aboutsummaryrefslogtreecommitdiffstats
path: root/json/jsonwrite.cc
blob: 3d3b70e43c0ed95dbd1c81571dd985447224a8e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
/*
 *  nextpnr -- Next Generation Place and Route
 *
 *  Copyright (C) 2018  Miodrag Milanovic <miodrag@symbioticeda.com>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#include "jsonwrite.h"
#include <assert.h>
#include <fstream>
#include <iostream>
#include <iterator>
#include <log.h>
#include <map>
#include <string>
#include "nextpnr.h"
#include "version.h"

NEXTPNR_NAMESPACE_BEGIN

namespace JsonWriter {

std::string get_string(std::string str)
{
    std::string newstr = "\"";
    for (char c : str) {
        if (c == '\\')
            newstr += c;
        newstr += c;
    }
    return newstr + "\"";
}

std::string get_name(IdString name, Context *ctx) { return get_string(name.c_str(ctx)); }

void write_parameter_value(std::ostream &f, const Property &value)
{
    if (value.size() == 32 && value.is_fully_def()) {
        f << stringf("%d", value.as_int64());
    } else {
        f << get_string(value.to_string());
    }
}

void write_parameters(std::ostream &f, Context *ctx, const std::unordered_map<IdString, Property> &parameters,
                      bool for_module = false)
{
    bool first = true;
    for (auto &param : parameters) {
        f << stringf("%s\n", first ? "" : ",");
        f << stringf("        %s%s: ", for_module ? "" : "    ", get_name(param.first, ctx).c_str());
        write_parameter_value(f, param.second);
        first = false;
    }
}

struct PortGroup
{
    std::string name;
    std::vector<int> bits;
    PortType dir;
};

std::vector<PortGroup> group_ports(Context *ctx)
{
    std::vector<PortGroup> groups;
    std::unordered_map<std::string, size_t> base_to_group;
    for (auto &pair : ctx->ports) {
        std::string name = pair.second.name.str(ctx);
        if ((name.back() != ']') || (name.find('[') == std::string::npos)) {
            groups.push_back({name, {pair.first.index}, pair.second.type});
        } else {
            int off1 = int(name.find_last_of('['));
            std::string basename = name.substr(0, off1);
            int index = std::stoi(name.substr(off1 + 1, name.size() - (off1 + 2)));

            if (!base_to_group.count(basename)) {
                base_to_group[basename] = groups.size();
                groups.push_back({basename, std::vector<int>(index + 1, -1), pair.second.type});
            }

            auto &grp = groups.at(base_to_group[basename]);
            if (int(grp.bits.size()) <= index)
                grp.bits.resize(index + 1, -1);
            NPNR_ASSERT(grp.bits.at(index) == -1);
            grp.bits.at(index) = pair.second.net ? pair.second.net->name.index : pair.first.index;
        }
    }
    return groups;
};

std::string format_port_bits(const PortGroup &port)
{
    std::stringstream s;
    s << "[ ";
    bool first = true;
    for (auto bit : port.bits) {
        if (!first)
            s << ", ";
        if (bit == -1)
            s << "\"x\"";
        else
            s << bit;
        first = false;
    }
    s << " ]";
    return s.str();
}

void write_module(std::ostream &f, Context *ctx)
{
    auto val = ctx->attrs.find(ctx->id("module"));
    if (val != ctx->attrs.end())
        f << stringf("    %s: {\n", get_string(val->second.as_string()).c_str());
    else
        f << stringf("    %s: {\n", get_string("top").c_str());
    f << stringf("      \"settings\": {");
    write_parameters(f, ctx, ctx->settings, true);
    f << stringf("\n      },\n");
    f << stringf("      \"attributes\": {");
    write_parameters(f, ctx, ctx->attrs, true);
    f << stringf("\n      },\n");
    f << stringf("      \"ports\": {");

