1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
|
/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2020 David Shah <dave@ds0.me>
*
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#ifndef NEXTPNR_H
#error Include "arch.h" via "nextpnr.h" only.
#endif
#include <boost/iostreams/device/mapped_file.hpp>
#include <iostream>
NEXTPNR_NAMESPACE_BEGIN
template <typename T> struct RelPtr
{
int32_t offset;
// void set(const T *ptr) {
// offset = reinterpret_cast<const char*>(ptr) -
// reinterpret_cast<const char*>(this);
// }
const T *get() const { return reinterpret_cast<const T *>(reinterpret_cast<const char *>(this) + offset); }
const T &operator[](size_t index) const { return get()[index]; }
const T &operator*() const { return *(get()); }
const T *operator->() const { return get(); }
};
/*
Fully deduplicated database
There are two key data structures in the database:
Locations (aka tile but not called this to avoid confusion
with Lattice terminology), are a (x, y) location.
Local wires; pips and bels are all stored once per variety of location
(called a location type) with a separate grid containing the location type
at a (x, y) coordinate.
Each location also has _neighbours_, other locations with interconnected
wires. The set of neighbours for a location are called a _neighbourhood_.
Each variety of _neighbourhood_ for a location type is also stored once,
using relative coordinates.
*/
NPNR_PACKED_STRUCT(struct BelWirePOD {
uint32_t port;
uint16_t type;
uint16_t wire_index; // wire index in tile
});
NPNR_PACKED_STRUCT(struct BelInfoPOD {
int32_t name; // bel name in tile IdString
int32_t type; // bel type IdString
int16_t rel_x, rel_y; // bel location relative to parent
int32_t z; // bel location absolute Z
RelPtr<BelWirePOD> ports; // ports, sorted by name IdString
int32_t num_ports; // number of ports
});
NPNR_PACKED_STRUCT(struct BelPinPOD {
uint32_t bel; // bel index in tile
int32_t pin; // bel pin name IdString
});
enum TileWireFlags : uint32_t
{
WIRE_PRIMARY = 0x80000000,
};
NPNR_PACKED_STRUCT(struct LocWireInfoPOD {
int32_t name; // wire name in tile IdString
uint32_t flags;
int32_t num_uphill, num_downhill, num_bpins;
// Note this pip lists exclude neighbourhood pips
RelPtr<int32_t> pips_uh, pips_dh; // list of uphill/downhill pip indices in tile
RelPtr<BelPinPOD> bel_pins;
});
enum PipFlags
{
PIP_FIXED_CONN = 0x8000,
};
NPNR_PACKED_STRUCT(struct PipInfoPOD {
uint16_t from_wire, to_wire;
uint16_t flags;
uint16_t timing_class;
int32_t tile_type;
});
enum RelLocType : uint8_t
{
REL_LOC_XY = 0,
REL_LOC_GLOBAL = 1,
REL_LOC_BRANCH = 2,
REL_LOC_BRANCH_L = 3,
REL_LOC_BRANCH_R = 4,
REL_LOC_SPINE = 5,
REL_LOC_HROW = 6,
REL_LOC_VCC = 7,
};
enum ArcFlags
{
LOGICAL_TO_PRIMARY = 0x80,
PHYSICAL_DOWNHILL = 0x08,
};
NPNR_PACKED_STRUCT(struct RelWireInfoPOD {
int16_t rel_x, rel_y;
uint16_t wire_index;
uint8_t loc_type;
uint8_t arc_flags;
});
NPNR_PACKED_STRUCT(struct WireNeighboursInfoPOD {
uint32_t num_nwires;
RelPtr<RelWireInfoPOD> neigh_wires;
});
NPNR_PACKED_STRUCT(struct LocNeighourhoodPOD { RelPtr<WireNeighboursInfoPOD> wire_neighbours; });
NPNR_PACKED_STRUCT(struct LocTypePOD {
uint32_t num_bels, num_wires, num_pips, num_nhtypes;
RelPtr<BelInfoPOD> bels;
RelPtr<LocWireInfoPOD> wires;
RelPtr<PipInfoPOD> pips;
RelPtr<LocNeighourhoodPOD> neighbourhoods;
});
// A physical (bitstream) tile; of which there may be more than
// one in a logical tile (XY grid location).
// Tile name is reconstructed {prefix}R{row}C{col}:{tiletype}
NPNR_PACKED_STRUCT(struct PhysicalTileInfoPOD {
int32_t prefix; // tile name prefix IdString
int32_t tiletype; // tile type IdString
});
enum LocFlags : uint32_t
{
LOC_LOGIC = 0x000001,
LOC_IO18 = 0x000002,
LOC_IO33 = 0x000004,
LOC_BRAM = 0x000008,
LOC_DSP = 0x000010,
LOC_IP = 0x000020,
LOC_CIB = 0x000040,
LOC_TAP = 0x001000,
LOC_SPINE = 0x002000,
LOC_TRUNK = 0x004000,
LOC_MIDMUX = 0x008000,
LOC_CMUX = 0x010000,
};
NPNR_PACKED_STRUCT(struct GridLocationPOD {
uint32_t loc_type;
uint32_t loc_flags;
uint16_t neighbourhood_type;
uint16_t num_phys_tiles;
RelPtr<PhysicalTileInfoPOD> phys_tiles;
});
enum PioSide : uint8_t
{
PIO_LEFT = 0,
PIO_RIGHT = 1,
PIO_TOP = 2,
PIO_BOTTOM = 3
};
enum PioDqsFunction : uint8_t
{
PIO_DQS_DQ = 0,
PIO_DQS_DQS = 1,
PIO_DQS_DQSN = 2
};
NPNR_PACKED_STRUCT(struct PackageInfoPOD {
RelPtr<char> full_name; // full package name, e.g. CABGA400
RelPtr<char> short_name; // name used in part number, e.g. BG400
});
NPNR_PACKED_STRUCT(struct PadInfoPOD {
int16_t offset; // position offset of tile along side (-1 if not a regular PIO)
int8_t side; // PIO side (see PioSide enum)
int8_t pio_index; // index within IO tile
int16_t bank; // IO bank
int16_t dqs_group; // DQS group offset
int8_t dqs_func; // DQS function
int8_t vref_index; // VREF index in bank, or -1 if N/A
uint16_t num_funcs; // length of special function list
uint16_t padding; // padding for alignment
RelPtr<uint32_t> func_strs; // list of special function IdStrings
RelPtr<RelPtr<char>> pins; // package index --> package pin name
});
NPNR_PACKED_STRUCT(struct GlobalBranchInfoPOD {
uint16_t branch_col;
uint16_t from_col;
uint16_t tap_driver_col;
uint16_t tap_side;
uint16_t to_col;
uint16_t padding;
