1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
|
/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2020 David Shah <dave@ds0.me>
*
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include <boost/algorithm/string.hpp>
#include "embed.h"
#include "log.h"
#include "nextpnr.h"
#include "placer1.h"
#include "placer_heap.h"
#include "router1.h"
#include "router2.h"
#include "timing.h"
#include "util.h"
NEXTPNR_NAMESPACE_BEGIN
// -----------------------------------------------------------------------
void IdString::initialize_arch(const BaseCtx *ctx)
{
#define X(t) initialize_add(ctx, #t, ID_##t);
#include "constids.inc"
#undef X
}
// -----------------------------------------------------------------------
Arch::Arch(ArchArgs args) : args(args)
{
// Parse device string
if (boost::starts_with(args.device, "LIFCL")) {
family = "LIFCL";
} else {
log_error("Unknown device string '%s' (expected device name like 'LIFCL-40-8SG72C')\n", args.device.c_str());
}
auto last_sep = args.device.rfind('-');
if (last_sep == std::string::npos)
log_error("Unknown device string '%s' (expected device name like 'LIFCL-40-8SG72C')\n", args.device.c_str());
device = args.device.substr(0, last_sep);
speed = args.device.substr(last_sep + 1, 1);
auto package_end = args.device.find_last_of("0123456789");
if (package_end == std::string::npos || package_end < last_sep)
log_error("Unknown device string '%s' (expected device name like 'LIFCL-40-8SG72C')\n", args.device.c_str());
package = args.device.substr(last_sep + 2, (package_end - (last_sep + 2)) + 1);
rating = args.device.substr(package_end + 1);
// Check for 'ES' part
if (rating.size() > 1 && rating.substr(1) == "ES") {
variant = "ES";
} else {
variant = "";
}
// Load database
std::string chipdb = stringf("nexus/chipdb-%s.bin", family.c_str());
auto db_ptr = reinterpret_cast<const RelPtr<DatabasePOD> *>(get_chipdb(chipdb));
if (db_ptr == nullptr)
log_error("Failed to load chipdb '%s'\n", chipdb.c_str());
db = db_ptr->get();
// Check database version and family
if (db->version != bba_version) {
log_error("Provided database version %d is %s than nextpnr version %d, please rebuild database/nextpnr.\n",
int(db->version), (db->version > bba_version) ? "newer" : "older", int(bba_version));
}
if (db->family.get() != family) {
log_error("Database is for family '%s' but provided device is family '%s'.\n", db->family.get(),
family.c_str());
}
// Set up chip_info
chip_info = nullptr;
for (auto &chip : db->chips) {
if (chip.device_name.get() == device) {
chip_info = &chip;
break;
}
}
if (!chip_info)
log_error("Unknown device '%s'.\n", device.c_str());
// Set up bba IdStrings
for (size_t i = 0; i < db->ids->bba_id_strs.size(); i++) {
IdString::initialize_add(this, db->ids->bba_id_strs[i].get(), uint32_t(i) + db->ids->num_file_ids);
}
// Set up validity structures
tileStatus.resize(chip_info->grid.size());
for (size_t i = 0; i < chip_info->grid.size(); i++) {
tileStatus[i].boundcells.resize(db->loctypes[chip_info->grid[i].loc_type].bels.size());
}
// This structure is needed for a fast getBelByLocation because bels can have an offset
for (size_t i = 0; i < chip_info->grid.size(); i++) {
auto &loc = db->loctypes[chip_info->grid[i].loc_type];
for (unsigned j = 0; j < loc.bels.size(); j++) {
auto &bel = loc.bels[j];
int rel_bel_tile;
if (!rel_tile(i, bel.rel_x, bel.rel_y, rel_bel_tile))
continue;
auto &ts = tileStatus.at(rel_bel_tile);
if (int(ts.bels_by_z.size()) <= bel.z)
ts.bels_by_z.resize(bel.z + 1);
ts.bels_by_z[bel.z].tile = i;