    auto ports = group_ports(ctx);
    bool first = true;
    for (auto &port : ports) {
        f << stringf("%s\n", first ? "" : ",");
        f << stringf("        %s: {\n", get_string(port.name).c_str());
        f << stringf("          \"direction\": \"%s\",\n",
                     port.dir == PORT_IN ? "input" : port.dir == PORT_INOUT ? "inout" : "output");
        f << stringf("          \"bits\": %s\n", format_port_bits(port).c_str());
        f << stringf("        }");
        first = false;
    }
    f << stringf("\n      },\n");

    f << stringf("      \"cells\": {");
    first = true;
    for (auto &pair : ctx->cells) {
        auto &c = pair.second;
        f << stringf("%s\n", first ? "" : ",");
        f << stringf("        %s: {\n", get_name(c->name, ctx).c_str());
        f << stringf("          \"hide_name\": %s,\n", c->name.c_str(ctx)[0] == '$' ? "1" : "0");
        f << stringf("          \"type\": %s,\n", get_name(c->type, ctx).c_str());
        f << stringf("          \"parameters\": {");
        write_parameters(f, ctx, c->params);
        f << stringf("\n          },\n");
        f << stringf("          \"attributes\": {");
        write_parameters(f, ctx, c->attrs);
        f << stringf("\n          },\n");
        f << stringf("          \"port_directions\": {");
        bool first2 = true;
        for (auto &conn : c->ports) {
            auto &p = conn.second;
            std::string direction = (p.type == PORT_IN) ? "input" : (p.type == PORT_OUT) ? "output" : "inout";
            f << stringf("%s\n", first2 ? "" : ",");
            f << stringf("            %s: \"%s\"", get_name(conn.first, ctx).c_str(), direction.c_str());
            first2 = false;
        }
        f << stringf("\n          },\n");
        f << stringf("          \"connections\": {");
        first2 = true;
        for (auto &conn : c->ports) {
            auto &p = conn.second;
            f << stringf("%s\n", first2 ? "" : ",");
            if (p.net)
                f << stringf("            %s: [ %d ]", get_name(conn.first, ctx).c_str(), p.net->name.index);
            else
                f << stringf("            %s: [ ]", get_name(conn.first, ctx).c_str());

            first2 = false;
        }
        f << stringf("\n          }\n");

        f << stringf("        }");
        first = false;
    }

    f << stringf("\n      },\n");

    f << stringf("      \"netnames\": {");
    first = true;
    for (auto &pair : ctx->nets) {
        auto &w = pair.second;
        f << stringf("%s\n", first ? "" : ",");
        f << stringf("        %s: {\n", get_name(w->name, ctx).c_str());
        f << stringf("          \"hide_name\": %s,\n", w->name.c_str(ctx)[0] == '$' ? "1" : "0");
        f << stringf("          \"bits\": [ %d ] ,\n", pair.first.index);
        f << stringf("          \"attributes\": {");
        write_parameters(f, ctx, w->attrs);
        f << stringf("\n          }\n");
        f << stringf("        }");
        first = false;
    }

    f << stringf("\n      }\n");
    f << stringf("    }");
}

void write_context(std::ostream &f, Context *ctx)
{
    f << stringf("{\n");
    f << stringf("  \"creator\": %s,\n",
                 get_string("Next Generation Place and Route (git sha1 " GIT_COMMIT_HASH_STR ")").c_str());
    f << stringf("  \"modules\": {\n");
    write_module(f, ctx);
    f << stringf("\n  }");
    f << stringf("\n}\n");
}

}; // End Namespace JsonWriter

bool write_json_file(std::ostream &f, std::string &filename, Context *ctx)
{
    try {
        using namespace JsonWriter;
        if (!f)
            log_error("failed to open JSON file.\n");
        write_context(f, ctx);
        log_break();
        return true;
    } catch (log_execution_error_exception) {
        return false;
    }
}

