1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
|
/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 Clifford Wolf <clifford@symbioticeda.com>
* Copyright (C) 2018 Serge Bazanski <q3k@symbioticeda.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "nextpnr.h"
#include "router1.h"
NEXTPNR_NAMESPACE_BEGIN
#define NUM_FUZZ_ROUTES 100000
void ice40DelayFuzzerMain(Context *ctx)
{
std::vector<WireId> srcWires, dstWires;
for (int i = 0; i < int(ctx->chip_info->wire_data.size()); i++) {
WireId wire;
wire.index = i;
switch (ctx->chip_info->wire_data[i].type) {
case WireInfoPOD::WIRE_TYPE_LUTFF_OUT:
srcWires.push_back(wire);
break;
case WireInfoPOD::WIRE_TYPE_LUTFF_IN_LUT:
dstWires.push_back(wire);
break;
default:
break;
}
}
ctx->shuffle(srcWires);
ctx->shuffle(dstWires);
int index = 0;
int cnt = 0;
while (cnt < NUM_FUZZ_ROUTES) {
if (index >= int(srcWires.size()) || index >= int(dstWires.size())) {
index = 0;
ctx->shuffle(srcWires);
ctx->shuffle(dstWires);
}
WireId src = srcWires[index];
WireId dst = dstWires[index++];
std::unordered_map<WireId, PipId> route;
#if NUM_FUZZ_ROUTES <= 1000
if (!ctx->getActualRouteDelay(src, dst, nullptr, &route, false))
continue;
#else
if (!ctx->getActualRouteDelay(src, dst, nullptr, &route, true))
continue;
#endif
WireId cursor = dst;
delay_t delay = 0;
while (1) {
delay += ctx->getWireDelay(cursor).maxDelay();
printf("%s %d %d %s %s %d %d\n", cursor == dst ? "dst" : "src",
int(ctx->chip_info->wire_data[cursor.index].x), int(ctx->chip_info->wire_data[cursor.index].y),
ctx->getWireType(cursor).c_str(ctx), ctx->nameOfWire(cursor), int(delay),
int(ctx->estimateDelay(cursor, dst)));
if (cursor == src)
break;
PipId pip = route.at(cursor);
delay += ctx->getPipDelay(pip).maxDelay();
cursor = ctx->getPipSrcWire(pip);
}
cnt++;
if (cnt % 100 == 0)
fprintf(stderr, "Fuzzed %d arcs.\n", cnt);
}
}
namespace {
struct model_params_t
{
int neighbourhood;
int model0_offset;
int model0_norm1;
int model1_offset;
int model1_norm1;
int model1_norm2;
int model1_norm3;
int model2_offset;
int model2_linear;
int model2_sqrt;
int delta_local;
int delta_lutffin;
int delta_sp4;
int delta_sp12;
static const model_params_t &get(const ArchArgs &args)
{
static const model_params_t model_hx8k = {588, 129253, 8658, 118333, 23915, -73105, 57696,
-86797, 89, 3706, -316, -575, -158, -296};
static const model_params_t model_lp8k = {867, 206236, 11043, 191910, 31074, -95972, 75739,
-309793, 30, 11056, -474, -856, -363, -536};
static const model_params_t model_up5k = {1761, 305798, 16705, 296830, 24430, -40369, 33038,
-162662, 94, 4705, -1099, -1761, -418, -838};
if (args.type == ArchArgs::HX1K || args.type == ArchArgs::HX4K || args.type == ArchArgs::HX8K)
return model_hx8k;
if (args.type == ArchArgs::LP384 || args.type == ArchArgs::LP1K || args.type == ArchArgs::LP4K ||
args.type == ArchArgs::LP8K)
return model_lp8k;
if (args.type == ArchArgs::UP3K || args.type == ArchArgs::UP5K || args.type == ArchArgs::U1K ||
args.type == ArchArgs::U2K || args.type == ArchArgs::U4K)
return model_up5k;
NPNR_ASSERT(0);
}
};
} // namespace
delay_t Arch::estimateDelay(WireId src, WireId dst) const
{
NPNR_ASSERT(src != WireId());
int x1 = chip_info->wire_data[src.index].x;
int y1 = chip_info->wire_data[src.index].y;
int z1 = chip_info->wire_data[src.index].z;
int type = chip_info->wire_data[src.index].type;
NPNR_ASSERT(dst != WireId());
int x2 = chip_info->wire_data[dst.index].x;
int y2 = chip_info->wire_data[dst.index].y;
int z2 = chip_info->wire_data[dst.index].z;
int dx = abs(x2 - x1);
int dy = abs(y2 - y1);
const model_params_t &p = model_params_t::get(args);
delay_t v = p.neighbourhood;
if (dx > 1 || dy > 1)
v = (p.model0_offset + p.model0_norm1 * (dx + dy)) / 128;
if (dx == 0 && dy == 0) {
if (type == WireInfoPOD::WIRE_TYPE_LOCAL)
v += p.delta_local;
if (type == WireInfoPOD::WIRE_TYPE_LUTFF_IN || type == WireInfoPOD::WIRE_TYPE_LUTFF_IN_LUT)
v += (z1 == z2) ? p.delta_lutffin : 0;
}
if (type == WireInfoPOD::WIRE_TYPE_SP4_V || type == WireInfoPOD::WIRE_TYPE_SP4_H)
v += p.delta_sp4;
if (type == WireInfoPOD::WIRE_TYPE_SP12_V || type == WireInfoPOD::WIRE_TYPE_SP12_H)
v += p.delta_sp12;
return v;
}
delay_t Arch::predictDelay(const NetInfo *net_info, const PortRef &sink) const
{
const auto &driver = net_info->driver;
auto driver_loc = getBelLocation(driver.cell->bel);
auto sink_loc = getBelLocation(sink.cell->bel);
if (driver.port == id_COUT) {
if (driver_loc.y == sink_loc.y)
return 0;
return 250;
}
int dx = abs(sink_loc.x - driver_loc.x);
int dy = abs(sink_loc.y - driver_loc.y);
const model_params_t &p = model_params_t::get(args);
if (dx <= 1 && dy <= 1)
return p.neighbourhood;
#if 1
// Model #0
return (p.model0_offset + p.model0_norm1 * (dx + dy)) / 128;
#else
float norm1 = dx + dy;
float dx2 = dx * dx;
float dy2 = dy * dy;
float norm2 = sqrtf(dx2 + dy2);
float dx3 = dx2 * dx;
float dy3 = dy2 * dy;
float norm3 = powf(dx3 + dy3, 1.0 / 3.0);
// Model #1
float v = p.model1_offset;
v += p.model1_norm1 * norm1;
v += p.model1_norm2 * norm2;
v += p.model1_norm3 * norm3;
v /= 128;
// Model #2
v = p.model2_offset + p.model2_linear * v + p.model2_sqrt * sqrtf(v);
v /= 128;
return v;
#endif
}
NEXTPNR_NAMESPACE_END
|