ts.bels_by_z[bel.z].index = j;
}
}
for (int i = 0; i < chip_info->width; i++) {
IdString x_id = id(stringf("X%d", i));
x_ids.push_back(x_id);
id_to_x[x_id] = i;
}
for (int i = 0; i < chip_info->height; i++) {
IdString y_id = id(stringf("Y%d", i));
y_ids.push_back(y_id);
id_to_y[y_id] = i;
}
init_cell_pin_data();
// Validate and set up package
package_idx = -1;
for (size_t i = 0; i < chip_info->packages.size(); i++) {
if (package == chip_info->packages[i].short_name.get()) {
package_idx = i;
break;
}
}
if (package_idx == -1) {
std::string all_packages = "";
for (auto &pkg : chip_info->packages) {
all_packages += " ";
all_packages += pkg.short_name.get();
}
log_error("Unknown package '%s'. Available package options:%s\n", package.c_str(), all_packages.c_str());
}
// Validate and set up speed grade
// Convert speed to speed grade (TODO: low power back bias mode too)
if (speed == "7")
speed = "10";
else if (speed == "8")
speed = "11";
else if (speed == "9")
speed = "12";
speed_grade = nullptr;
for (auto &sg : db->speed_grades) {
if (sg.name.get() == speed) {
speed_grade = &sg;
break;
}
}
if (!speed_grade)
log_error("Unknown speed grade '%s'.\n", speed.c_str());
BaseArch::init_cell_types();
BaseArch::init_bel_buckets();
}
// -----------------------------------------------------------------------
std::string Arch::getChipName() const { return args.device; }
IdString Arch::archArgsToId(ArchArgs args) const { return id(args.device); }
// -----------------------------------------------------------------------
BelId Arch::getBelByName(IdStringList name) const
{
if (name.size() != 3)
return BelId();
int x = id_to_x.at(name[0]);
int y = id_to_y.at(name[1]);
NPNR_ASSERT(x >= 0 && x < chip_info->width);
NPNR_ASSERT(y >= 0 && y < chip_info->height);
auto &tile = db->loctypes[chip_info->grid[y * chip_info->width + x].loc_type];
for (size_t i = 0; i < tile.bels.size(); i++) {
if (tile.bels[i].name == name[2].index) {
BelId ret;
ret.tile = y * chip_info->width + x;
ret.index = i;
return ret;
}
}
return BelId();
}
std::vector<BelId> Arch::getBelsByTile(int x, int y) const
{
std::vector<BelId> bels;
for (auto bel : tileStatus.at(y * chip_info->width + x).bels_by_z)
if (bel != BelId())
bels.push_back(bel);
return bels;
}
WireId Arch::getBelPinWire(BelId bel, IdString pin) const
{
// Binary search on wire IdString, by ID
int num_bel_wires = bel_data(bel).ports.size();
const BelWirePOD *bel_ports = bel_data(bel).ports.get();
if (num_bel_wires < 7) {
for (int i = 0; i < num_bel_wires; i++) {
if (int(bel_ports[i].port) == pin.index) {
return canonical_wire(bel.tile, bel_ports[i].wire_index);
}
}
} else {
int b = 0, e = num_bel_wires - 1;
while (b <= e) {
int i = (b + e) / 2;
if (int(bel_ports[i].port) == pin.index) {
return canonical_wire(bel.tile, bel_ports[i].wire_index);
}
if (int(bel_ports[i].port) > pin.index)
e = i - 1;
else
b = i + 1;
}
}
return WireId();
}
PortType Arch::getBelPinType(BelId bel, IdString pin) const
{
// Binary search on wire IdString, by ID
int num_bel_wires = bel_data(bel).ports.size();
const BelWirePOD *bel_ports = bel_data(bel).ports.get();
if (num_bel_wires < 7) {
for (int i = 0; i < num_bel_wires; i++) {
if (int(bel_ports[i].port) == pin.index) {
return PortType(bel_ports[i].type);
}
}
} else {
int b = 0, e = num_bel_wires - 1;
while (b <= e) {
int i = (b + e) / 2;
if (int(bel_ports[i].port) == pin.index) {
return PortType(bel_ports[i].type);
}
if (int(bel_ports[i].port) > pin.index)
e = i - 1;
else
b = i + 1;
}
}
NPNR_ASSERT_FALSE("unknown bel pin");
}