});
NPNR_PACKED_STRUCT(struct GlobalSpineInfoPOD {
uint16_t from_row;
uint16_t to_row;
uint16_t spine_row;
uint16_t padding;
});
NPNR_PACKED_STRUCT(struct GlobalHrowInfoPOD {
uint16_t hrow_col;
uint16_t padding;
uint32_t num_spine_cols;
RelPtr<uint32_t> spine_cols;
});
NPNR_PACKED_STRUCT(struct GlobalInfoPOD {
uint32_t num_branches, num_spines, num_hrows;
RelPtr<GlobalBranchInfoPOD> branches;
RelPtr<GlobalSpineInfoPOD> spines;
RelPtr<GlobalHrowInfoPOD> hrows;
});
NPNR_PACKED_STRUCT(struct ChipInfoPOD {
RelPtr<char> device_name;
uint16_t width;
uint16_t height;
uint32_t num_tiles;
uint32_t num_pads;
uint32_t num_packages;
RelPtr<GridLocationPOD> grid;
RelPtr<GlobalInfoPOD> globals;
RelPtr<PadInfoPOD> pads;
RelPtr<PackageInfoPOD> packages;
});
NPNR_PACKED_STRUCT(struct IdStringDBPOD {
uint32_t num_file_ids; // number of IDs loaded from constids.inc
uint32_t num_bba_ids; // number of IDs in BBA file
RelPtr<RelPtr<char>> bba_id_strs;
});
// Timing structures are generally sorted using IdString indices as keys for fast binary searches
// All delays are integer picoseconds
// Sort key: (to_port, from_port) for binary search by IdString
NPNR_PACKED_STRUCT(struct CellPropDelayPOD {
int32_t from_port;
int32_t to_port;
int32_t min_delay;
int32_t max_delay;
});
// Sort key: (sig_port, clock_port) for binary search by IdString
NPNR_PACKED_STRUCT(struct CellSetupHoldPOD {
int32_t sig_port;
int32_t clock_port;
int32_t min_setup;
int32_t max_setup;
int32_t min_hold;
int32_t max_hold;
});
// Sort key: (cell_type, cell_variant) for binary search by IdString
NPNR_PACKED_STRUCT(struct CellTimingPOD {
int32_t cell_type;
int32_t cell_variant;
int32_t num_prop_delays;
int32_t num_setup_holds;
RelPtr<CellPropDelayPOD> prop_delays;
RelPtr<CellSetupHoldPOD> setup_holds;
});
NPNR_PACKED_STRUCT(struct PipTimingPOD {
int32_t min_delay;
int32_t max_delay;
// fanout adder seemingly unused by nexus, reserved for future ECP5 etc support
int32_t min_fanout_adder;
int32_t max_fanout_adder;
});
NPNR_PACKED_STRUCT(struct SpeedGradePOD {
RelPtr<char> name;
int32_t num_cell_types;
int32_t num_pip_classes;
RelPtr<CellTimingPOD> cell_types;
RelPtr<PipTimingPOD> pip_classes;
});
NPNR_PACKED_STRUCT(struct DatabasePOD {
uint32_t version;
uint32_t num_chips;
uint32_t num_loctypes;
uint32_t num_speed_grades;
RelPtr<char> family;
RelPtr<ChipInfoPOD> chips;
RelPtr<LocTypePOD> loctypes;
RelPtr<SpeedGradePOD> speed_grades;
RelPtr<IdStringDBPOD> ids;
});
// -----------------------------------------------------------------------
// Helper functions for database access
namespace {
template <typename Id> const LocTypePOD &chip_loc_data(const DatabasePOD *db, const ChipInfoPOD *chip, const Id &id)
{
return db->loctypes[chip->grid[id.tile].loc_type];
}
template <typename Id>
const LocNeighourhoodPOD &chip_nh_data(const DatabasePOD *db, const ChipInfoPOD *chip, const Id &id)
{
auto &t = chip->grid[id.tile];
return db->loctypes[t.loc_type].neighbourhoods[t.neighbourhood_type];
}
inline const BelInfoPOD &chip_bel_data(const DatabasePOD *db, const ChipInfoPOD *chip, BelId id)
{
return chip_loc_data(db, chip, id).bels[id.index];
}
inline const LocWireInfoPOD &chip_wire_data(const DatabasePOD *db, const ChipInfoPOD *chip, WireId id)
{
return chip_loc_data(db, chip, id).wires[id.index];
}
inline const PipInfoPOD &chip_pip_data(const DatabasePOD *db, const ChipInfoPOD *chip, PipId id)
{
return chip_loc_data(db, chip, id).pips[id.index];
}
inline bool chip_rel_tile(const ChipInfoPOD *chip, int32_t base, int16_t rel_x, int16_t rel_y, int32_t &next)
{
int32_t curr_x = base % chip->width;
int32_t curr_y = base / chip->width;
int32_t new_x = curr_x + rel_x;
int32_t new_y = curr_y + rel_y;
if (new_x < 0 || new_x >= chip->width)
return false;
if (new_y < 0 || new_y >= chip->height)
return false;
next = new_y * chip->width + new_x;
return true;
}
inline int32_t chip_tile_from_xy(const ChipInfoPOD *chip, int32_t x, int32_t y) { return y * chip->width + x; }
inline bool chip_get_branch_loc(const ChipInfoPOD *chip, int32_t x, int32_t &branch_x)
{
for (int i = 0; i < int(chip->globals->num_branches); i++) {
auto &b = chip->globals->branches[i];
if (x >= b.from_col && x <= b.to_col) {
branch_x = b.branch_col;
return true;
}
}
return false;
}
inline bool chip_get_spine_loc(const ChipInfoPOD *chip, int32_t x, int32_t y, int32_t &spine_x, int32_t &spine_y)
{
bool y_found = false;
for (int i = 0; i < int(chip->globals->num_spines); i++) {
auto &s = chip->globals->spines[i];
if (y >= s.from_row && y <= s.to_row) {
spine_y = s.spine_row;
y_found = true;
break;
}
}
if (!y_found)
return false;
for (int i = 0; i < int(chip->globals->num_hrows); i++) {
auto &hr = chip->globals->hrows[i];
for (int j = 0; j < int(hr.num_spine_cols); j++) {
int32_t sc = hr.spine_cols[j];
if (std::abs(sc - x) < 3) {
spine_x = sc;
return true;
}
}
}
return false;
}
inline bool chip_get_hrow_loc(const ChipInfoPOD *chip, int32_t x, int32_t y, int32_t &hrow_x, int32_t &hrow_y)
{
bool y_found = false;
for (int i = 0; i < int(chip->globals->num_spines); i++) {
auto &s = chip->globals->spines[i];
if (std::abs(y - s.spine_row) < 3) {
hrow_y = s.spine_row;
y_found = true;
break;
}
}
if (!y_found)
return false;
