aboutsummaryrefslogtreecommitdiffstats
path: root/manual/CHAPTER_CellLib.tex
diff options
context:
space:
mode:
authorKrystalDelusion <krystinedawn@yosyshq.com>2022-12-08 05:54:08 +1300
committerKrystalDelusion <krystinedawn@yosyshq.com>2022-12-08 05:54:08 +1300
commit1eec255e60f2854b4dd1fa212f02d57eb31c9f19 (patch)
tree9aae278e98bb5f210061c22bcf22d40854d98e8c /manual/CHAPTER_CellLib.tex
parent4b95fac13934a39525a934329648cf76e4b4f219 (diff)
downloadyosys-1eec255e60f2854b4dd1fa212f02d57eb31c9f19.tar.gz
yosys-1eec255e60f2854b4dd1fa212f02d57eb31c9f19.tar.bz2
yosys-1eec255e60f2854b4dd1fa212f02d57eb31c9f19.zip
Removing manual files
Diffstat (limited to 'manual/CHAPTER_CellLib.tex')
-rw-r--r--manual/CHAPTER_CellLib.tex1007
1 files changed, 0 insertions, 1007 deletions
diff --git a/manual/CHAPTER_CellLib.tex b/manual/CHAPTER_CellLib.tex
deleted file mode 100644
index 86b1f6a9a..000000000
--- a/manual/CHAPTER_CellLib.tex
+++ /dev/null
@@ -1,1007 +0,0 @@
-
-\chapter{Internal Cell Library}
-\label{chapter:celllib}
-
-Most of the passes in Yosys operate on netlists, i.e.~they only care about the RTLIL::Wire and RTLIL::Cell
-objects in an RTLIL::Module. This chapter discusses the cell types used by Yosys to represent a behavioural
-design internally.
-
-This chapter is split in two parts. In the first part the internal RTL cells are covered. These cells
-are used to represent the design on a coarse grain level. Like in the original HDL code on this level the
-cells operate on vectors of signals and complex cells like adders exist. In the second part the internal
-gate cells are covered. These cells are used to represent the design on a fine-grain gate-level. All cells
-from this category operate on single bit signals.
-
-\section{RTL Cells}
-
-Most of the RTL cells closely resemble the operators available in HDLs such as
-Verilog or VHDL. Therefore Verilog operators are used in the following sections
-to define the behaviour of the RTL cells.
-
-Note that all RTL cells have parameters indicating the size of inputs and outputs. When
-passes modify RTL cells they must always keep the values of these parameters in sync with
-the size of the signals connected to the inputs and outputs.
-
-Simulation models for the RTL cells can be found in the file {\tt techlibs/common/simlib.v} in the Yosys
-source tree.
-
-\subsection{Unary Operators}
-
-All unary RTL cells have one input port \B{A} and one output port \B{Y}. They also
-have the following parameters:
-
-\begin{itemize}
-\item \B{A\_SIGNED} \\
-Set to a non-zero value if the input \B{A} is signed and therefore should be sign-extended
-when needed.
-
-\item \B{A\_WIDTH} \\
-The width of the input port \B{A}.
-
-\item \B{Y\_WIDTH} \\
-The width of the output port \B{Y}.
-\end{itemize}
-
-Table~\ref{tab:CellLib_unary} lists all cells for unary RTL operators.
-
-\begin{table}[t!]
-\hfil
-\begin{tabular}{ll}
-Verilog & Cell Type \\
-\hline
-\lstinline[language=Verilog]; Y = ~A ; & {\tt \$not} \\
-\lstinline[language=Verilog]; Y = +A ; & {\tt \$pos} \\
-\lstinline[language=Verilog]; Y = -A ; & {\tt \$neg} \\
-\hline
-\lstinline[language=Verilog]; Y = &A ; & {\tt \$reduce\_and} \\
-\lstinline[language=Verilog]; Y = |A ; & {\tt \$reduce\_or} \\
-\lstinline[language=Verilog]; Y = ^A ; & {\tt \$reduce\_xor} \\
-\lstinline[language=Verilog]; Y = ~^A ; & {\tt \$reduce\_xnor} \\
-\hline
-\lstinline[language=Verilog]; Y = |A ; & {\tt \$reduce\_bool} \\
-\lstinline[language=Verilog]; Y = !A ; & {\tt \$logic\_not}
-\end{tabular}
-\caption{Cell types for unary operators with their corresponding Verilog expressions.}
-\label{tab:CellLib_unary}
-\end{table}
-
-For the unary cells that output a logical value ({\tt \$reduce\_and}, {\tt \$reduce\_or},
-{\tt \$reduce\_xor}, {\tt \$reduce\_xnor}, {\tt \$reduce\_bool}, {\tt \$logic\_not}),
-when the \B{Y\_WIDTH} parameter is greater than 1, the output is zero-extended,
-and only the least significant bit varies.