std::vector<IdString> Arch::getBelPins(BelId bel) const
{
std::vector<IdString> ret;
for (auto &p : bel_data(bel).ports)
ret.push_back(IdString(p.port));
return ret;
}
std::vector<std::pair<IdString, std::string>> Arch::getBelAttrs(BelId bel) const
{
std::vector<std::pair<IdString, std::string>> ret;
ret.emplace_back(id("INDEX"), stringf("%d", bel.index));
ret.emplace_back(id("GRID_X"), stringf("%d", bel.tile % chip_info->width));
ret.emplace_back(id("GRID_Y"), stringf("%d", bel.tile / chip_info->width));
ret.emplace_back(id("BEL_Z"), stringf("%d", bel_data(bel).z));
ret.emplace_back(id("BEL_TYPE"), nameOf(getBelType(bel)));
return ret;
}
// -----------------------------------------------------------------------
WireId Arch::getWireByName(IdStringList name) const
{
if (name.size() != 3)
return WireId();
int x = id_to_x.at(name[0]);
int y = id_to_y.at(name[1]);
NPNR_ASSERT(x >= 0 && x < chip_info->width);
NPNR_ASSERT(y >= 0 && y < chip_info->height);
auto &tile = db->loctypes[chip_info->grid[y * chip_info->width + x].loc_type];
for (size_t i = 0; i < tile.wires.size(); i++) {
if (tile.wires[i].name == name[2].index) {
WireId ret;
ret.tile = y * chip_info->width + x;
ret.index = i;
return ret;
}
}
return WireId();
}
std::vector<std::pair<IdString, std::string>> Arch::getWireAttrs(WireId wire) const
{
std::vector<std::pair<IdString, std::string>> ret;
ret.emplace_back(id("INDEX"), stringf("%d", wire.index));
ret.emplace_back(id("GRID_X"), stringf("%d", wire.tile % chip_info->width));
ret.emplace_back(id("GRID_Y"), stringf("%d", wire.tile / chip_info->width));
ret.emplace_back(id("FLAGS"), stringf("%u", wire_data(wire).flags));
return ret;
}
// -----------------------------------------------------------------------
PipId Arch::getPipByName(IdStringList name) const
{
if (name.size() != 5)
return PipId();
int x = id_to_x.at(name[0]);
int y = id_to_y.at(name[1]);
NPNR_ASSERT(x >= 0 && x < chip_info->width);
NPNR_ASSERT(y >= 0 && y < chip_info->height);
PipId ret;
ret.tile = y * chip_info->width + x;
ret.index = std::stoi(name[2].str(this));
return ret;
}
IdStringList Arch::getPipName(PipId pip) const
{
NPNR_ASSERT(pip != PipId());
std::array<IdString, 5> ids{x_ids.at(pip.tile % chip_info->width), y_ids.at(pip.tile / chip_info->width),
id(stringf("%d", pip.index)), IdString(loc_data(pip).wires[pip_data(pip).to_wire].name),
IdString(loc_data(pip).wires[pip_data(pip).from_wire].name)};
return IdStringList(ids);
}
IdString Arch::getPipType(PipId pip) const { return IdString(); }
std::vector<std::pair<IdString, std::string>> Arch::getPipAttrs(PipId pip) const
{
std::vector<std::pair<IdString, std::string>> ret;
ret.emplace_back(id("INDEX"), stringf("%d", pip.index));
ret.emplace_back(id("GRID_X"), stringf("%d", pip.tile % chip_info->width));
ret.emplace_back(id("GRID_Y"), stringf("%d", pip.tile / chip_info->width));
ret.emplace_back(id("FROM_TILE_WIRE"), nameOf(IdString(loc_data(pip).wires[pip_data(pip).from_wire].name)));
ret.emplace_back(id("TO_TILE_WIRE"), nameOf(IdString(loc_data(pip).wires[pip_data(pip).to_wire].name)));
return ret;
}
// -----------------------------------------------------------------------
namespace {
const float bel_ofs_x = 0.7, bel_ofs_y = 0.0375;
const float bel_sp_x = 0.1, bel_sp_y = 0.1;
const float bel_width = 0.075, bel_height = 0.075;
} // namespace
std::vector<GraphicElement> Arch::getDecalGraphics(DecalId decal) const
{
std::vector<GraphicElement> ret;
switch (decal.type) {
case DecalId::TYPE_BEL: {
auto style = decal.active ? GraphicElement::STYLE_ACTIVE : GraphicElement::STYLE_INACTIVE;