for (int i = 0; i < int(chip->globals->num_hrows); i++) {
auto &hr = chip->globals->hrows[i];
for (int j = 0; j < int(hr.num_spine_cols); j++) {
int32_t sc = hr.spine_cols[j];
if (std::abs(sc - x) < 3) {
hrow_x = hr.hrow_col;
return true;
}
}
}
return false;
}
inline bool chip_branch_tile(const ChipInfoPOD *chip, int32_t x, int32_t y, int32_t &next)
{
int32_t branch_x;
if (!chip_get_branch_loc(chip, x, branch_x))
return false;
next = chip_tile_from_xy(chip, branch_x, y);
return true;
}
inline bool chip_rel_loc_tile(const ChipInfoPOD *chip, int32_t base, const RelWireInfoPOD &rel, int32_t &next)
{
int32_t curr_x = base % chip->width;
int32_t curr_y = base / chip->width;
switch (rel.loc_type) {
case REL_LOC_XY:
return chip_rel_tile(chip, base, rel.rel_x, rel.rel_y, next);
case REL_LOC_BRANCH:
return chip_branch_tile(chip, curr_x, curr_y, next);
case REL_LOC_BRANCH_L:
return chip_branch_tile(chip, curr_x - 2, curr_y, next);
case REL_LOC_BRANCH_R:
return chip_branch_tile(chip, curr_x + 2, curr_y, next);
case REL_LOC_SPINE: {
int32_t spine_x, spine_y;
if (!chip_get_spine_loc(chip, curr_x, curr_y, spine_x, spine_y))
return false;
next = chip_tile_from_xy(chip, spine_x, spine_y);
return true;
}
case REL_LOC_HROW: {
int32_t hrow_x, hrow_y;
if (!chip_get_hrow_loc(chip, curr_x, curr_y, hrow_x, hrow_y))
return false;
next = chip_tile_from_xy(chip, hrow_x, hrow_y);
return true;
}
case REL_LOC_GLOBAL:
case REL_LOC_VCC:
next = 0;
return true;
default:
return false;
}
}
inline WireId chip_canonical_wire(const DatabasePOD *db, const ChipInfoPOD *chip, int32_t tile, uint16_t index)
{
WireId wire{tile, index};
// `tile` is the primary location for the wire, so ID is already canonical
if (chip_wire_data(db, chip, wire).flags & WIRE_PRIMARY)
return wire;
// Not primary; find the primary location which forms the canonical ID
auto &nd = chip_nh_data(db, chip, wire);
auto &wn = nd.wire_neighbours[index];
for (size_t i = 0; i < wn.num_nwires; i++) {
auto &nw = wn.neigh_wires[i];
if (nw.arc_flags & LOGICAL_TO_PRIMARY) {
if (chip_rel_loc_tile(chip, tile, nw, wire.tile)) {
wire.index = nw.wire_index;
break;
}
}
}
return wire;
}
inline bool chip_wire_is_primary(const DatabasePOD *db, const ChipInfoPOD *chip, int32_t tile, uint16_t index)
{
WireId wire{tile, index};
// `tile` is the primary location for the wire, so ID is already canonical
if (chip_wire_data(db, chip, wire).flags & WIRE_PRIMARY)
return true;
// Not primary; find the primary location which forms the canonical ID
auto &nd = chip_nh_data(db, chip, wire);
auto &wn = nd.wire_neighbours[index];
for (size_t i = 0; i < wn.num_nwires; i++) {
auto &nw = wn.neigh_wires[i];
if (nw.arc_flags & LOGICAL_TO_PRIMARY) {
if (chip_rel_loc_tile(chip, tile, nw, wire.tile)) {
return false;
}
}
}
return true;
}
} // namespace
// -----------------------------------------------------------------------
struct BelIterator
{
const DatabasePOD *db;
const ChipInfoPOD *chip;
int cursor_index;
int cursor_tile;
BelIterator operator++()
{
cursor_index++;
while (cursor_tile < int(chip->num_tiles) &&
cursor_index >= int(db->loctypes[chip->grid[cursor_tile].loc_type].num_bels)) {
cursor_index = 0;
cursor_tile++;
}
return *this;
}
BelIterator operator++(int)
{
BelIterator prior(*this);
++(*this);
return prior;
}
bool operator!=(const BelIterator &other) const
{
return cursor_index != other.cursor_index || cursor_tile != other.cursor_tile;
}
bool operator==(const BelIterator &other) const
{
return cursor_index == other.cursor_index && cursor_tile == other.cursor_tile;
}
BelId operator*() const
{
BelId ret;
ret.tile = cursor_tile;
ret.index = cursor_index;
return ret;
}
};
struct BelRange
{
BelIterator b, e;
BelIterator begin() const { return b; }
BelIterator end() const { return e; }
};
// -----------------------------------------------------------------------
struct WireIterator
{
const DatabasePOD *db;
const ChipInfoPOD *chip;
int cursor_index;
int cursor_tile = 0;
WireIterator operator++()
{
// Iterate over nodes first, then tile wires that aren't nodes
do {
cursor_index++;
while (cursor_tile < int(chip->num_tiles) &&
cursor_index >= int(db->loctypes[chip->grid[cursor_tile].loc_type].num_wires)) {
cursor_index = 0;
cursor_tile++;
}
} while (cursor_tile < int(chip->num_tiles) && !chip_wire_is_primary(db, chip, cursor_tile, cursor_index));
return *this;
}
WireIterator operator++(int)
{
WireIterator prior(*this);
++(*this);
return prior;
}
bool operator!=(const WireIterator &other) const
{
return cursor_index != other.cursor_index || cursor_tile != other.cursor_tile;
}
bool operator==(const WireIterator &other) const
{
return cursor_index == other.cursor_index && cursor_tile == other.cursor_tile;
}
WireId operator*() const
{
WireId ret;
ret.tile = cursor_tile;
ret.index = cursor_index;
return ret;
}
};
struct WireRange
{
WireIterator b, e;
WireIterator begin() const { return b; }
WireIterator end() const { return e; }
};
// Iterate over all neighour wires for a wire
struct NeighWireIterator
{
const DatabasePOD *db;
const ChipInfoPOD *chip;
WireId baseWire;
int cursor = -1;
void operator++()
{
auto &wn = chip_nh_data(db, chip, baseWire).wire_neighbours[baseWire.index];
int32_t tile;
do
cursor++;