NEXTPNR_NAMESPACE_END
>.Frange = R.Frange; when Type_Vector => return L.Vbound = R.Vbound and then Are_Types_Equal (L.Vec_El, R.Vec_El); when Type_Unbounded_Vector => return Are_Types_Equal (L.Uvec_El, R.Uvec_El); when Type_Slice => return Are_Types_Equal (L.Slice_El, R.Slice_El); when Type_Array => if L.Abounds.Len /= R.Abounds.Len then return False; end if; for I in L.Abounds.D'Range loop if L.Abounds.D (I) /= R.Abounds.D (I) then return False; end if; end loop; return Are_Types_Equal (L.Arr_El, R.Arr_El); when Type_Unbounded_Array => return L.Uarr_Ndim = R.Uarr_Ndim and then Are_Types_Equal (L.Uarr_El, R.Uarr_El); when Type_Record => if L.Rec.Len /= R.Rec.Len then return False; end if; for I in L.Rec.E'Range loop if not Are_Types_Equal (L.Rec.E (I).Typ, R.Rec.E (I).Typ) then return False; end if; end loop; return True; when Type_Access => return Are_Types_Equal (L.Acc_Acc, R.Acc_Acc); when Type_File => return Are_Types_Equal (L.File_Typ, R.File_Typ); end case; end Are_Types_Equal; function Discrete_Range_Width (Rng : Discrete_Range_Type) return Width is Lo, Hi : Int64; W : Width; begin case Rng.Dir is when Iir_To => Lo := Rng.Left; Hi := Rng.Right; when Iir_Downto => Lo := Rng.Right; Hi := Rng.Left; end case; if Lo > Hi then -- Null range. W := 0; elsif Lo >= 0 then -- Positive. W := Width (Clog2 (Uns64 (Hi) + 1)); elsif Lo = Int64'First then -- Handle possible overflow. W := 64; elsif Hi < 0 then -- Negative only. W := Width (Clog2 (Uns64 (-Lo))) + 1; else declare Wl : constant Width := Width (Clog2 (Uns64 (-Lo))); Wh : constant Width := Width (Clog2 (Uns64 (Hi))); begin W := Width'Max (Wl, Wh) + 1; end; end if; return W; end Discrete_Range_Width; function Create_Bit_Type return Type_Acc is subtype Bit_Type_Type is Type_Type (Type_Bit); function Alloc is new Areapools.Alloc_On_Pool_Addr (Bit_Type_Type); begin return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Bit, Is_Synth => True, W => 1))); end Create_Bit_Type; function Create_Logic_Type return Type_Acc is subtype Logic_Type_Type is Type_Type (Type_Logic); function Alloc is new Areapools.Alloc_On_Pool_Addr (Logic_Type_Type); begin return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Logic, Is_Synth => True, W => 1))); end Create_Logic_Type; function Create_Discrete_Type (Rng : Discrete_Range_Type; W : Width) return Type_Acc is subtype Discrete_Type_Type is Type_Type (Type_Discrete); function Alloc is new Areapools.Alloc_On_Pool_Addr (Discrete_Type_Type); begin return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Discrete, Is_Synth => True, W => W, Drange => Rng))); end Create_Discrete_Type; function Create_Float_Type (Rng : Float_Range_Type) return Type_Acc is subtype Float_Type_Type is Type_Type (Type_Float); function Alloc is new Areapools.Alloc_On_Pool_Addr (Float_Type_Type); begin return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Float, Is_Synth => True, W => 64, Frange => Rng))); end Create_Float_Type; function Create_Vector_Type (Bnd : Bound_Type; El_Type : Type_Acc) return Type_Acc is subtype Vector_Type_Type is Type_Type (Type_Vector); function Alloc is new Areapools.Alloc_On_Pool_Addr (Vector_Type_Type); begin return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Vector, Is_Synth => True, W => Bnd.Len, Vbound => Bnd, Vec_El => El_Type))); end Create_Vector_Type; function Create_Slice_Type (W : Width; El_Type : Type_Acc) return Type_Acc is subtype Slice_Type_Type is Type_Type (Type_Slice); function Alloc is new Areapools.Alloc_On_Pool_Addr (Slice_Type_Type); begin return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Slice, Is_Synth => El_Type.Is_Synth, W => W, Slice_El => El_Type))); end Create_Slice_Type; function Create_Vec_Type_By_Length (Len : Width; El : Type_Acc) return Type_Acc is begin return Create_Vector_Type ((Dir => Iir_Downto, Left => Int32 (Len) - 1, Right => 0, Len => Len), El); end Create_Vec_Type_By_Length; function Create_Bound_Array (Ndims : Dim_Type) return Bound_Array_Acc is use System; subtype Data_Type is Bound_Array (Ndims); Res : Address; begin -- Manually allocate the array to handle large arrays without -- creating a large temporary value. Areapools.Allocate (Current_Pool.all, Res, Data_Type'Size / Storage_Unit, Data_Type'Alignment); declare -- Discard the warnings for no pragma Import as we really want -- to use the default initialization. pragma Warnings (Off); Addr1 : constant Address := Res; Init : Data_Type; for Init'Address use Addr1; pragma Warnings (On); begin null; end; return To_Bound_Array_Acc (Res); end Create_Bound_Array; function Create_Array_Type (Bnd : Bound_Array_Acc; El_Type : Type_Acc) return Type_Acc is subtype Array_Type_Type is Type_Type (Type_Array); function Alloc is new Areapools.Alloc_On_Pool_Addr (Array_Type_Type); W : Width; begin W := El_Type.W; for I in Bnd.D'Range loop W := W * Bnd.D (I).Len; end loop; return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Array, Is_Synth => El_Type.Is_Synth, W => W, Abounds => Bnd, Arr_El => El_Type))); end Create_Array_Type; function Create_Unbounded_Array (Ndim : Dim_Type; El_Type : Type_Acc) return Type_Acc is subtype Unbounded_Type_Type is Type_Type (Type_Unbounded_Array); function Alloc is new Areapools.Alloc_On_Pool_Addr (Unbounded_Type_Type); begin return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Unbounded_Array, Is_Synth => El_Type.Is_Synth, W => 0, Uarr_Ndim => Ndim, Uarr_El => El_Type))); end Create_Unbounded_Array; function Create_Unbounded_Vector (El_Type : Type_Acc) return Type_Acc is subtype Unbounded_Type_Type is Type_Type (Type_Unbounded_Vector); function Alloc is new Areapools.Alloc_On_Pool_Addr (Unbounded_Type_Type); begin return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Unbounded_Vector, Is_Synth => El_Type.Is_Synth, W => 0, Uvec_El => El_Type))); end Create_Unbounded_Vector; function Get_Array_Element (Arr_Type : Type_Acc) return Type_Acc is begin case Arr_Type.Kind is when Type_Vector => return Arr_Type.Vec_El; when Type_Array => return Arr_Type.Arr_El; when Type_Unbounded_Array => return Arr_Type.Uarr_El; when Type_Unbounded_Vector => return Arr_Type.Uvec_El; when others => raise Internal_Error; end case; end Get_Array_Element; function Get_Array_Bound (Typ : Type_Acc; Dim : Dim_Type) return Bound_Type is begin case Typ.Kind is when Type_Vector => if Dim /= 1 then raise Internal_Error; end if; return Typ.Vbound; when Type_Array => return Typ.Abounds.D (Dim); when others => raise Internal_Error; end case; end Get_Array_Bound; function Create_Rec_El_Array (Nels : Iir_Index32) return Rec_El_Array_Acc is use System; subtype Data_Type is Rec_El_Array (Nels); Res : Address; begin -- Manually allocate the array to handle large arrays without -- creating a large temporary value. Areapools.Allocate (Current_Pool.all, Res, Data_Type'Size / Storage_Unit, Data_Type'Alignment); declare -- Discard the warnings for no pragma Import as we really want -- to use the default initialization. pragma Warnings (Off); Addr1 : constant Address := Res; Init : Data_Type; for Init'Address use Addr1; pragma Warnings (On); begin null; end; return To_Rec_El_Array_Acc (Res); end Create_Rec_El_Array; function Create_Record_Type (Els : Rec_El_Array_Acc; W : Width) return Type_Acc is subtype Record_Type_Type is Type_Type (Type_Record); function Alloc is new Areapools.Alloc_On_Pool_Addr (Record_Type_Type); Is_Synth : Boolean; begin Is_Synth := True; for I in Els.E'Range loop if not Els.E (I).Typ.Is_Synth then Is_Synth := False; exit; end if; end loop; return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Record, Is_Synth => Is_Synth, W => W, Rec => Els))); end Create_Record_Type; function Create_Access_Type (Acc_Type : Type_Acc) return Type_Acc is subtype Access_Type_Type is Type_Type (Type_Access); function Alloc is new Areapools.Alloc_On_Pool_Addr (Access_Type_Type); begin return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Access, Is_Synth => False, W => 32, Acc_Acc => Acc_Type))); end Create_Access_Type; function Create_File_Type (File_Type : Type_Acc) return Type_Acc is subtype File_Type_Type is Type_Type (Type_File); function Alloc is new Areapools.Alloc_On_Pool_Addr (File_Type_Type); begin return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_File, Is_Synth => False, W => 32, File_Typ => File_Type))); end Create_File_Type; function Create_Value_Wire (W : Wire_Id) return Value_Acc is subtype Value_Type_Wire is Value_Type (Values.Value_Wire); function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Wire); begin return To_Value_Acc (Alloc (Current_Pool, (Kind => Value_Wire, W => W))); end Create_Value_Wire; function Create_Value_Wire (W : Wire_Id; Wtype : Type_Acc) return Valtyp is pragma Assert (Wtype /= null); begin return (Wtype, Create_Value_Wire (W)); end Create_Value_Wire; function Create_Value_Net (N : Net) return Value_Acc is subtype Value_Type_Net is Value_Type (Value_Net); function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Net); begin return To_Value_Acc (Alloc (Current_Pool, Value_Type_Net'(Kind => Value_Net, N => N))); end Create_Value_Net; function Create_Value_Net (N : Net; Ntype : Type_Acc) return Valtyp is pragma Assert (Ntype /= null); begin return (Ntype, Create_Value_Net (N)); end Create_Value_Net; function Create_Value_Discrete (Val : Int64) return Value_Acc is subtype Value_Type_Discrete is Value_Type (Value_Discrete); function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Discrete); begin return To_Value_Acc (Alloc (Current_Pool, (Kind => Value_Discrete, Scal => Val))); end Create_Value_Discrete; function Create_Value_Discrete (Val : Int64; Vtype : Type_Acc) return Valtyp is pragma Assert (Vtype /= null); begin return (Vtype, Create_Value_Discrete (Val)); end Create_Value_Discrete; function Create_Value_Float (Val : Fp64) return Value_Acc is subtype Value_Type_Float is Value_Type (Value_Float); function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Float); begin return To_Value_Acc (Alloc (Current_Pool, (Kind => Value_Float, Fp => Val))); end Create_Value_Float; function Create_Value_Float (Val : Fp64; Vtype : Type_Acc) return Valtyp is pragma Assert (Vtype /= null); begin return (Vtype, Create_Value_Float (Val)); end Create_Value_Float; function Create_Value_Access (Acc : Heap_Index) return Value_Acc is subtype Value_Type_Access is Value_Type (Value_Access); function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Access); begin return To_Value_Acc (Alloc (Current_Pool, (Kind => Value_Access, Acc => Acc))); end