-
-Note that {\tt \$reduce\_or} and {\tt \$reduce\_bool} actually represent the same
-logic function. But the HDL frontends generate them in different situations. A
-{\tt \$reduce\_or} cell is generated when the prefix {\tt |} operator is being used. A
-{\tt \$reduce\_bool} cell is generated when a bit vector is used as a condition in
-an {\tt if}-statement or {\tt ?:}-expression.
-
-\subsection{Binary Operators}
-
-All binary RTL cells have two input ports \B{A} and \B{B} and one output port \B{Y}. They
-also have the following parameters:
-
-\begin{itemize}
-\item \B{A\_SIGNED} \\
-Set to a non-zero value if the input \B{A} is signed and therefore should be sign-extended
-when needed.
-
-\item \B{A\_WIDTH} \\
-The width of the input port \B{A}.
-
-\item \B{B\_SIGNED} \\
-Set to a non-zero value if the input \B{B} is signed and therefore should be sign-extended
-when needed.
-
-\item \B{B\_WIDTH} \\
-The width of the input port \B{B}.
-
-\item \B{Y\_WIDTH} \\
-The width of the output port \B{Y}.
-\end{itemize}
-
-Table~\ref{tab:CellLib_binary} lists all cells for binary RTL operators.
-
-\begin{table}[t!]
-\hfil
-\begin{tabular}[t]{ll}
-Verilog & Cell Type \\
-\hline
-\lstinline[language=Verilog]; Y = A & B; & {\tt \$and} \\
-\lstinline[language=Verilog]; Y = A | B; & {\tt \$or} \\
-\lstinline[language=Verilog]; Y = A ^ B; & {\tt \$xor} \\
-\lstinline[language=Verilog]; Y = A ~^ B; & {\tt \$xnor} \\
-\hline
-\lstinline[language=Verilog]; Y = A << B; & {\tt \$shl} \\
-\lstinline[language=Verilog]; Y = A >> B; & {\tt \$shr} \\
-\lstinline[language=Verilog]; Y = A <<< B; & {\tt \$sshl} \\
-\lstinline[language=Verilog]; Y = A >>> B; & {\tt \$sshr} \\
-\hline
-\lstinline[language=Verilog]; Y = A && B; & {\tt \$logic\_and} \\
-\lstinline[language=Verilog]; Y = A || B; & {\tt \$logic\_or} \\
-\hline
-\lstinline[language=Verilog]; Y = A === B; & {\tt \$eqx} \\
-\lstinline[language=Verilog]; Y = A !== B; & {\tt \$nex} \\
-\end{tabular}
-\hfil
-\begin{tabular}[t]{ll}
-Verilog & Cell Type \\
-\hline
-\lstinline[language=Verilog]; Y = A < B; & {\tt \$lt} \\
-\lstinline[language=Verilog]; Y = A <= B; & {\tt \$le} \\
-\lstinline[language=Verilog]; Y = A == B; & {\tt \$eq} \\
-\lstinline[language=Verilog]; Y = A != B; & {\tt \$ne} \\
-\lstinline[language=Verilog]; Y = A >= B; & {\tt \$ge} \\
-\lstinline[language=Verilog]; Y = A > B; & {\tt \$gt} \\
-\hline
-\lstinline[language=Verilog]; Y = A + B; & {\tt \$add} \\
-\lstinline[language=Verilog]; Y = A - B; & {\tt \$sub} \\
-\lstinline[language=Verilog]; Y = A * B; & {\tt \$mul} \\
-\lstinline[language=Verilog]; Y = A / B; & {\tt \$div} \\
-\lstinline[language=Verilog]; Y = A % B; & {\tt \$mod} \\
-\multicolumn{1}{c}{\tt [N/A]} & {\tt \$divfloor} \\
-\multicolumn{1}{c}{\tt [N/A]} & {\tt \$modfoor} \\
-\lstinline[language=Verilog]; Y = A ** B; & {\tt \$pow} \\
-\end{tabular}
-\caption{Cell types for binary operators with their corresponding Verilog expressions.}
-\label{tab:CellLib_binary}
-\end{table}
-
-The {\tt \$shl} and {\tt \$shr} cells implement logical shifts, whereas the {\tt \$sshl} and
-{\tt \$sshr} cells implement arithmetic shifts. The {\tt \$shl} and {\tt \$sshl} cells implement
-the same operation. All four of these cells interpret the second operand as unsigned, and require
-\B{B\_SIGNED} to be zero.
