_net->driver.cell, port.first, port_clocks);
if (portClass == TMG_CLOCK_INPUT || portClass == TMG_ENDPOINT || portClass == TMG_IGNORE ||
portClass == TMG_REGISTER_INPUT)
continue;
// And find the fanin net with the latest arrival time
if (net_data.count(port.second.net) &&
net_data.at(port.second.net).count(crit_pair.first.start)) {
auto net_arrival = net_data.at(port.second.net).at(crit_pair.first.start).max_arrival;
if (net_delays) {
for (auto &user : port.second.net->users)
if (user.port == port.first && user.cell == crit_net->driver.cell) {
net_arrival += ctx->getNetinfoRouteDelay(port.second.net, user);
break;
}
}
net_arrival += comb_delay.maxDelay();
if (net_arrival > max_arrival) {
max_arrival = net_arrival;
crit_ipin = &port.second;
}
}
}
if (!crit_ipin)
break;
// Now convert PortInfo* into a PortRef*
for (auto &usr : crit_ipin->net->users) {
if (usr.cell->name == crit_net->driver.cell->name && usr.port == crit_ipin->name) {
cp_ports.push_back(&usr);
break;
}
}
crit_net = crit_ipin->net;
}
std::reverse(cp_ports.begin(), cp_ports.end());
}
}
if (net_crit) {
NPNR_ASSERT(crit_path);
// Go through in reverse topographical order to set required times
for (auto net : boost::adaptors::reverse(topographical_order)) {
if (!net_data.count(net))
continue;
auto &nd_map = net_data.at(net);
for (auto &startdomain : nd_map) {
auto &nd = startdomain.second;
if (nd.false_startpoint)
continue;
if (startdomain.first.clock == async_clock)
continue;
if (nd.min_required.empty())
nd.min_required.resize(net->users.size(), std::numeric_limits<delay_t>::max());
delay_t net_min_required = std::numeric_limits<delay_t>::max();
for (size_t i = 0; i < net->users.size(); i++) {
auto &usr = net->users.at(i);
auto net_delay = ctx->getNetinfoRouteDelay(net, usr);
int port_clocks;
TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, port_clocks);
if (portClass == TMG_REGISTER_INPUT || portClass == TMG_ENDPOINT) {
auto process_endpoint = [&](IdString clksig, ClockEdge edge, delay_t setup) {
delay_t period;
// Set default period
if (edge == startdomain.first.edge) {
period = clk_period;
} else {
period = clk_period / 2;
}
if (clksig != async_clock) {
if (ctx->nets.at(clksig)->clkconstr) {
if (edge == startdomain.first.edge) {
// same edge
period = ctx->nets.at(clksig)->clkconstr->period.minDelay();
} else if (edge == RISING_EDGE) {
// falling -> rising
period = ctx->nets.at(clksig)->clkconstr->low.minDelay();
} else if (edge == FALLING_EDGE) {
// rising -> falling
period = ctx->nets.at(clksig)->clkconstr->high.minDelay();
}
}
}
nd.min_required.at(i) = std::min(period - setup, nd.min_required.at(i));
};
if (portClass == TMG_REGISTER_INPUT) {
for (int j = 0; j < port_clocks; j++) {
TimingClockingInfo clkInfo = ctx->getPortClockingInfo(usr.cell, usr.port, j);
const NetInfo *clknet = get_net_or_empty(usr.cell, clkInfo.clock_port);
IdString clksig = clknet ? clknet->name : async_clock;
process_endpoint(clksig, clknet ? clkInfo.edge : RISING_EDGE,
clkInfo.setup.maxDelay());
}
} else {
process_endpoint(async_clock, RISING_EDGE, 0);
}
}
net_min_required = std::min(net_min_required, nd.min_required.at(i) - net_delay);
}
PortRef &drv = net->driver;
if (drv.cell == nullptr)
continue;
for (const auto &port : drv.cell->ports) {
if (port.second.type != PORT_IN || !port.second.net)
continue;
DelayInfo comb_delay;
bool is_path = ctx->getCellDelay(drv.cell, port.first, drv.port, comb_delay);
if (!is_path)
continue;
int cc;
auto pclass = ctx->getPortTimingClass(drv.cell, port.first, cc);
if (pclass != TMG_COMB_INPUT)
continue;
NetInfo *sink_net = port.second.net;
if (net_data.count(sink_net) && net_data.at(sink_net).count(startdomain.first)) {