Create_Value_Access; function Create_Value_Access (Vtype : Type_Acc; Acc : Heap_Index) return Valtyp is pragma Assert (Vtype /= null); begin return (Vtype, Create_Value_Access (Acc)); end Create_Value_Access; function Create_Value_File (File : File_Index) return Value_Acc is subtype Value_Type_File is Value_Type (Value_File); function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_File); begin return To_Value_Acc (Alloc (Current_Pool, (Kind => Value_File, File => File))); end Create_Value_File; function Create_Value_File (Vtype : Type_Acc; File : File_Index) return Valtyp is pragma Assert (Vtype /= null); begin return (Vtype, Create_Value_File (File)); end Create_Value_File; function Create_Value_Array (Len : Iir_Index32) return Value_Array_Acc is use System; subtype Data_Type is Values.Value_Array_Type (Len); Res : Address; begin -- Manually allocate the array to handle large arrays without -- creating a large temporary value. Areapools.Allocate (Current_Pool.all, Res, Data_Type'Size / Storage_Unit, Data_Type'Alignment); declare -- Discard the warnings for no pragma Import as we really want -- to use the default initialization. pragma Warnings (Off); Addr1 : constant Address := Res; Init : Data_Type; for Init'Address use Addr1; pragma Warnings (On); begin null; end; return To_Value_Array_Acc (Res); end Create_Value_Array; function Create_Value_Array (Arr : Value_Array_Acc) return Value_Acc is subtype Value_Type_Array is Value_Type (Value_Array); function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Array); Res : Value_Acc; begin Res := To_Value_Acc (Alloc (Current_Pool, (Kind => Value_Array, Arr => Arr))); return Res; end Create_Value_Array; function Create_Value_Array (Bounds : Type_Acc; Arr : Value_Array_Acc) return Valtyp is pragma Assert (Bounds /= null); begin return (Bounds, Create_Value_Array (Arr)); end Create_Value_Array; function Create_Value_Const_Array (Arr : Value_Array_Acc) return Value_Acc is subtype Value_Type_Const_Array is Value_Type (Value_Const_Array); function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Const_Array); Res : Value_Acc; begin Res := To_Value_Acc (Alloc (Current_Pool, (Kind => Value_Const_Array, Arr => Arr))); return Res; end Create_Value_Const_Array; function Create_Value_Const_Array (Bounds : Type_Acc; Arr : Value_Array_Acc) return Valtyp is pragma Assert (Bounds /= null); begin return (Bounds, Create_Value_Const_Array (Arr)); end Create_Value_Const_Array; function Get_Array_Flat_Length (Typ : Type_Acc) return Width is begin case Typ.Kind is when Type_Vector => return Typ.Vbound.Len; when Type_Array => declare Len : Width; begin Len := 1; for I in Typ.Abounds.D'Range loop Len := Len * Typ.Abounds.D (I).Len; end loop; return Len; end; when others => raise Internal_Error; end case; end Get_Array_Flat_Length; procedure Create_Array_Data (Arr : Valtyp) is Len : Width; begin case Arr.Typ.Kind is when Type_Array => Len := Get_Array_Flat_Length (Arr.Typ); when Type_Vector => Len := Arr.Typ.Vbound.Len; when others => raise Internal_Error; end case; Arr.Val.Arr := Create_Value_Array (Iir_Index32 (Len)); end Create_Array_Data; function Create_Value_Array (Bounds : Type_Acc) return Value_Acc is Res : Value_Acc; begin Res := Create_Value_Array (Value_Array_Acc'(null)); Create_Array_Data ((Bounds, Res)); return Res; end Create_Value_Array; function Create_Value_Record (Els : Value_Array_Acc) return Value_Acc is subtype Value_Type_Record is Value_Type (Value_Record); function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Record); begin