-
-Two additional shift operator cells are available that do not directly correspond to any operator
-in Verilog, {\tt \$shift} and {\tt \$shiftx}. The {\tt \$shift} cell performs a right logical shift
-if the second operand is positive (or unsigned), and a left logical shift if it is negative.
-The {\tt \$shiftx} cell performs the same operation as the {\tt \$shift} cell, but the vacated bit
-positions are filled with undef (x) bits, and corresponds to the Verilog indexed part-select expression.
-
-For the binary cells that output a logical value ({\tt \$logic\_and}, {\tt \$logic\_or},
-{\tt \$eqx}, {\tt \$nex}, {\tt \$lt}, {\tt \$le}, {\tt \$eq}, {\tt \$ne}, {\tt \$ge},
-{\tt \$gt}), when the \B{Y\_WIDTH} parameter is greater than 1, the output is zero-extended,
-and only the least significant bit varies.
-
-Division and modulo cells are available in two rounding modes. The original {\tt \$div} and {\tt \$mod}
-cells are based on truncating division, and correspond to the semantics of the verilog {\tt /} and
-{\tt \%} operators. The {\tt \$divfloor} and {\tt \$modfloor} cells represent flooring division and
-flooring modulo, the latter of which is also known as ``remainder'' in several languages. See
-table~\ref{tab:CellLib_divmod} for a side-by-side comparison between the different semantics.
-
-\begin{table}[h]
-\hfil
-\begin{tabular}{lr|rr|rr}
-\multirow{2}{*}{Division} & \multirow{2}{*}{Result} & \multicolumn{2}{c|}{Truncating} & \multicolumn{2}{c}{Flooring} \\
- & & {\tt \$div} & {\tt \$mod} & {\tt \$divfloor} & {\tt \$modfloor} \\
-\hline
-{\tt -10 / 3} & {\tt -3.3} & {\tt -3} & {\tt -1} & {\tt -4} & {\tt 2} \\
-{\tt 10 / -3} & {\tt -3.3} & {\tt -3} & {\tt 1} & {\tt -4} & {\tt -2} \\
-{\tt -10 / -3} & {\tt 3.3} & {\tt 3} & {\tt -1} & {\tt 3} & {\tt -1} \\
-{\tt 10 / 3} & {\tt 3.3} & {\tt 3} & {\tt 1} & {\tt 3} & {\tt 1} \\
-\end{tabular}
-\caption{Comparison between different rounding modes for division and modulo cells.}
-\label{tab:CellLib_divmod}
-\end{table}
-
-\subsection{Multiplexers}
-
-Multiplexers are generated by the Verilog HDL frontend for {\tt
-?:}-expressions. Multiplexers are also generated by the {\tt proc} pass to map the decision trees
-from RTLIL::Process objects to logic.
-
-The simplest multiplexer cell type is {\tt \$mux}. Cells of this type have a \B{WIDTH} parameter
-and data inputs \B{A} and \B{B} and a data output \B{Y}, all of the specified width. This cell also
-has a single bit control input \B{S}. If \B{S} is 0 the value from the \B{A} input is sent to
-the output, if it is 1 the value from the \B{B} input is sent to the output. So the {\tt \$mux}
-cell implements the function \lstinline[language=Verilog]; Y = S ? B : A;.
-
-The {\tt \$pmux} cell is used to multiplex between many inputs using a one-hot select signal. Cells
-of this type have a \B{WIDTH} and a \B{S\_WIDTH} parameter and inputs \B{A}, \B{B}, and \B{S} and
-an output \B{Y}. The \B{S} input is \B{S\_WIDTH} bits wide. The \B{A} input and the output are both
-\B{WIDTH} bits wide and the \B{B} input is \B{WIDTH}*\B{S\_WIDTH} bits wide. When all bits of
-\B{S} are zero, the value from \B{A} input is sent to the output. If the $n$'th bit from \B{S} is
-set, the value $n$'th \B{WIDTH} bits wide slice of the \B{B} input is sent to the output. When more
-than one bit from \B{S} is set the output is undefined. Cells of this type are used to model
-``parallel cases'' (defined by using the {\tt parallel\_case} attribute or detected by
-an optimization).