auto &sink_nd = net_data.at(sink_net).at(startdomain.first);
if (sink_nd.min_required.empty())
sink_nd.min_required.resize(sink_net->users.size(),
std::numeric_limits<delay_t>::max());
for (size_t i = 0; i < sink_net->users.size(); i++) {
auto &user = sink_net->users.at(i);
if (user.cell == drv.cell && user.port == port.first) {
sink_nd.min_required.at(i) = net_min_required - comb_delay.maxDelay();
break;
}
}
}
}
}
}
std::unordered_map<ClockEvent, delay_t> worst_slack;
// Assign slack values
for (auto &net_entry : net_data) {
const NetInfo *net = net_entry.first;
for (auto &startdomain : net_entry.second) {
auto &nd = startdomain.second;
if (startdomain.first.clock == async_clock)
continue;
if (nd.min_required.empty())
continue;
auto &nc = (*net_crit)[net->name];
if (nc.slack.empty())
nc.slack.resize(net->users.size(), std::numeric_limits<delay_t>::max());
#if 0
if (ctx->debug)
log_info("Net %s cd %s\n", net->name.c_str(ctx), startdomain.first.clock.c_str(ctx));
#endif
for (size_t i = 0; i < net->users.size(); i++) {
delay_t slack = nd.min_required.at(i) -
(nd.max_arrival + ctx->getNetinfoRouteDelay(net, net->users.at(i)));
#if 0
if (ctx->debug)
log_info(" user %s.%s required %.02fns arrival %.02f route %.02f slack %.02f\n",
net->users.at(i).cell->name.c_str(ctx), net->users.at(i).port.c_str(ctx),
ctx->getDelayNS(nd.min_required.at(i)), ctx->getDelayNS(nd.max_arrival),
ctx->getDelayNS(ctx->getNetinfoRouteDelay(net, net->users.at(i))), ctx->getDelayNS(slack));
#endif
if (worst_slack.count(startdomain.first))
worst_slack.at(startdomain.first) = std::min(worst_slack.at(startdomain.first), slack);
else
worst_slack[startdomain.first] = slack;
nc.slack.at(i) = slack;
}
if (ctx->debug)
log_break();
}
}
// Assign criticality values
for (auto &net_entry : net_data) {
const NetInfo *net = net_entry.first;
for (auto &startdomain : net_entry.second) {
if (startdomain.first.clock == async_clock)
continue;
auto &nd = startdomain.second;
if (nd.min_required.empty())
continue;
auto &nc = (*net_crit)[net->name];
if (nc.slack.empty())
continue;
if (nc.criticality.empty())
nc.criticality.resize(net->users.size(), 0);
// Only consider intra-clock paths for criticality
if (!crit_path->count(ClockPair{startdomain.first, startdomain.first}))
continue;
delay_t dmax = crit_path->at(ClockPair{startdomain.first, startdomain.first}).path_delay;
for (size_t i = 0; i < net->users.size(); i++) {
float criticality = 1.0f - (float(nc.slack.at(i) - worst_slack.at(startdomain.first)) / dmax);
nc.criticality.at(i) = criticality;
}
nc.max_path_length = nd.max_path_length;
nc.cd_worst_slack = worst_slack.at(startdomain.first);
}
}
#if 0
if (ctx->debug) {
for (auto &nc : *net_crit) {
NetInfo *net = ctx->nets.at(nc.first).get();
log_info("Net %s maxlen %d worst_slack %.02fns: \n", nc.first.c_str(ctx), nc.second.max_path_length,
ctx->getDelayNS(nc.second.cd_worst_slack));
if (!nc.second.criticality.empty() && !nc.second.slack.empty()) {
for (size_t i = 0; i < net->users.size(); i++) {
log_info(" user %s.%s slack %.02fns crit %.03f\n", net->users.at(i).cell->name.c_str(ctx),
net->users.at(i).port.c_str(ctx), ctx->getDelayNS(nc.second.slack.at(i)),
nc.second.criticality.at(i));
}
}
log_break();
}
}
#endif
}
return min_slack;
}
void assign_budget()
{
// Clear delays to a very high value first
for (auto &net : ctx->nets) {
for (auto &usr : net.second->users) {
usr.budget = std::numeric_limits<delay_t>::max();
}
}
walk_paths();
}
};
void assign_budget(Context *ctx, bool quiet)
{
if (!quiet) {
log_break();
log_info("Annotating ports with timing budgets for target frequency %.2f MHz\n", ctx->target_freq / 1e6);