return To_Value_Acc (Alloc (Current_Pool, (Kind => Value_Record, Rec => Els))); end Create_Value_Record; function Create_Value_Record (Typ : Type_Acc; Els : Value_Array_Acc) return Valtyp is pragma Assert (Typ /= null); begin return (Typ, Create_Value_Record (Els)); end Create_Value_Record; function Create_Value_Const_Record (Els : Value_Array_Acc) return Value_Acc is subtype Value_Type_Const_Record is Value_Type (Value_Const_Record); function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Const_Record); begin return To_Value_Acc (Alloc (Current_Pool, (Kind => Value_Const_Record, Rec => Els))); end Create_Value_Const_Record; function Create_Value_Const_Record (Typ : Type_Acc; Els : Value_Array_Acc) return Valtyp is pragma Assert (Typ /= null); begin return (Typ, Create_Value_Const_Record (Els)); end Create_Value_Const_Record; function Create_Value_Alias (Obj : Value_Acc; Off : Uns32) return Value_Acc is subtype Value_Type_Alias is Value_Type (Value_Alias); function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Alias); begin return To_Value_Acc (Alloc (Current_Pool, (Kind => Value_Alias, A_Obj => Obj, A_Off => Off))); end Create_Value_Alias; function Create_Value_Alias (Obj : Value_Acc; Off : Uns32; Typ : Type_Acc) return Valtyp is pragma Assert (Typ /= null); begin return (Typ, Create_Value_Alias (Obj, Off)); end Create_Value_Alias; function Create_Value_Const (Val : Value_Acc; Loc : Syn_Src) return Value_Acc is subtype Value_Type_Const is Value_Type (Value_Const); function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Const); begin pragma Assert (Val = null or else Val.Kind /= Value_Const); return To_Value_Acc (Alloc (Current_Pool, (Kind => Value_Const, C_Val => Val, C_Loc => Loc, C_Net => No_Net))); end Create_Value_Const; function Create_Value_Const (Val : Valtyp; Loc : Syn_Src) return Valtyp is begin return (Val.Typ, Create_Value_Const (Val.Val, Loc)); end Create_Value_Const; procedure Strip_Const (Val : in out Value_Acc) is begin if Val.Kind = Value_Const then Val := Val.C_Val; end if; end Strip_Const; function Strip_Const (Val : Value_Acc) return Value_Acc is begin if Val.Kind = Value_Const then return Val.C_Val; else return Val; end if; end Strip_Const; procedure Strip_Const (Vt : in out Valtyp) is begin Vt.Val := Strip_Const (Vt.Val); end Strip_Const; function Copy (Src : Value_Acc) return Value_Acc; function Copy_Array (Arr : Value_Array_Acc) return Value_Array_Acc is Res : Value_Array_Acc; begin Res := Create_Value_Array (Arr.Len); for I in Res.V'Range loop Res.V (I) := Copy (Arr.V (I)); end loop; return Res; end Copy_Array; function Copy (Src : Value_Acc) return Value_Acc is Res : Value_Acc; Arr : Value_Array_Acc; begin case Src.Kind is when Value_Net => Res := Create_Value_Net (Src.N); when Value_Wire => Res := Create_Value_Wire (Src.W); when Value_Discrete => Res := Create_Value_Discrete (Src.Scal); when Value_Float => Res := Create_Value_Float (Src.Fp); when Value_Array => Arr := Copy_Array (Src.Arr); Res := Create_Value_Array (Arr); when Value_Const_Array => Arr := Copy_Array (Src.Arr); Res := Create_Value_Const_Array (Arr); when Value_Record => Arr := Copy_Array (Src.Rec); Res := Create_Value_Record (Arr); when Value_Const_Record => Arr := Copy_Array (Src.Rec); Res := Create_Value_Const_Record (Arr); when Value_Access => Res := Create_Value_Access (Src.Acc); when Value_File => Res := Create_Value_File (Src.File); when Value_Const => raise Internal_Error; when