-
-The {\tt \$tribuf} cell is used to implement tristate logic. Cells of this type have a \B{WIDTH}
-parameter and inputs \B{A} and \B{EN} and an output \B{Y}. The \B{A} input and \B{Y} output are
-\B{WIDTH} bits wide, and the \B{EN} input is one bit wide. When \B{EN} is 0, the output \B{Y}
-is not driven. When \B{EN} is 1, the value from \B{A} input is sent to the \B{Y} output. Therefore,
-the {\tt \$tribuf} cell implements the function \lstinline[language=Verilog]; Y = EN ? A : 'bz;.
-
-Behavioural code with cascaded {\tt if-then-else}- and {\tt case}-statements
-usually results in trees of multiplexer cells. Many passes (from various
-optimizations to FSM extraction) heavily depend on these multiplexer trees to
-understand dependencies between signals. Therefore optimizations should not
-break these multiplexer trees (e.g.~by replacing a multiplexer between a
-calculated signal and a constant zero with an {\tt \$and} gate).
-
-\subsection{Registers}
-
-SR-type latches are represented by {\tt \$sr} cells. These cells have input ports
-\B{SET} and \B{CLR} and an output port \B{Q}. They have the following parameters:
-
-\begin{itemize}
-\item \B{WIDTH} \\
-The width of inputs \B{SET} and \B{CLR} and output \B{Q}.
-
-\item \B{SET\_POLARITY} \\
-The set input bits are active-high if this parameter has the value {\tt 1'b1} and active-low
-if this parameter is {\tt 1'b0}.
-
-\item \B{CLR\_POLARITY} \\
-The reset input bits are active-high if this parameter has the value {\tt 1'b1} and active-low
-if this parameter is {\tt 1'b0}.
-\end{itemize}
-
-Both set and reset inputs have separate bits for every output bit.
-When both the set and reset inputs of an {\tt \$sr} cell are active for a given bit
-index, the reset input takes precedence.
-
-D-type flip-flops are represented by {\tt \$dff} cells. These cells have a clock port \B{CLK},
-an input port \B{D} and an output port \B{Q}. The following parameters are available for {\tt \$dff}
-cells:
-
-\begin{itemize}
-\item \B{WIDTH} \\
-The width of input \B{D} and output \B{Q}.
-
-\item \B{CLK\_POLARITY} \\
-Clock is active on the positive edge if this parameter has the value {\tt 1'b1} and on the negative
-edge if this parameter is {\tt 1'b0}.
-\end{itemize}
-
-D-type flip-flops with asynchronous reset are represented by {\tt \$adff} cells. As the {\tt \$dff}
-cells they have \B{CLK}, \B{D} and \B{Q} ports. In addition they also have a single-bit \B{ARST}
-input port for the reset pin and the following additional two parameters:
-
-\begin{itemize}
-\item \B{ARST\_POLARITY} \\
-The asynchronous reset is active-high if this parameter has the value {\tt 1'b1} and active-low
-if this parameter is {\tt 1'b0}.
-
-\item \B{ARST\_VALUE} \\
-The state of \B{Q} will be set to this value when the reset is active.
-\end{itemize}
-
-\begin{sloppypar}
-Usually these cells are generated by the {\tt proc} pass using the information
-in the designs RTLIL::Process objects.
-\end{sloppypar}
-
-D-type flip-flops with synchronous reset are represented by {\tt \$sdff} cells. As the {\tt \$dff}
-cells they have \B{CLK}, \B{D} and \B{Q} ports. In addition they also have a single-bit \B{SRST}
-input port for the reset pin and the following additional two parameters:
-
-\begin{itemize}
-\item \B{SRST\_POLARITY} \\
-The synchronous reset is active-high if this parameter has the value {\tt 1'b1} and active-low
-if this parameter is {\tt 1'b0}.
-
-\item \B{SRST\_VALUE} \\
-The state of \B{Q} will be set to this value when the reset is active.
-\end{itemize}
-
-Note that the {\tt \$adff} and {\tt \$sdff} cells can only be used when the reset value is constant.