if (decal.index != -1) {
int slice = (decal.index >> 3) & 0x3;
int bel = decal.index & 0x7;
float x1, x2, y1, y2;
if (bel == BEL_RAMW) {
x1 = bel_ofs_x;
y1 = bel_ofs_y + 2 * bel_sp_y * slice;
x2 = x1 + bel_sp_x + bel_width;
y2 = y1 + bel_height;
} else {
x1 = bel_ofs_x + bel_sp_x * (bel >> 1);
y1 = bel_ofs_y + 2 * bel_sp_y * slice + bel_sp_y * (bel & 0x1);
if (slice >= 2)
y1 += bel_sp_y * 1.5;
x2 = x1 + bel_width;
y2 = y1 + bel_height;
}
ret.emplace_back(GraphicElement::TYPE_BOX, style, x1, y1, x2, y2, 1);
}
break;
};
default:
break;
}
return ret;
}
DecalXY Arch::getBelDecal(BelId bel) const
{
DecalXY decalxy;
decalxy.decal.type = DecalId::TYPE_BEL;
if (tile_is(bel, LOC_LOGIC))
decalxy.decal.index = bel_data(bel).z;
else
decalxy.decal.index = -1;
decalxy.decal.active = (getBoundBelCell(bel) != nullptr);
decalxy.x = bel.tile % chip_info->width;
decalxy.y = bel.tile / chip_info->width;
return decalxy;
}
DecalXY Arch::getWireDecal(WireId wire) const { return {}; }
DecalXY Arch::getPipDecal(PipId pip) const { return {}; };
DecalXY Arch::getGroupDecal(GroupId pip) const { return {}; };
// -----------------------------------------------------------------------
bool Arch::getCellDelay(const CellInfo *cell, IdString fromPort, IdString toPort, DelayQuad &delay) const
{
auto lookup_port = [&](IdString p) {
auto fnd = cell->tmg_portmap.find(p);
return fnd == cell->tmg_portmap.end() ? p : fnd->second;
};
if (cell->type == id_OXIDE_COMB) {
if (cell->lutInfo.is_carry) {
bool result = lookup_cell_delay(cell->tmg_index, lookup_port(fromPort), lookup_port(toPort), delay);
// Because CCU2 = 2x OXIDE_COMB
if (result && fromPort == id_FCI && toPort == id_FCO) {
delay = DelayQuad(delay.minDelay() / 2, delay.maxDelay() / 2);
}
return result;
} else {
if (toPort == id_F || toPort == id_OFX)
return lookup_cell_delay(cell->tmg_index, fromPort, toPort, delay);
}
} else if (is_dsp_cell(cell)) {
if (fromPort == id_CLK)
return false; // don't include delays that are actually clock-to-out here
return lookup_cell_delay(cell->tmg_index, lookup_port(fromPort), lookup_port(toPort), delay);
}
return false;
}
TimingPortClass Arch::getPortTimingClass(const CellInfo *cell, IdString port, int &clockInfoCount) const
{
auto disconnected = [cell](IdString p) { return !cell->ports.count(p) || cell->ports.at(p).net == nullptr; };
auto lookup_port = [&](IdString p) {
auto fnd = cell->tmg_portmap.find(p);
return fnd == cell->tmg_portmap.end() ? p : fnd->second;
};
clockInfoCount = 0;
if (cell->type == id_OXIDE_COMB) {
if (port == id_A || port == id_B || port == id_C || port == id_D || port == id_SEL || port == id_F1 ||
port == id_FCI || port == id_WDI)
return TMG_COMB_INPUT;
if (port == id_F || port == id_OFX || port == id_FCO) {
if (disconnected(id_A) && disconnected(id_B) && disconnected(id_C) && disconnected(id_D) &&
disconnected(id_FCI) && disconnected(id_SEL) && disconnected(id_WDI))
return TMG_IGNORE;
else
return TMG_COMB_OUTPUT;
}
} else if (cell->type == id_OXIDE_FF) {
if (port == id_CLK)
return TMG_CLOCK_INPUT;
else if (port == id_Q) {
clockInfoCount = 1;
return TMG_REGISTER_OUTPUT;
} else {
clockInfoCount = 1;
return TMG_REGISTER_INPUT;
}
} else if (cell->type == id_RAMW) {
if (port == id_CLK)
return TMG_CLOCK_INPUT;
else if (port == id_WDO0 || port == id_WDO1 || port == id_WDO2 || port == id_WDO3) {
clockInfoCount = 1;
return TMG_REGISTER_OUTPUT;
} else if (port == id_A0 || port == id_A1 || port == id_B0 || port == id_B1 || port == id_C0 || port == id_C1 ||
port == id_D0 || port == id_D1) {