while (cursor < int(wn.num_nwires) &&
((wn.neigh_wires[cursor].arc_flags & LOGICAL_TO_PRIMARY) ||
!chip_rel_tile(chip, baseWire.tile, wn.neigh_wires[cursor].rel_x, wn.neigh_wires[cursor].rel_y, tile)));
}
bool operator!=(const NeighWireIterator &other) const { return cursor != other.cursor; }
// Returns a *denormalised* identifier that may be a non-primary wire (and thus should _not_ be used
// as a WireId in general as it will break invariants)
WireId operator*() const
{
if (cursor == -1) {
return baseWire;
} else {
auto &nw = chip_nh_data(db, chip, baseWire).wire_neighbours[baseWire.index].neigh_wires[cursor];
WireId result;
result.index = nw.wire_index;
if (!chip_rel_tile(chip, baseWire.tile, nw.rel_x, nw.rel_y, result.tile))
return WireId();
return result;
}
}
};
struct NeighWireRange
{
NeighWireIterator b, e;
NeighWireIterator begin() const { return b; }
NeighWireIterator end() const { return e; }
};
// -----------------------------------------------------------------------
struct AllPipIterator
{
const DatabasePOD *db;
const ChipInfoPOD *chip;
int cursor_index;
int cursor_tile;
AllPipIterator operator++()
{
cursor_index++;
while (cursor_tile < int(chip->num_tiles) &&
cursor_index >= int(db->loctypes[chip->grid[cursor_tile].loc_type].num_pips)) {
cursor_index = 0;
cursor_tile++;
}
return *this;
}
AllPipIterator operator++(int)
{
AllPipIterator prior(*this);
++(*this);
return prior;
}
bool operator!=(const AllPipIterator &other) const
{
return cursor_index != other.cursor_index || cursor_tile != other.cursor_tile;
}
bool operator==(const AllPipIterator &other) const
{
return cursor_index == other.cursor_index && cursor_tile == other.cursor_tile;
}
PipId operator*() const
{
PipId ret;
ret.tile = cursor_tile;
ret.index = cursor_index;
return ret;
}
};
struct AllPipRange
{
AllPipIterator b, e;
AllPipIterator begin() const { return b; }
AllPipIterator end() const { return e; }
};
// -----------------------------------------------------------------------
struct UpDownhillPipIterator
{
const DatabasePOD *db;
const ChipInfoPOD *chip;
NeighWireIterator twi, twi_end;
int cursor = -1;
bool uphill = false;
void operator++()
{
cursor++;
while (true) {
if (!(twi != twi_end))
break;
WireId w = *twi;
auto &tile = db->loctypes[chip->grid[w.tile].loc_type];
if (cursor < int(uphill ? tile.wires[w.index].num_uphill : tile.wires[w.index].num_downhill))
break;
++twi;
cursor = 0;
}
}
bool operator!=(const UpDownhillPipIterator &other) const { return twi != other.twi || cursor != other.cursor; }
PipId operator*() const
{
PipId ret;
WireId w = *twi;
ret.tile = w.tile;
auto &tile = db->loctypes[chip->grid[w.tile].loc_type];
ret.index = uphill ? tile.wires[w.index].pips_uh[cursor] : tile.wires[w.index].pips_dh[cursor];
return ret;
}
};
struct UpDownhillPipRange
{
UpDownhillPipIterator b, e;
UpDownhillPipIterator begin() const { return b; }
UpDownhillPipIterator end() const { return e; }
};
struct WireBelPinIterator
{
const DatabasePOD *db;
const ChipInfoPOD *chip;
NeighWireIterator twi, twi_end;
int cursor = -1;
void operator++()
{
cursor++;
while (true) {
if (!(twi != twi_end))
break;
if (cursor < chip_wire_data(db, chip, *twi).num_bpins)
break;
++twi;
cursor = 0;
}
}
bool operator!=(const WireBelPinIterator &other) const { return twi != other.twi || cursor != other.cursor; }
BelPin operator*() const
{
BelPin ret;
WireId w = *twi;
auto &bp = chip_wire_data(db, chip, w).bel_pins[cursor];
ret.bel.tile = w.tile;
ret.bel.index = bp.bel;
ret.pin = IdString(bp.pin);
return ret;
}
};
struct WireBelPinRange
{
WireBelPinIterator b, e;
WireBelPinIterator begin() const { return b; }
WireBelPinIterator end() const { return e; }
};
// -----------------------------------------------------------------------
// This enum captures different 'styles' of cell pins
// This is a combination of the modes available for a pin (tied high, low or inverted)
// and the default value to set it to not connected
enum CellPinStyle
{
PINOPT_NONE = 0x0, // no options, just signal as-is
PINOPT_LO = 0x1, // can be tied low
PINOPT_HI = 0x2, // can be tied high
PINOPT_INV = 0x4, // can be inverted
PINOPT_LOHI = 0x3, // can be tied low or high
PINOPT_LOHIINV = 0x7, // can be tied low or high; or inverted
PINOPT_MASK = 0x7,
PINDEF_NONE = 0x00, // leave disconnected
PINDEF_0 = 0x10, // connect to 0 if not used
PINDEF_1 = 0x20, // connect to 1 if not used
PINDEF_MASK = 0x30,
PINGLB_CLK = 0x100, // pin is a 'clock' for global purposes
PINGLB_MASK = 0x100,
PINBIT_GATED = 0x1000, // pin must be enabled in bitstream if used
PINBIT_1 = 0x2000, // pin has an explicit bit that must be set if tied to 1
PINBIT_CIBMUX = 0x4000, // pin's CIBMUX must be floating for pin to be 1
PINSTYLE_NONE = 0x0000, // default
PINSTYLE_CIB = 0x4012, // 'CIB' signal, floats high but explicitly zeroed if not used
PINSTYLE_CLK = 0x0107, // CLK type signal, invertible and defaults to disconnected
PINSTYLE_CE = 0x0027, // CE type signal, invertible and defaults to enabled
PINSTYLE_LSR = 0x0017, // LSR type signal, invertible and defaults to not reset
PINSTYLE_DEDI = 0x0000, // dedicated signals, leave alone
PINSTYLE_PU = 0x4022, // signals that float high and default high