}
Timing timing(ctx, ctx->slack_redist_iter > 0 /* net_delays */, true /* update */);
timing.assign_budget();
if (!quiet || ctx->verbose) {
for (auto &net : ctx->nets) {
for (auto &user : net.second->users) {
// Post-update check
if (!ctx->auto_freq && user.budget < 0)
log_info("port %s.%s, connected to net '%s', has negative "
"timing budget of %fns\n",
user.cell->name.c_str(ctx), user.port.c_str(ctx), net.first.c_str(ctx),
ctx->getDelayNS(user.budget));
else if (ctx->debug)
log_info("port %s.%s, connected to net '%s', has "
"timing budget of %fns\n",
user.cell->name.c_str(ctx), user.port.c_str(ctx), net.first.c_str(ctx),
ctx->getDelayNS(user.budget));
}
}
}
// For slack redistribution, if user has not specified a frequency dynamically adjust the target frequency to be the
// currently achieved maximum
if (ctx->auto_freq && ctx->slack_redist_iter > 0) {
delay_t default_slack = delay_t((1.0e9 / ctx->getDelayNS(1)) / ctx->target_freq);
ctx->target_freq = 1.0e9 / ctx->getDelayNS(default_slack - timing.min_slack);
if (ctx->verbose)
log_info("minimum slack for this assign = %.2f ns, target Fmax for next "
"update = %.2f MHz\n",
ctx->getDelayNS(timing.min_slack), ctx->target_freq / 1e6);
}
if (!quiet)
log_info("Checksum: 0x%08x\n", ctx->checksum());
}
void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool print_path, bool warn_on_failure)
{
auto format_event = [ctx](const ClockEvent &e, int field_width = 0) {
std::string value;
if (e.clock == ctx->id("$async$"))
value = std::string("<async>");
else
value = (e.edge == FALLING_EDGE ? std::string("negedge ") : std::string("posedge ")) + e.clock.str(ctx);
if (int(value.length()) < field_width)
value.insert(value.length(), field_width - int(value.length()), ' ');
return value;
};
CriticalPathMap crit_paths;
DelayFrequency slack_histogram;
Timing timing(ctx, true /* net_delays */, false /* update */, (print_path || print_fmax) ? &crit_paths : nullptr,
print_histogram ? &slack_histogram : nullptr);
timing.walk_paths();
std::map<IdString, std::pair<ClockPair, CriticalPath>> clock_reports;
std::map<IdString, double> clock_fmax;
std::vector<ClockPair> xclock_paths;
std::set<IdString> empty_clocks; // set of clocks with no interior paths
if (print_path || print_fmax) {
for (auto path : crit_paths) {
const ClockEvent &a = path.first.start;
const ClockEvent &b = path.first.end;
empty_clocks.insert(a.clock);
empty_clocks.insert(b.clock);
}
for (auto path : crit_paths) {
const ClockEvent &a = path.first.start;
const ClockEvent &b = path.first.end;
if (a.clock != b.clock || a.clock == ctx->id("$async$"))
continue;
double Fmax;
empty_clocks.erase(a.clock);
if (a.edge == b.edge)
Fmax = 1000 / ctx->getDelayNS(path.second.path_delay);
else
Fmax = 500 / ctx->getDelayNS(path.second.path_delay);
if (!clock_fmax.count(a.clock) || Fmax < clock_fmax.at(a.clock)) {
clock_reports[a.clock] = path;
clock_fmax[a.clock] = Fmax;
}
}
for (auto &path : crit_paths) {
const ClockEvent &a = path.first.start;
const ClockEvent &b = path.first.end;
if (a.clock == b.clock && a.clock != ctx->id("$async$"))
continue;
xclock_paths.push_back(path.first);
}
if (clock_reports.empty()) {
log_warning("No clocks found in design");
}
std::sort(xclock_paths.begin(), xclock_paths.end(), [ctx](const ClockPair &a, const ClockPair &b) {
if (a.start.clock.str(ctx) < b.start.clock.str(ctx))
return true;
if (a.start.clock.str(ctx) > b.start.clock.str(ctx))
return false;
if (a.start.edge < b.start.edge)
return true;
if (a.start.edge > b.start.edge)
return false;
if (a.end.clock.str(ctx) < b.end.clock.str(ctx))
return true;