clockInfoCount = 1;
return TMG_REGISTER_INPUT;
}
} else if (cell->type == id_OXIDE_EBR) {
if (port == id_DWS0 || port == id_DWS1 || port == id_DWS2 || port == id_DWS3 || port == id_DWS4)
return TMG_IGNORE;
if (port == id_CLKA || port == id_CLKB)
return TMG_CLOCK_INPUT;
clockInfoCount = 1;
return (cell->ports.at(port).type == PORT_IN) ? TMG_REGISTER_INPUT : TMG_REGISTER_OUTPUT;
} else if (cell->type == id_MULT18_CORE || cell->type == id_MULT18X36_CORE || cell->type == id_MULT36_CORE) {
return (cell->ports.at(port).type == PORT_IN) ? TMG_COMB_INPUT : TMG_COMB_OUTPUT;
} else if (cell->type == id_PREADD9_CORE || cell->type == id_REG18_CORE || cell->type == id_MULT9_CORE) {
if (port == id_CLK)
return TMG_CLOCK_INPUT;
auto type = lookup_port_type(cell->tmg_index, lookup_port(port), cell->ports.at(port).type, id_CLK);
if (type == TMG_REGISTER_INPUT || type == TMG_REGISTER_OUTPUT)
clockInfoCount = 1;
return type;
}
return TMG_IGNORE;
}
TimingClockingInfo Arch::getPortClockingInfo(const CellInfo *cell, IdString port, int index) const
{
auto lookup_port = [&](IdString p) {
auto fnd = cell->tmg_portmap.find(p);
return fnd == cell->tmg_portmap.end() ? p : fnd->second;
};
TimingClockingInfo info;
if (cell->type == id_OXIDE_FF) {
info.edge = (cell->ffInfo.ctrlset.clkmux == ID_INV) ? FALLING_EDGE : RISING_EDGE;
info.clock_port = id_CLK;
if (port == id_Q)
NPNR_ASSERT(lookup_cell_delay(cell->tmg_index, id_CLK, port, info.clockToQ));
else
lookup_cell_setuphold(cell->tmg_index, port, id_CLK, info.setup, info.hold);
} else if (cell->type == id_RAMW) {
info.edge = (cell->ffInfo.ctrlset.clkmux == ID_INV) ? FALLING_EDGE : RISING_EDGE;
info.clock_port = id_CLK;
if (port == id_WDO0 || port == id_WDO1 || port == id_WDO2 || port == id_WDO3)
NPNR_ASSERT(lookup_cell_delay(cell->tmg_index, id_CLK, port, info.clockToQ));
else
lookup_cell_setuphold(cell->tmg_index, port, id_CLK, info.setup, info.hold);
} else if (cell->type == id_OXIDE_EBR) {
if (cell->ports.at(port).type == PORT_IN) {
lookup_cell_setuphold_clock(cell->tmg_index, lookup_port(port), info.clock_port, info.setup, info.hold);
} else {
lookup_cell_clock_out(cell->tmg_index, lookup_port(port), info.clock_port, info.clockToQ);
}
// Lookup edge based on inversion
info.edge = (get_cell_pinmux(cell, info.clock_port) == PINMUX_INV) ? FALLING_EDGE : RISING_EDGE;
} else if (cell->type == id_PREADD9_CORE || cell->type == id_REG18_CORE || cell->type == id_MULT9_CORE) {
info.clock_port = id_CLK;
if (cell->ports.at(port).type == PORT_IN) {
lookup_cell_setuphold(cell->tmg_index, lookup_port(port), id_CLK, info.setup, info.hold);
} else {
NPNR_ASSERT(lookup_cell_delay(cell->tmg_index, id_CLK, lookup_port(port), info.clockToQ));
}
info.edge = (get_cell_pinmux(cell, info.clock_port) == PINMUX_INV) ? FALLING_EDGE : RISING_EDGE;
} else {
NPNR_ASSERT_FALSE("missing clocking info");
}
return info;
}
// -----------------------------------------------------------------------
delay_t Arch::estimateDelay(WireId src, WireId dst) const
{
int src_x = src.tile % chip_info->width, src_y = src.tile / chip_info->width;
int dst_x = dst.tile % chip_info->width, dst_y = dst.tile / chip_info->width;
int dist_x = std::abs(src_x - dst_x);
int dist_y = std::abs(src_y - dst_y);
return 75 * dist_x + 75 * dist_y + 200;
}
delay_t Arch::predictDelay(const NetInfo *net_info, const PortRef &sink) const
{
if (net_info->driver.cell == nullptr || net_info->driver.cell->bel == BelId() || sink.cell->bel == BelId())
return 0;
if (sink.port == id_FCI)
return 0;