PINSTYLE_T = 0x4027, // PIO 'T' signal
PINSTYLE_ADLSB = 0x4017, // special case of the EBR address MSBs
PINSTYLE_INV_PD = 0x0017, // invertible, pull down by default
PINSTYLE_INV_PU = 0x4027, // invertible, pull up by default
PINSTYLE_IOL_CE = 0x2027, // CE type signal, with explicit 'const-1' config bit
PINSTYLE_GATE = 0x1011, // gated signal that defaults to 0
};
// This represents the mux options for a pin
enum CellPinMux
{
PINMUX_SIG = 0,
PINMUX_0 = 1,
PINMUX_1 = 2,
PINMUX_INV = 3,
};
// This represents the various kinds of IO pins
enum IOStyle
{
IOBANK_WR = 0x1, // needs wide range IO bank
IOBANK_HP = 0x2, // needs high perf IO bank
IOMODE_REF = 0x10, // IO is referenced
IOMODE_DIFF = 0x20, // IO is true differential
IOMODE_PSEUDO_DIFF = 0x40, // IO is pseduo differential
IOSTYLE_SE_WR = 0x01, // single ended, wide range
IOSTYLE_SE_HP = 0x02, // single ended, high perf
IOSTYLE_PD_WR = 0x41, // pseudo diff, wide range
IOSTYLE_REF_HP = 0x12, // referenced high perf
IOSTYLE_DIFF_HP = 0x22, // differential high perf
};
struct IOTypeData
{
IOStyle style;
int vcco; // required Vcco in 10mV
};
// -----------------------------------------------------------------------
const int bba_version =
#include "bba_version.inc"
;
struct ArchArgs
{
std::string device;
};
struct Arch : BaseCtx
{
ArchArgs args;
std::string family, device, package, speed, rating, variant;
Arch(ArchArgs args);
// -------------------------------------------------
// Database references
boost::iostreams::mapped_file_source blob_file;
const DatabasePOD *db;
const ChipInfoPOD *chip_info;
const SpeedGradePOD *speed_grade;
int package_idx;
// Binding states
struct LogicTileStatus
{
struct SliceStatus
{
bool valid = true, dirty = true;
} slices[4];
struct HalfTileStatus
{
bool valid = true, dirty = true;
} halfs[2];
CellInfo *cells[32];
};
struct TileStatus
{
std::vector<CellInfo *> boundcells;
LogicTileStatus *lts = nullptr;
~TileStatus() { delete lts; }
};
std::vector<TileStatus> tileStatus;
std::unordered_map<WireId, NetInfo *> wire_to_net;
std::unordered_map<PipId, NetInfo *> pip_to_net;
// -------------------------------------------------
std::string getChipName() const;
IdString archId() const { return id("nexus"); }
ArchArgs archArgs() const { return args; }
IdString archArgsToId(ArchArgs args) const;
int getGridDimX() const { return chip_info->width; }
int getGridDimY() const { return chip_info->height; }
int getTileBelDimZ(int, int) const { return 256; }
int getTilePipDimZ(int, int) const { return 1; }
// -------------------------------------------------
BelId getBelByName(IdString name) const;
IdString getBelName(BelId bel) const
{
std::string name = "X";
name += std::to_string(bel.tile % chip_info->width);
name += "/Y";
name += std::to_string(bel.tile / chip_info->width);
name += "/";
name += nameOf(IdString(bel_data(bel).name));
return id(name);
}
uint32_t getBelChecksum(BelId bel) const { return (bel.tile << 16) ^ bel.index; }
void bindBel(BelId bel, CellInfo *cell, PlaceStrength strength)
{
NPNR_ASSERT(bel != BelId());
NPNR_ASSERT(tileStatus[bel.tile].boundcells[bel.index] == nullptr);
tileStatus[bel.tile].boundcells[bel.index] = cell;
cell->bel = bel;
cell->belStrength = strength;
refreshUiBel(bel);
if (bel_tile_is(bel, LOC_LOGIC))
update_logic_bel(bel, cell);
}
void unbindBel(BelId bel)
{
NPNR_ASSERT(bel != BelId());
NPNR_ASSERT(tileStatus[bel.tile].boundcells[bel.index] != nullptr);
if (bel_tile_is(bel, LOC_LOGIC))
update_logic_bel(bel, nullptr);
tileStatus[bel.tile].boundcells[bel.index]->bel = BelId();
tileStatus[bel.tile].boundcells[bel.index]->belStrength = STRENGTH_NONE;
tileStatus[bel.tile].boundcells[bel.index] = nullptr;
refreshUiBel(bel);
}
bool checkBelAvail(BelId bel) const
{
NPNR_ASSERT(bel != BelId());
return tileStatus[bel.tile].boundcells[bel.index] == nullptr;
}
CellInfo *getBoundBelCell(BelId bel) const
{
NPNR_ASSERT(bel != BelId());
return tileStatus[bel.tile].boundcells[bel.index];
}
CellInfo *getConflictingBelCell(BelId bel) const
{
NPNR_ASSERT(bel != BelId());
return tileStatus[bel.tile].boundcells[bel.index];
}
BelRange getBels() const
{
BelRange range;
range.b.cursor_tile = 0;
range.b.cursor_index = -1;
range.b.chip = chip_info;
range.b.db = db;
++range.b; //-1 and then ++ deals with the case of no bels in the first tile
range.e.cursor_tile = chip_info->width * chip_info->height;
range.e.cursor_index = 0;
range.e.chip = chip_info;
range.e.db = db;
return range;
}
Loc getBelLocation(BelId bel) const
{
NPNR_ASSERT(bel != BelId());
Loc loc;
loc.x = bel.tile % chip_info->width;
loc.y = bel.tile / chip_info->width;
loc.z = bel_data(bel).z;
return loc;
}
BelId getBelByLocation(Loc loc) const
{
BelId ret;
auto &t = db->loctypes[chip_info->grid[loc.y * chip_info->width + loc.x].loc_type];
if (loc.x >= 0 && loc.x < chip_info->width && loc.y >= 0 && loc.y < chip_info->height) {
for (size_t i = 0; i < t.num_bels; i++) {
if (t.bels[i].z == loc.z) {
ret.tile = loc.y * chip_info->width + loc.x;
ret.index = i;
break;
}
}
}
return ret;
}
BelRange getBelsByTile(int x, int y) const;
bool getBelGlobalBuf(BelId bel) const { return false; }
IdString getBelType(BelId bel) const
{
NPNR_ASSERT(bel != BelId());
return IdString(bel_data(bel).type);