-
-D-type flip-flops with asynchronous load are represented by {\tt \$aldff} cells. As the {\tt \$dff}
-cells they have \B{CLK}, \B{D} and \B{Q} ports. In addition they also have a single-bit \B{ALOAD}
-input port for the async load enable pin, a \B{AD} input port with the same width as data for
-the async load data, and the following additional parameter:
-
-\begin{itemize}
-\item \B{ALOAD\_POLARITY} \\
-The asynchronous load is active-high if this parameter has the value {\tt 1'b1} and active-low
-if this parameter is {\tt 1'b0}.
-\end{itemize}
-
-D-type flip-flops with asynchronous set and reset are represented by {\tt \$dffsr} cells.
-As the {\tt \$dff} cells they have \B{CLK}, \B{D} and \B{Q} ports. In addition they also have
-multi-bit \B{SET} and \B{CLR} input ports and the corresponding polarity parameters, like
-{\tt \$sr} cells.
-
-D-type flip-flops with enable are represented by {\tt \$dffe}, {\tt \$adffe}, {\tt \$aldffe}, {\tt \$dffsre},
-{\tt \$sdffe}, and {\tt \$sdffce} cells, which are enhanced variants of {\tt \$dff}, {\tt \$adff}, {\tt \$aldff}, {\tt \$dffsr},
-{\tt \$sdff} (with reset over enable) and {\tt \$sdff} (with enable over reset)
-cells, respectively. They have the same ports and parameters as their base cell.
-In addition they also have a single-bit \B{EN} input port for the enable pin and the following parameter:
-
-\begin{itemize}
-\item \B{EN\_POLARITY} \\
-The enable input is active-high if this parameter has the value {\tt 1'b1} and active-low
-if this parameter is {\tt 1'b0}.
-\end{itemize}
-
-D-type latches are represented by {\tt \$dlatch} cells. These cells have an enable port \B{EN},
-an input port \B{D}, and an output port \B{Q}. The following parameters are available for {\tt \$dlatch} cells:
-
-\begin{itemize}
-\item \B{WIDTH} \\
-The width of input \B{D} and output \B{Q}.
-
-\item \B{EN\_POLARITY} \\
-The enable input is active-high if this parameter has the value {\tt 1'b1} and active-low
-if this parameter is {\tt 1'b0}.
-\end{itemize}
-
-The latch is transparent when the \B{EN} input is active.
-
-D-type latches with reset are represented by {\tt \$adlatch} cells. In addition to {\tt \$dlatch}
-ports and parameters, they also have a single-bit \B{ARST} input port for the reset pin and the following additional parameters:
-
-\begin{itemize}
-\item \B{ARST\_POLARITY} \\
-The asynchronous reset is active-high if this parameter has the value {\tt 1'b1} and active-low
-if this parameter is {\tt 1'b0}.
-
-\item \B{ARST\_VALUE} \\
-The state of \B{Q} will be set to this value when the reset is active.
-\end{itemize}
-
-D-type latches with set and reset are represented by {\tt \$dlatchsr} cells.
-In addition to {\tt \$dlatch} ports and parameters, they also have multi-bit
-\B{SET} and \B{CLR} input ports and the corresponding polarity parameters, like
-{\tt \$sr} cells.
-
-\subsection{Memories}
-\label{sec:memcells}
-
-Memories are either represented using RTLIL::Memory objects, {\tt \$memrd\_v2}, {\tt \$memwr\_v2}, and {\tt \$meminit\_v2}
-cells, or by {\tt \$mem\_v2} cells alone.
-
-In the first alternative the RTLIL::Memory objects hold the general metadata for the memory (bit width,
-size in number of words, etc.) and for each port a {\tt \$memrd\_v2} (read port) or {\tt \$memwr\_v2} (write port)
-cell is created. Having individual cells for read and write ports has the advantage that they can be
-consolidated using resource sharing passes. In some cases this drastically reduces the number of required
-ports on the memory cell. In this alternative, memory initialization data is represented by {\tt \$meminit\_v2} cells,
-which allow delaying constant folding for initialization addresses and data until after the frontend finishes.
-
-The {\tt \$memrd\_v2} cells have a clock input \B{CLK}, an enable input \B{EN}, an
-address input \B{ADDR}, a data output \B{DATA}, an asynchronous reset input \B{ARST},
-and a synchronous reset input \B{SRST}. They also have the following parameters:
-
-\begin{itemize}
-\item \B{MEMID} \\
-The name of the RTLIL::Memory object that is associated with this read port.