int src_x = net_info->driver.cell->bel.tile % chip_info->width,
src_y = net_info->driver.cell->bel.tile / chip_info->width;
int dst_x = sink.cell->bel.tile % chip_info->width, dst_y = sink.cell->bel.tile / chip_info->width;
int dist_x = std::abs(src_x - dst_x);
int dist_y = std::abs(src_y - dst_y);
return 100 * dist_x + 100 * dist_y + 250;
}
bool Arch::getBudgetOverride(const NetInfo *net_info, const PortRef &sink, delay_t &budget) const { return false; }
ArcBounds Arch::getRouteBoundingBox(WireId src, WireId dst) const
{
ArcBounds bb;
int src_x = src.tile % chip_info->width, src_y = src.tile / chip_info->width;
int dst_x = dst.tile % chip_info->width, dst_y = dst.tile / chip_info->width;
bb.x0 = src_x;
bb.y0 = src_y;
bb.x1 = src_x;
bb.y1 = src_y;
auto extend = [&](int x, int y) {
bb.x0 = std::min(bb.x0, x);
bb.x1 = std::max(bb.x1, x);
bb.y0 = std::min(bb.y0, y);
bb.y1 = std::max(bb.y1, y);
};
extend(dst_x, dst_y);
if (dsp_wires.count(src) || dsp_wires.count(dst)) {
bb.x0 = std::max<int>(0, bb.x0 - 6);
bb.x1 = std::min<int>(chip_info->width, bb.x1 + 6);
}
if (lram_wires.count(src) || lram_wires.count(dst)) {
bb.y0 = std::max<int>(0, bb.y0 - 7);
bb.y1 = std::min<int>(chip_info->width, bb.y1 + 7);
}
return bb;
}
// -----------------------------------------------------------------------
bool Arch::place()
{
std::string placer = str_or_default(settings, id("placer"), defaultPlacer);
if (placer == "heap") {
PlacerHeapCfg cfg(getCtx());
cfg.ioBufTypes.insert(id_SEIO33_CORE);
cfg.ioBufTypes.insert(id_SEIO18_CORE);
cfg.ioBufTypes.insert(id_OSC_CORE);
cfg.cellGroups.emplace_back();
cfg.cellGroups.back().insert({id_OXIDE_COMB});
cfg.cellGroups.back().insert({id_OXIDE_FF});
cfg.beta = 0.5;
cfg.criticalityExponent = 7;
if (!placer_heap(getCtx(), cfg))
return false;
} else if (placer == "sa") {
if (!placer1(getCtx(), Placer1Cfg(getCtx())))
return false;
} else {
log_error("Nexus architecture does not support placer '%s'\n", placer.c_str());
}
post_place_opt();
getCtx()->attrs[getCtx()->id("step")] = std::string("place");
archInfoToAttributes();
return true;
}
void Arch::pre_routing()
{
for (auto cell : sorted(cells)) {
CellInfo *ci = cell.second;
if (ci->type == id_MULT9_CORE || ci->type == id_PREADD9_CORE || ci->type == id_MULT18_CORE ||
ci->type == id_MULT18X36_CORE || ci->type == id_MULT36_CORE || ci->type == id_REG18_CORE ||
ci->type == id_ACC54_CORE) {
for (auto port : sorted_ref(ci->ports)) {
WireId wire = getBelPinWire(ci->bel, port.first);
if (wire != WireId())
dsp_wires.insert(wire);
}
}
if (ci->type == id_LRAM_CORE) {
for (auto port : sorted_ref(ci->ports)) {
WireId wire = getBelPinWire(ci->bel, port.first);
if (wire != WireId())
lram_wires.insert(wire);
}
}
}
}
bool Arch::route()
{
assign_budget(getCtx(), true);
pre_routing();
route_globals();
std::string router = str_or_default(settings, id("router"), defaultRouter);
bool result;
if (router == "router1") {
result = router1(getCtx(), Router1Cfg(getCtx()));
} else if (router == "router2") {
router2(getCtx(), Router2Cfg(getCtx()));
result = true;
} else {
log_error("Nexus architecture does not support router '%s'\n", router.c_str());
}
getCtx()->attrs[getCtx()->id("step")] = std::string("route");
archInfoToAttributes();
return result;
}
// -----------------------------------------------------------------------
CellPinMux Arch::get_cell_pinmux(const CellInfo *cell, IdString pin) const
{
IdString param = id(stringf("%sMUX", pin.c_str(this)));
auto fnd_param = cell->params.find(param);
if (fnd_param == cell->params.end())
return PINMUX_SIG;