}
std::vector<std::pair<IdString, std::string>> getBelAttrs(BelId bel) const;
WireId getBelPinWire(BelId bel, IdString pin) const;
PortType getBelPinType(BelId bel, IdString pin) const;
std::vector<IdString> getBelPins(BelId bel) const;
// -------------------------------------------------
WireId getWireByName(IdString name) const;
IdString getWireName(WireId wire) const
{
std::string name = "X";
name += std::to_string(wire.tile % chip_info->width);
name += "/Y";
name += std::to_string(wire.tile / chip_info->width);
name += "/";
name += nameOf(IdString(wire_data(wire).name));
return id(name);
}
IdString getWireType(WireId wire) const;
std::vector<std::pair<IdString, std::string>> getWireAttrs(WireId wire) const;
uint32_t getWireChecksum(WireId wire) const { return (wire.tile << 16) ^ wire.index; }
void bindWire(WireId wire, NetInfo *net, PlaceStrength strength)
{
NPNR_ASSERT(wire != WireId());
NPNR_ASSERT(wire_to_net[wire] == nullptr);
wire_to_net[wire] = net;
net->wires[wire].pip = PipId();
net->wires[wire].strength = strength;
refreshUiWire(wire);
}
void unbindWire(WireId wire)
{
NPNR_ASSERT(wire != WireId());
NPNR_ASSERT(wire_to_net[wire] != nullptr);
auto &net_wires = wire_to_net[wire]->wires;
auto it = net_wires.find(wire);
NPNR_ASSERT(it != net_wires.end());
auto pip = it->second.pip;
if (pip != PipId()) {
pip_to_net[pip] = nullptr;
}
net_wires.erase(it);
wire_to_net[wire] = nullptr;
refreshUiWire(wire);
}
bool checkWireAvail(WireId wire) const
{
NPNR_ASSERT(wire != WireId());
auto w2n = wire_to_net.find(wire);
return w2n == wire_to_net.end() || w2n->second == nullptr;
}
NetInfo *getBoundWireNet(WireId wire) const
{
NPNR_ASSERT(wire != WireId());
auto w2n = wire_to_net.find(wire);
return w2n == wire_to_net.end() ? nullptr : w2n->second;
}
NetInfo *getConflictingWireNet(WireId wire) const
{
NPNR_ASSERT(wire != WireId());
auto w2n = wire_to_net.find(wire);
return w2n == wire_to_net.end() ? nullptr : w2n->second;
}
WireId getConflictingWireWire(WireId wire) const { return wire; }
DelayInfo getWireDelay(WireId wire) const
{
DelayInfo delay;
delay.min_delay = 0;
delay.max_delay = 0;
return delay;
}
WireBelPinRange getWireBelPins(WireId wire) const
{
WireBelPinRange range;
NPNR_ASSERT(wire != WireId());
NeighWireRange nwr = neigh_wire_range(wire);
range.b.chip = chip_info;
range.b.db = db;
range.b.twi = nwr.b;
range.b.twi_end = nwr.e;
range.b.cursor = -1;
++range.b;
range.e.chip = chip_info;
range.e.db = db;
range.e.twi = nwr.e;
range.e.twi_end = nwr.e;
range.e.cursor = 0;
return range;
}
WireRange getWires() const
{
WireRange range;
range.b.chip = chip_info;
range.b.db = db;
range.b.cursor_tile = 0;
range.b.cursor_index = -1;
++range.b; //-1 and then ++ deals with the case of no wires in the first tile
range.e.chip = chip_info;
range.e.db = db;
range.e.cursor_tile = chip_info->num_tiles;
range.e.cursor_index = 0;
return range;
}
// -------------------------------------------------
PipId getPipByName(IdString name) const;
IdString getPipName(PipId pip) const;
void bindPip(PipId pip, NetInfo *net, PlaceStrength strength)
{
NPNR_ASSERT(pip != PipId());
NPNR_ASSERT(pip_to_net[pip] == nullptr);
WireId dst = canonical_wire(pip.tile, pip_data(pip).to_wire);
NPNR_ASSERT(wire_to_net[dst] == nullptr || wire_to_net[dst] == net);
pip_to_net[pip] = net;
wire_to_net[dst] = net;
net->wires[dst].pip = pip;
net->wires[dst].strength = strength;
refreshUiPip(pip);
refreshUiWire(dst);
}
void unbindPip(PipId pip)
{
NPNR_ASSERT(pip != PipId());
NPNR_ASSERT(pip_to_net[pip] != nullptr);
WireId dst = canonical_wire(pip.tile, pip_data(pip).to_wire);
NPNR_ASSERT(wire_to_net[dst] != nullptr);
wire_to_net[dst] = nullptr;
pip_to_net[pip]->wires.erase(dst);
pip_to_net[pip] = nullptr;
refreshUiPip(pip);
refreshUiWire(dst);
}
bool checkPipAvail(PipId pip) const
{
NPNR_ASSERT(pip != PipId());
return pip_to_net.find(pip) == pip_to_net.end() || pip_to_net.at(pip) == nullptr;
}
NetInfo *getBoundPipNet(PipId pip) const
{
NPNR_ASSERT(pip != PipId());
auto p2n = pip_to_net.find(pip);
return p2n == pip_to_net.end() ? nullptr : p2n->second;
}
WireId getConflictingPipWire(PipId pip) const { return getPipDstWire(pip); }
NetInfo *getConflictingPipNet(PipId pip) const
{
NPNR_ASSERT(pip != PipId());
auto p2n = pip_to_net.find(pip);
return p2n == pip_to_net.end() ? nullptr : p2n->second;
}
AllPipRange getPips() const
{
AllPipRange range;
range.b.cursor_tile = 0;
range.b.cursor_index = -1;
range.b.chip = chip_info;
range.b.db = db;
++range.b; //-1 and then ++ deals with the case of no pips in the first tile
range.e.cursor_tile = chip_info->width * chip_info->height;
range.e.cursor_index = 0;
range.e.chip = chip_info;
range.e.db = db;
return range;
}
Loc getPipLocation(PipId pip) const
{
Loc loc;
loc.x = pip.tile % chip_info->width;
loc.y = pip.tile / chip_info->width;
loc.z = 0;
return loc;
}
IdString getPipType(PipId pip) const;
std::vector<std::pair<IdString, std::string>> getPipAttrs(PipId pip) const;
uint32_t getPipChecksum(PipId pip) const { return pip.tile << 16 | pip.index; }
WireId getPipSrcWire(PipId pip) const { return canonical_wire(pip.tile, pip_data(pip).from_wire); }
WireId getPipDstWire(PipId pip) const { return canonical_wire(pip.tile, pip_data(pip).to_wire); }