-
-\item \B{ABITS} \\
-The number of address bits (width of the \B{ADDR} input port).
-
-\item \B{WIDTH} \\
-The number of data bits (width of the \B{DATA} output port). Note that this may be a power-of-two
-multiple of the underlying memory's width -- such ports are called wide ports and access an aligned
-group of cells at once. In this case, the corresponding low bits of \B{ADDR} must be tied to 0.
-
-\item \B{CLK\_ENABLE} \\
-When this parameter is non-zero, the clock is used. Otherwise this read port is asynchronous and
-the \B{CLK} input is not used.
-
-\item \B{CLK\_POLARITY} \\
-Clock is active on the positive edge if this parameter has the value {\tt 1'b1} and on the negative
-edge if this parameter is {\tt 1'b0}.
-
-\item \B{TRANSPARENCY\_MASK} \\
-This parameter is a bitmask of write ports that this read port is transparent with. The bits
-of this parameter are indexed by the write port's \B{PORTID} parameter. Transparency can only be
-enabled between synchronous ports sharing a clock domain. When transparency is enabled for a given
-port pair, a read and write to the same address in the same cycle will return the new value.
-Otherwise the old value is returned.
-
-\item \B{COLLISION\_X\_MASK} \\
-This parameter is a bitmask of write ports that have undefined collision behavior with this port.
-The bits of this parameter are indexed by the write port's \B{PORTID} parameter. This behavior can only be
-enabled between synchronous ports sharing a clock domain. When undefined collision is enabled for a given
-port pair, a read and write to the same address in the same cycle will return the undefined (all-X) value.
-This option is exclusive (for a given port pair) with the transparency option.
-
-\item \B{ARST\_VALUE} \\
-Whenever the \B{ARST} input is asserted, the data output will be reset to this value.
-Only used for synchronous ports.
-
-\item \B{SRST\_VALUE} \\
-Whenever the \B{SRST} input is synchronously asserted, the data output will be reset to this value.
-Only used for synchronous ports.
-
-\item \B{INIT\_VALUE} \\
-The initial value of the data output, for synchronous ports.
-
-\item \B{CE\_OVER\_SRST} \\
-If this parameter is non-zero, the \B{SRST} input is only recognized when \B{EN} is true.
-Otherwise, \B{SRST} is recognized regardless of \B{EN}.
-\end{itemize}
-
-The {\tt \$memwr\_v2} cells have a clock input \B{CLK}, an enable input \B{EN} (one
-enable bit for each data bit), an address input \B{ADDR} and a data input
-\B{DATA}. They also have the following parameters:
-
-\begin{itemize}
-\item \B{MEMID} \\
-The name of the RTLIL::Memory object that is associated with this write port.
-
-\item \B{ABITS} \\
-The number of address bits (width of the \B{ADDR} input port).
-
-\item \B{WIDTH} \\
-The number of data bits (width of the \B{DATA} output port). Like with {\tt \$memrd\_v2} cells,
-the width is allowed to be any power-of-two multiple of memory width, with the corresponding
-restriction on address.
-
-\item \B{CLK\_ENABLE} \\
-When this parameter is non-zero, the clock is used. Otherwise this write port is asynchronous and
-the \B{CLK} input is not used.
-
-\item \B{CLK\_POLARITY} \\
-Clock is active on positive edge if this parameter has the value {\tt 1'b1} and on the negative
-edge if this parameter is {\tt 1'b0}.
-
-\item \B{PORTID} \\
-An identifier for this write port, used to index write port bit mask parameters.
-
-\item \B{PRIORITY\_MASK} \\
-This parameter is a bitmask of write ports that this write port has priority over in case of writing
-to the same address. The bits of this parameter are indexed by the other write port's \B{PORTID} parameter.
-Write ports can only have priority over write ports with lower port ID. When two ports write to the same
-address and neither has priority over the other, the result is undefined. Priority can only be set between
-two synchronous ports sharing the same clock domain.
-\end{itemize}
-
-The {\tt \$meminit\_v2} cells have an address input \B{ADDR}, a data input \B{DATA}, with the width
-of the \B{DATA} port equal to \B{WIDTH} parameter times \B{WORDS} parameter, and a bit enable mask input
-\B{EN} with width equal to \B{WIDTH} parameter. All three of the inputs
-must resolve to a constant for synthesis to succeed.