const std::string &pm = fnd_param->second.as_string();
if (pm == "0")
return PINMUX_0;
else if (pm == "1")
return PINMUX_1;
else if (pm == "INV")
return PINMUX_INV;
else if (pm == pin.c_str(this))
return PINMUX_SIG;
else {
log_error("Invalid %s setting '%s' for cell '%s'\n", nameOf(param), pm.c_str(), nameOf(cell));
NPNR_ASSERT_FALSE("unreachable");
}
}
void Arch::set_cell_pinmux(CellInfo *cell, IdString pin, CellPinMux state)
{
IdString param = id(stringf("%sMUX", pin.c_str(this)));
switch (state) {
case PINMUX_SIG:
cell->params.erase(param);
break;
case PINMUX_0:
cell->params[param] = std::string("0");
break;
case PINMUX_1:
cell->params[param] = std::string("1");
break;
case PINMUX_INV:
cell->params[param] = std::string("INV");
break;
default:
NPNR_ASSERT_FALSE("unreachable");
}
}
// -----------------------------------------------------------------------
const PadInfoPOD *Arch::get_pkg_pin_data(const std::string &pin) const
{
for (auto &pad : chip_info->pads) {
if (pin == pad.pins[package_idx].get())
return &pad;
}
return nullptr;
}
Loc Arch::get_pad_loc(const PadInfoPOD *pad) const
{
Loc loc;
switch (pad->side) {
case PIO_LEFT:
loc.x = 0;
loc.y = pad->offset;
break;
case PIO_RIGHT:
loc.x = chip_info->width - 1;
loc.y = pad->offset;
break;
case PIO_TOP:
loc.x = pad->offset;
loc.y = 0;
break;
case PIO_BOTTOM:
loc.x = pad->offset;
loc.y = chip_info->height - 1;
}
loc.z = pad->pio_index;
return loc;
}
BelId Arch::get_pad_pio_bel(const PadInfoPOD *pad) const
{
if (pad == nullptr || pad->offset == -1)
return BelId();
return getBelByLocation(get_pad_loc(pad));
}
const PadInfoPOD *Arch::get_bel_pad(BelId bel) const
{
Loc loc = getBelLocation(bel);
int side = -1, offset = -1;
// Convert (x, y) to (side, offset)
if (loc.x == 0) {
side = PIO_LEFT;
offset = loc.y;
} else if (loc.x == (chip_info->width - 1)) {
side = PIO_RIGHT;
offset = loc.y;
} else if (loc.y == 0) {
side = PIO_TOP;
offset = loc.x;
} else if (loc.y == (chip_info->height - 1)) {
side = PIO_BOTTOM;
offset = loc.x;
} else {
return nullptr;
}
// Lookup in the list of pads
for (auto &pad : chip_info->pads) {
if (pad.side == side && pad.offset == offset && pad.pio_index == loc.z)
return &pad;
}
return nullptr;
}
std::string Arch::get_pad_functions(const PadInfoPOD *pad) const
{
std::string s;
for (auto f : pad->func_strs) {
if (!s.empty())
s += '/';
s += IdString(f).str(this);
}
return s;
}
// -----------------------------------------------------------------------
// Helper for cell timing lookups
namespace {
template <typename Tres, typename Tgetter, typename Tkey>
int db_binary_search(const Tres *list, int count, Tgetter key_getter, Tkey key)
{
if (count < 7) {
for (int i = 0; i < count; i++) {
if (key_getter(list[i]) == key) {
return i;
}
}
} else {
int b = 0, e = count - 1;
while (b <= e) {
int i = (b + e) / 2;
if (key_getter(list[i]) == key) {
return i;
}
if (key_getter(list[i]) > key)
e = i - 1;
else
b = i + 1;
}
}
return -1;
}
} // namespace
bool Arch::is_dsp_cell(const CellInfo *cell) const
{
return cell->type == id_MULT18_CORE || cell->type == id_MULT18X36_CORE || cell->type == id_MULT36_CORE ||
cell->type == id_PREADD9_CORE || cell->type == id_REG18_CORE || cell->type == id_MULT9_CORE;
}
int Arch::get_cell_timing_idx(IdString cell_type, IdString cell_variant) const
{
return db_binary_search(
speed_grade->cell_types.get(), speed_grade->cell_types.size(),
[](const CellTimingPOD &ct) { return std::make_pair(ct.cell_type, ct.cell_variant); },
std::make_pair(cell_type.index, cell_variant.index));
}