DelayInfo getPipDelay(PipId pip) const
{
DelayInfo delay;
auto &cls = speed_grade->pip_classes[pip_data(pip).timing_class];
delay.min_delay = std::max(0, cls.min_delay);
delay.max_delay = std::max(0, cls.max_delay);
return delay;
}
UpDownhillPipRange getPipsDownhill(WireId wire) const
{
UpDownhillPipRange range;
NPNR_ASSERT(wire != WireId());
NeighWireRange nwr = neigh_wire_range(wire);
range.b.chip = chip_info;
range.b.db = db;
range.b.twi = nwr.b;
range.b.twi_end = nwr.e;
range.b.cursor = -1;
range.b.uphill = false;
++range.b;
range.e.chip = chip_info;
range.e.db = db;
range.e.twi = nwr.e;
range.e.twi_end = nwr.e;
range.e.cursor = 0;
range.e.uphill = false;
return range;
}
UpDownhillPipRange getPipsUphill(WireId wire) const
{
UpDownhillPipRange range;
NPNR_ASSERT(wire != WireId());
NeighWireRange nwr = neigh_wire_range(wire);
range.b.chip = chip_info;
range.b.db = db;
range.b.twi = nwr.b;
range.b.twi_end = nwr.e;
range.b.cursor = -1;
range.b.uphill = true;
++range.b;
range.e.chip = chip_info;
range.e.db = db;
range.e.twi = nwr.e;
range.e.twi_end = nwr.e;
range.e.cursor = 0;
range.e.uphill = true;
return range;
}
UpDownhillPipRange getWireAliases(WireId wire) const
{
UpDownhillPipRange range;
range.b.cursor = 0;
range.b.twi.cursor = 0;
range.e.cursor = 0;
range.e.twi.cursor = 0;
return range;
}
// -------------------------------------------------
GroupId getGroupByName(IdString name) const { return GroupId(); }
IdString getGroupName(GroupId group) const { return IdString(); }
std::vector<GroupId> getGroups() const { return {}; }
std::vector<BelId> getGroupBels(GroupId group) const { return {}; }
std::vector<WireId> getGroupWires(GroupId group) const { return {}; }
std::vector<PipId> getGroupPips(GroupId group) const { return {}; }
std::vector<GroupId> getGroupGroups(GroupId group) const { return {}; }
// -------------------------------------------------
delay_t estimateDelay(WireId src, WireId dst) const;
delay_t predictDelay(const NetInfo *net_info, const PortRef &sink) const;
delay_t getDelayEpsilon() const { return 20; }
delay_t getRipupDelayPenalty() const { return 120; }
delay_t getWireRipupDelayPenalty(WireId wire) const;
float getDelayNS(delay_t v) const { return v * 0.001; }
DelayInfo getDelayFromNS(float ns) const
{
DelayInfo del;
del.min_delay = delay_t(ns * 1000);
del.max_delay = delay_t(ns * 1000);
return del;
}
uint32_t getDelayChecksum(delay_t v) const { return v; }
bool getBudgetOverride(const NetInfo *net_info, const PortRef &sink, delay_t &budget) const;
ArcBounds getRouteBoundingBox(WireId src, WireId dst) const;
// for better DSP bounding boxes
void pre_routing();
std::unordered_set<WireId> dsp_wires;
// -------------------------------------------------
// Get the delay through a cell from one port to another, returning false
// if no path exists. This only considers combinational delays, as required by the Arch API
bool getCellDelay(const CellInfo *cell, IdString fromPort, IdString toPort, DelayInfo &delay) const;
// Get the port class, also setting clockInfoCount to the number of TimingClockingInfos associated with a port
TimingPortClass getPortTimingClass(const CellInfo *cell, IdString port, int &clockInfoCount) const;
// Get the TimingClockingInfo of a port
TimingClockingInfo getPortClockingInfo(const CellInfo *cell, IdString port, int index) const;
// -------------------------------------------------
// Perform placement validity checks, returning false on failure (all
// implemented in arch_place.cc)
// Whether or not a given cell can be placed at a given Bel
// This is not intended for Bel type checks, but finer-grained constraints
// such as conflicting set/reset signals, etc
bool isValidBelForCell(CellInfo *cell, BelId bel) const;
// Return true whether all Bels at a given location are valid
bool isBelLocationValid(BelId bel) const;
// -------------------------------------------------
bool pack();
bool place();
bool route();
// -------------------------------------------------
// Assign architecure-specific arguments to nets and cells, which must be
// called between packing or further
// netlist modifications, and validity checks
void assignArchInfo();
void assignCellInfo(CellInfo *cell);
// -------------------------------------------------
// Arch-specific global routing
void route_globals();
// -------------------------------------------------
std::vector<GraphicElement> getDecalGraphics(DecalId decal) const;
DecalXY getBelDecal(BelId bel) const;
DecalXY getWireDecal(WireId wire) const;
DecalXY getPipDecal(PipId pip) const;
DecalXY getGroupDecal(GroupId group) const;
// -------------------------------------------------
static const std::string defaultPlacer;
static const std::vector<std::string> availablePlacers;
static const std::string defaultRouter;
static const std::vector<std::string> availableRouters;
// -------------------------------------------------
template <typename Id> const LocTypePOD &loc_data(const Id &id) const { return chip_loc_data(db, chip_info, id); }
template <typename Id> const LocNeighourhoodPOD &nh_data(const Id &id) const
{
return chip_nh_data(db, chip_info, id);
}