if (a.end.clock.str(ctx) > b.end.clock.str(ctx))
return false;
if (a.end.edge < b.end.edge)
return true;
return false;
});
}
if (print_path) {
auto print_path_report = [ctx](ClockPair &clocks, PortRefVector &crit_path) {
delay_t total = 0, logic_total = 0, route_total = 0;
auto &front = crit_path.front();
auto &front_port = front->cell->ports.at(front->port);
auto &front_driver = front_port.net->driver;
int port_clocks;
auto portClass = ctx->getPortTimingClass(front_driver.cell, front_driver.port, port_clocks);
IdString last_port = front_driver.port;
int clock_start = -1;
if (portClass == TMG_REGISTER_OUTPUT) {
for (int i = 0; i < port_clocks; i++) {
TimingClockingInfo clockInfo = ctx->getPortClockingInfo(front_driver.cell, front_driver.port, i);
const NetInfo *clknet = get_net_or_empty(front_driver.cell, clockInfo.clock_port);
if (clknet != nullptr && clknet->name == clocks.start.clock &&
clockInfo.edge == clocks.start.edge) {
last_port = clockInfo.clock_port;
clock_start = i;
break;
}
}
}
log_info("curr total\n");
for (auto sink : crit_path) {
auto sink_cell = sink->cell;
auto &port = sink_cell->ports.at(sink->port);
auto net = port.net;
auto &driver = net->driver;
auto driver_cell = driver.cell;
DelayInfo comb_delay;
if (clock_start != -1) {
auto clockInfo = ctx->getPortClockingInfo(driver_cell, driver.port, clock_start);
comb_delay = clockInfo.clockToQ;
clock_start = -1;
} else if (last_port == driver.port) {
// Case where we start with a STARTPOINT etc
comb_delay = ctx->getDelayFromNS(0);
} else {
ctx->getCellDelay(driver_cell, last_port, driver.port, comb_delay);
}
total += comb_delay.maxDelay();
logic_total += comb_delay.maxDelay();
log_info("%4.1f %4.1f Source %s.%s\n", ctx->getDelayNS(comb_delay.maxDelay()), ctx->getDelayNS(total),
driver_cell->name.c_str(ctx), driver.port.c_str(ctx));
auto net_delay = ctx->getNetinfoRouteDelay(net, *sink);
total += net_delay;
route_total += net_delay;
auto driver_loc = ctx->getBelLocation(driver_cell->bel);
auto sink_loc = ctx->getBelLocation(sink_cell->bel);
log_info("%4.1f %4.1f Net %s budget %f ns (%d,%d) -> (%d,%d)\n", ctx->getDelayNS(net_delay),
ctx->getDelayNS(total), net->name.c_str(ctx), ctx->getDelayNS(sink->budget), driver_loc.x,
driver_loc.y, sink_loc.x, sink_loc.y);
log_info(" Sink %s.%s\n", sink_cell->name.c_str(ctx), sink->port.c_str(ctx));
if (ctx->verbose) {
auto driver_wire = ctx->getNetinfoSourceWire(net);
auto sink_wire = ctx->getNetinfoSinkWire(net, *sink);
log_info(" prediction: %f ns estimate: %f ns\n",
ctx->getDelayNS(ctx->predictDelay(net, *sink)),
ctx->getDelayNS(ctx->estimateDelay(driver_wire, sink_wire)));
auto cursor = sink_wire;
delay_t delay;
while (driver_wire != cursor) {
auto it = net->wires.find(cursor);
assert(it != net->wires.end());
auto pip = it->second.pip;
NPNR_ASSERT(pip != PipId());
delay = ctx->getPipDelay(pip).maxDelay();
log_info(" %1.3f %s\n", ctx->getDelayNS(delay),
ctx->getPipName(pip).c_str(ctx));
cursor = ctx->getPipSrcWire(pip);
}
}
last_port = sink->port;
}
int clockCount = 0;
auto sinkClass = ctx->getPortTimingClass(crit_path.back()->cell, crit_path.back()->port, clockCount);
if (sinkClass == TMG_REGISTER_INPUT && clockCount > 0) {
auto sinkClockInfo = ctx->getPortClockingInfo(crit_path.back()->cell, crit_path.back()->port, 0);
delay_t setup = sinkClockInfo.setup.maxDelay();
total += setup;
logic_total += setup;
log_info("%4.1f %4.1f Setup %s.%s\n", ctx->getDelayNS(setup), ctx->getDelayNS(total),
crit_path.back()->cell->name.c_str(ctx), crit_path.back()->port.c_str(ctx));
}
log_info("%.1f ns logic, %.1f ns routing\n", ctx->getDelayNS(logic_total), ctx->getDelayNS(route_total));
};