Value_Alias => raise Internal_Error; end case; return Res; end Copy; function Unshare (Src : Value_Acc; Pool : Areapool_Acc) return Value_Acc is Prev_Pool : constant Areapool_Acc := Current_Pool; Res : Value_Acc; begin Current_Pool := Pool; Res := Copy (Src); Current_Pool := Prev_Pool; return Res; end Unshare; function Get_Type_Width (Atype : Type_Acc) return Width is begin pragma Assert (Atype.Kind /= Type_Unbounded_Array); return Atype.W; end Get_Type_Width; function Get_Bound_Length (T : Type_Acc; Dim : Dim_Type) return Width is begin case T.Kind is when Type_Vector => if Dim /= 1 then raise Internal_Error; end if; return T.Vbound.Len; when Type_Slice => if Dim /= 1 then raise Internal_Error; end if; return T.W; when Type_Array => return T.Abounds.D (Dim).Len; when others => raise Internal_Error; end case; end Get_Bound_Length; function Is_Matching_Bounds (L, R : Type_Acc) return Boolean is begin case L.Kind is when Type_Bit | Type_Logic | Type_Discrete | Type_Float => pragma Assert (L.Kind = R.Kind); return True; when Type_Vector | Type_Slice => return Get_Bound_Length (L, 1) = Get_Bound_Length (R, 1); when Type_Array => for I in L.Abounds.D'Range loop if Get_Bound_Length (L, I) /= Get_Bound_Length (R, I) then return False; end if; end loop; return True; when Type_Unbounded_Array | Type_Unbounded_Vector => raise Internal_Error; when Type_Record => -- FIXME: handle vhdl-08 return True; when Type_Access => return True; when Type_File => raise Internal_Error; end case; end Is_Matching_Bounds; function Create_Value_Default (Typ : Type_Acc) return Value_Acc is begin case Typ.Kind is when Type_Bit | Type_Logic => -- FIXME: what about subtype ? return Create_Value_Discrete (0); when Type_Discrete => return Create_Value_Discrete (Typ.Drange.Left); when Type_Float => return Create_Value_Float (Typ.Frange.Left); when Type_Vector => declare El_Typ : constant Type_Acc := Typ.Vec_El; Arr : Value_Array_Acc; begin Arr := Create_Value_Array (Iir_Index32 (Typ.Vbound.Len)); for I in Arr.V'Range loop Arr.V (I) := Create_Value_Default (El_Typ); end loop; return Create_Value_Const_Array (Arr); end; when Type_Unbounded_Vector => raise Internal_Error; when Type_Slice => raise Internal_Error; when Type_Array => declare El_Typ : constant Type_Acc := Get_Array_Element (Typ); Arr : Value_Array_Acc; begin Arr := Create_Value_Array (Iir_Index32 (Get_Array_Flat_Length (Typ))); for I in Arr.V'Range loop Arr.V (I) := Create_Value_Default (El_Typ); end loop; return Create_Value_Const_Array (Arr); end; when Type_Unbounded_Array => raise Internal_Error; when Type_Record => declare Els : Value_Array_Acc; begin Els := Create_Value_Array (Typ.Rec.Len); for I in Els.V'Range loop Els.V (I) := Create_Value_Default (Typ.Rec.E (I).Typ); end loop; return Create_Value_Const_Record (Els); end; when Type_Access => return Create_Value_Access (Null_Heap_Index); when Type_File => raise Internal_Error; end case; end Create_Value_Default; function Create_Value_Default (Typ : Type_Acc) return Valtyp is begin return (Typ, Create_Value_Default (Typ)); end Create_Value_Default; function Value_To_String (Val : Value_Acc) return String is Str : String (1 .. Natural (Val.Arr.Len)); begin for I in Val.Arr.V'Range loop Str (Natural (I)) := Character'Val (Val.Arr.V (I).Scal); end loop; return Str; end Value_To_String; procedure Init is begin Instance_Pool := Global_Pool'Access; Boolean_Type := Create_Bit_Type; Logic_Type := Create_Logic_Type; Bit_Type := Create_Bit_Type; end Init; end Synth.Values;