inline const BelInfoPOD &bel_data(BelId id) const { return chip_bel_data(db, chip_info, id); }
inline const LocWireInfoPOD &wire_data(WireId id) const { return chip_wire_data(db, chip_info, id); }
inline const PipInfoPOD &pip_data(PipId id) const { return chip_pip_data(db, chip_info, id); }
inline bool rel_tile(int32_t base, int16_t rel_x, int16_t rel_y, int32_t &next) const
{
return chip_rel_tile(chip_info, base, rel_x, rel_y, next);
}
inline WireId canonical_wire(int32_t tile, uint16_t index) const
{
WireId c = chip_canonical_wire(db, chip_info, tile, index);
return c;
}
IdString pip_src_wire_name(PipId pip) const
{
int wire = pip_data(pip).from_wire;
return db->loctypes[chip_info->grid[pip.tile].loc_type].wires[wire].name;
}
IdString pip_dst_wire_name(PipId pip) const
{
int wire = pip_data(pip).to_wire;
return db->loctypes[chip_info->grid[pip.tile].loc_type].wires[wire].name;
}
// -------------------------------------------------
typedef std::unordered_map<IdString, CellPinStyle> CellPinsData;
std::unordered_map<IdString, CellPinsData> cell_pins_db;
CellPinStyle get_cell_pin_style(const CellInfo *cell, IdString port) const;
void init_cell_pin_data();
// -------------------------------------------------
// Parse a possibly-Lattice-style (C literal in Verilog string) style parameter
Property parse_lattice_param(const CellInfo *ci, IdString prop, int width, int64_t defval) const;
// -------------------------------------------------
NeighWireRange neigh_wire_range(WireId wire) const
{
NeighWireRange range;
range.b.chip = chip_info;
range.b.db = db;
range.b.baseWire = wire;
range.b.cursor = -1;
range.e.chip = chip_info;
range.e.db = db;
range.e.baseWire = wire;
range.e.cursor = nh_data(wire).wire_neighbours[wire.index].num_nwires;
return range;
}
// -------------------------------------------------
template <typename TId> uint32_t tile_loc_flags(TId id) const { return chip_info->grid[id.tile].loc_flags; }
template <typename TId> bool tile_is(TId id, LocFlags lf) const { return tile_loc_flags(id) & lf; }
bool bel_tile_is(BelId bel, LocFlags lf) const
{
int32_t tile;
NPNR_ASSERT(rel_tile(bel.tile, bel_data(bel).rel_x, bel_data(bel).rel_y, tile));
return chip_info->grid[tile].loc_flags & lf;
}
// -------------------------------------------------
enum LogicBelZ
{
BEL_LUT0 = 0,
BEL_LUT1 = 1,
BEL_FF0 = 2,
BEL_FF1 = 3,
BEL_RAMW = 4,
};
void update_logic_bel(BelId bel, CellInfo *cell)
{
int z = bel_data(bel).z;
NPNR_ASSERT(z < 32);
auto &tts = tileStatus[bel.tile];
if (tts.lts == nullptr)
tts.lts = new LogicTileStatus();
auto &ts = *(tts.lts);
ts.cells[z] = cell;
switch (z & 0x7) {
case BEL_FF0:
case BEL_FF1:
case BEL_RAMW:
ts.halfs[(z >> 3) / 2].dirty = true;
/* fall-through */
case BEL_LUT0:
case BEL_LUT1:
ts.slices[(z >> 3)].dirty = true;
break;
}
}
bool nexus_logic_tile_valid(LogicTileStatus <s) const;
CellPinMux get_cell_pinmux(const CellInfo *cell, IdString pin) const;
void set_cell_pinmux(CellInfo *cell, IdString pin, CellPinMux state);
// -------------------------------------------------
const PadInfoPOD *get_pkg_pin_data(const std::string &pin) const;
Loc get_pad_loc(const PadInfoPOD *pad) const;
BelId get_pad_pio_bel(const PadInfoPOD *pad) const;
const PadInfoPOD *get_bel_pad(BelId bel) const;
std::string get_pad_functions(const PadInfoPOD *pad) const;
// -------------------------------------------------
// Data about different IO standard, mostly used by bitgen
static const std::unordered_map<std::string, IOTypeData> io_types;
int get_io_type_vcc(const std::string &io_type) const;
bool is_io_type_diff(const std::string &io_type) const;
bool is_io_type_ref(const std::string &io_type) const;
// -------------------------------------------------
// Cell timing lookup helpers
bool is_dsp_cell(const CellInfo *cell) const;
// Given cell type and variant, get the index inside the speed grade timing data
int get_cell_timing_idx(IdString cell_type, IdString cell_variant = IdString()) const;
// Return true and set delay if a comb path exists in a given cell timing index
bool lookup_cell_delay(int type_idx, IdString from_port, IdString to_port, DelayInfo &delay) const;
// Get setup and hold time for a given cell timing index and signal/clock pair
void lookup_cell_setuphold(int type_idx, IdString from_port, IdString clock, DelayInfo &setup,
DelayInfo &hold) const;
// Get setup and hold time and associated clock for a given cell timing index and signal
void lookup_cell_setuphold_clock(int type_idx, IdString from_port, IdString &clock, DelayInfo &setup,
DelayInfo &hold) const;
// Similar to lookup_cell_delay but only needs the 'to' signal, intended for clk->out delays
void lookup_cell_clock_out(int type_idx, IdString to_port, IdString &clock, DelayInfo &delay) const;
// Attempt to look up port type based on database
TimingPortClass lookup_port_type(int type_idx, IdString port, PortType dir, IdString clock) const;
// -------------------------------------------------
// List of IO constraints, used by PDC parser
std::unordered_map<IdString, std::unordered_map<IdString, Property>> io_attr;
void read_pdc(std::istream &in);
// -------------------------------------------------
void write_fasm(std::ostream &out) const;
};
NEXTPNR_NAMESPACE_END
|