for (auto &clock : clock_reports) {
log_break();
std::string start =
clock.second.first.start.edge == FALLING_EDGE ? std::string("negedge") : std::string("posedge");
std::string end =
clock.second.first.end.edge == FALLING_EDGE ? std::string("negedge") : std::string("posedge");
log_info("Critical path report for clock '%s' (%s -> %s):\n", clock.first.c_str(ctx), start.c_str(),
end.c_str());
auto &crit_path = clock.second.second.ports;
print_path_report(clock.second.first, crit_path);
}
for (auto &xclock : xclock_paths) {
log_break();
std::string start = format_event(xclock.start);
std::string end = format_event(xclock.end);
log_info("Critical path report for cross-domain path '%s' -> '%s':\n", start.c_str(), end.c_str());
auto &crit_path = crit_paths.at(xclock).ports;
print_path_report(xclock, crit_path);
}
}
if (print_fmax) {
log_break();
unsigned max_width = 0;
for (auto &clock : clock_reports)
max_width = std::max<unsigned>(max_width, clock.first.str(ctx).size());
for (auto &clock : clock_reports) {
const auto &clock_name = clock.first.str(ctx);
const int width = max_width - clock_name.size();
float target = ctx->target_freq / 1e6;
if (ctx->nets.at(clock.first)->clkconstr)
target = 1000 / ctx->getDelayNS(ctx->nets.at(clock.first)->clkconstr->period.minDelay());
bool passed = target < clock_fmax[clock.first];
if (!warn_on_failure || passed)
log_info("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "",
clock_name.c_str(), clock_fmax[clock.first], passed ? "PASS" : "FAIL", target);
else
log_nonfatal_error("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "",
clock_name.c_str(), clock_fmax[clock.first], passed ? "PASS" : "FAIL", target);
}
for (auto &eclock : empty_clocks) {
if (eclock != ctx->id("$async$"))
log_info("Clock '%s' has no interior paths\n", eclock.c_str(ctx));
}
log_break();
int start_field_width = 0, end_field_width = 0;
for (auto &xclock : xclock_paths) {
start_field_width = std::max((int)format_event(xclock.start).length(), start_field_width);
end_field_width = std::max((int)format_event(xclock.end).length(), end_field_width);
}
for (auto &xclock : xclock_paths) {
const ClockEvent &a = xclock.start;
const ClockEvent &b = xclock.end;
auto &path = crit_paths.at(xclock);
auto ev_a = format_event(a, start_field_width), ev_b = format_event(b, end_field_width);
log_info("Max delay %s -> %s: %0.02f ns\n", ev_a.c_str(), ev_b.c_str(), ctx->getDelayNS(path.path_delay));
}
log_break();
}
if (print_histogram && slack_histogram.size() > 0) {
unsigned num_bins = 20;
unsigned bar_width = 60;
auto min_slack = slack_histogram.begin()->first;
auto max_slack = slack_histogram.rbegin()->first;
auto bin_size = std::max<unsigned>(1, ceil((max_slack - min_slack) / float(num_bins)));
std::vector<unsigned> bins(num_bins);
unsigned max_freq = 0;
for (const auto &i : slack_histogram) {
auto &bin = bins[(i.first - min_slack) / bin_size];
bin += i.second;
max_freq = std::max(max_freq, bin);
}
bar_width = std::min(bar_width, max_freq);
log_break();
log_info("Slack histogram:\n");
log_info(" legend: * represents %d endpoint(s)\n", max_freq / bar_width);
log_info(" + represents [1,%d) endpoint(s)\n", max_freq / bar_width);
for (unsigned i = 0; i < num_bins; ++i)
log_info("[%6d, %6d) |%s%c\n", min_slack + bin_size * i, min_slack + bin_size * (i + 1),
std::string(bins[i] * bar_width / max_freq, '*').c_str(),
(bins[i] * bar_width) % max_freq > 0 ? '+' : ' ');
}
}
void get_criticalities(Context *ctx, NetCriticalityMap *net_crit)
{
CriticalPathMap crit_paths;
net_crit->clear();
Timing timing(ctx, true, true, &crit_paths, nullptr, net_crit);
timing.walk_paths();
}
NEXTPNR_NAMESPACE_END
|