bool Arch::lookup_cell_delay(int type_idx, IdString from_port, IdString to_port, DelayQuad &delay) const
{
NPNR_ASSERT(type_idx != -1);
const auto &ct = speed_grade->cell_types[type_idx];
int dly_idx = db_binary_search(
ct.prop_delays.get(), ct.prop_delays.size(),
[](const CellPropDelayPOD &pd) { return std::make_pair(pd.to_port, pd.from_port); },
std::make_pair(to_port.index, from_port.index));
if (dly_idx == -1)
return false;
delay = DelayQuad(ct.prop_delays[dly_idx].min_delay, ct.prop_delays[dly_idx].max_delay);
return true;
}
void Arch::lookup_cell_setuphold(int type_idx, IdString from_port, IdString clock, DelayPair &setup,
DelayPair &hold) const
{
NPNR_ASSERT(type_idx != -1);
const auto &ct = speed_grade->cell_types[type_idx];
int dly_idx = db_binary_search(
ct.setup_holds.get(), ct.setup_holds.size(),
[](const CellSetupHoldPOD &sh) { return std::make_pair(sh.sig_port, sh.clock_port); },
std::make_pair(from_port.index, clock.index));
NPNR_ASSERT(dly_idx != -1);
setup.min_delay = ct.setup_holds[dly_idx].min_setup;
setup.max_delay = ct.setup_holds[dly_idx].max_setup;
hold.min_delay = ct.setup_holds[dly_idx].min_hold;
hold.max_delay = ct.setup_holds[dly_idx].max_hold;
}
void Arch::lookup_cell_setuphold_clock(int type_idx, IdString from_port, IdString &clock, DelayPair &setup,
DelayPair &hold) const
{
NPNR_ASSERT(type_idx != -1);
const auto &ct = speed_grade->cell_types[type_idx];
int dly_idx = db_binary_search(
ct.setup_holds.get(), ct.setup_holds.size(), [](const CellSetupHoldPOD &sh) { return sh.sig_port; },
from_port.index);
NPNR_ASSERT(dly_idx != -1);
clock = IdString(ct.setup_holds[dly_idx].clock_port);
setup.min_delay = ct.setup_holds[dly_idx].min_setup;
setup.max_delay = ct.setup_holds[dly_idx].max_setup;
hold.min_delay = ct.setup_holds[dly_idx].min_hold;
hold.max_delay = ct.setup_holds[dly_idx].max_hold;
}
void Arch::lookup_cell_clock_out(int type_idx, IdString to_port, IdString &clock, DelayQuad &delay) const
{
NPNR_ASSERT(type_idx != -1);
const auto &ct = speed_grade->cell_types[type_idx];
int dly_idx = db_binary_search(
ct.prop_delays.get(), ct.prop_delays.size(), [](const CellPropDelayPOD &pd) { return pd.to_port; },
to_port.index);
NPNR_ASSERT(dly_idx != -1);
clock = IdString(ct.prop_delays[dly_idx].from_port);
delay = DelayQuad(ct.prop_delays[dly_idx].min_delay, ct.prop_delays[dly_idx].max_delay);
}
TimingPortClass Arch::lookup_port_type(int type_idx, IdString port, PortType dir, IdString clock) const
{
if (dir == PORT_IN) {
NPNR_ASSERT(type_idx != -1);
const auto &ct = speed_grade->cell_types[type_idx];
// If a setup-hold entry exists, then this is a register input
int sh_idx = db_binary_search(
ct.setup_holds.get(), ct.setup_holds.size(),
[](const CellSetupHoldPOD &sh) { return std::make_pair(sh.sig_port, sh.clock_port); },
std::make_pair(port.index, clock.index));
return (sh_idx != -1) ? TMG_REGISTER_INPUT : TMG_COMB_INPUT;
} else {
DelayQuad dly;
// If a clock-to-out entry exists, then this is a register output
return lookup_cell_delay(type_idx, clock, port, dly) ? TMG_REGISTER_OUTPUT : TMG_COMB_OUTPUT;
}
}
// -----------------------------------------------------------------------
#ifdef WITH_HEAP
const std::string Arch::defaultPlacer = "heap";
#else
const std::string Arch::defaultPlacer = "sa";
#endif
const std::vector<std::string> Arch::availablePlacers = {"sa",
#ifdef WITH_HEAP
"heap"
#endif
};
const std::string Arch::defaultRouter = "router2";
const std::vector<std::string> Arch::availableRouters = {"router1", "router2"};
NEXTPNR_NAMESPACE_END
|