-
-\begin{itemize}
-\item \B{MEMID} \\
-The name of the RTLIL::Memory object that is associated with this initialization cell.
-
-\item \B{ABITS} \\
-The number of address bits (width of the \B{ADDR} input port).
-
-\item \B{WIDTH} \\
-The number of data bits per memory location.
-
-\item \B{WORDS} \\
-The number of consecutive memory locations initialized by this cell.
-
-\item \B{PRIORITY} \\
-The cell with the higher integer value in this parameter wins an initialization conflict.
-\end{itemize}
-
-The HDL frontend models a memory using RTLIL::Memory objects and asynchronous
-{\tt \$memrd\_v2} and {\tt \$memwr\_v2} cells. The {\tt memory} pass (i.e.~its various sub-passes) migrates
-{\tt \$dff} cells into the {\tt \$memrd\_v2} and {\tt \$memwr\_v2} cells making them synchronous, then
-converts them to a single {\tt \$mem\_v2} cell and (optionally) maps this cell type
-to {\tt \$dff} cells for the individual words and multiplexer-based address decoders for the read and
-write interfaces. When the last step is disabled or not possible, a {\tt \$mem\_v2} cell is left in the design.
-
-The {\tt \$mem\_v2} cell provides the following parameters:
-
-\begin{itemize}
-\item \B{MEMID} \\
-The name of the original RTLIL::Memory object that became this {\tt \$mem\_v2} cell.
-
-\item \B{SIZE} \\
-The number of words in the memory.
-
-\item \B{ABITS} \\
-The number of address bits.
-
-\item \B{WIDTH} \\
-The number of data bits per word.
-
-\item \B{INIT} \\
-The initial memory contents.
-
-\item \B{RD\_PORTS} \\
-The number of read ports on this memory cell.
-
-\item \B{RD\_WIDE\_CONTINUATION} \\
-This parameter is \B{RD\_PORTS} bits wide, containing a bitmask of ``wide continuation'' read ports.
-Such ports are used to represent the extra data bits of wide ports in the combined cell, and must
-have all control signals identical with the preceding port, except for address, which must have
-the proper sub-cell address encoded in the low bits.
-
-\item \B{RD\_CLK\_ENABLE} \\
-This parameter is \B{RD\_PORTS} bits wide, containing a clock enable bit for each read port.
-
-\item \B{RD\_CLK\_POLARITY} \\
-This parameter is \B{RD\_PORTS} bits wide, containing a clock polarity bit for each read port.
-
-\item \B{RD\_TRANSPARENCY\_MASK} \\
-This parameter is \B{RD\_PORTS*WR\_PORTS} bits wide, containing a concatenation of all
-\B{TRANSPARENCY\_MASK} values of the original {\tt \$memrd\_v2} cells.
-
-\item \B{RD\_COLLISION\_X\_MASK} \\
-This parameter is \B{RD\_PORTS*WR\_PORTS} bits wide, containing a concatenation of all
-\B{COLLISION\_X\_MASK} values of the original {\tt \$memrd\_v2} cells.
-
-\item \B{RD\_CE\_OVER\_SRST} \\
-This parameter is \B{RD\_PORTS} bits wide, determining relative synchronous reset and enable priority for each read port.
-
-\item \B{RD\_INIT\_VALUE} \\
-This parameter is \B{RD\_PORTS*WIDTH} bits wide, containing the initial value for each synchronous read port.
-
-\item \B{RD\_ARST\_VALUE} \\
-This parameter is \B{RD\_PORTS*WIDTH} bits wide, containing the asynchronous reset value for each synchronous read port.
-
-\item \B{RD\_SRST\_VALUE} \\
-This parameter is \B{RD\_PORTS*WIDTH} bits wide, containing the synchronous reset value for each synchronous read port.
-
-\item \B{WR\_PORTS} \\
-The number of write ports on this memory cell.
-
-\item \B{WR\_WIDE\_CONTINUATION} \\
-This parameter is \B{WR\_PORTS} bits wide, containing a bitmask of ``wide continuation'' write ports.
-
-\item \B{WR\_CLK\_ENABLE} \\
-This parameter is \B{WR\_PORTS} bits wide, containing a clock enable bit for each write port.
-
-\item \B{WR\_CLK\_POLARITY} \\
-This parameter is \B{WR\_PORTS} bits wide, containing a clock polarity bit for each write port.
-
-\item \B{WR\_PRIORITY\_MASK} \\
-This parameter is \B{WR\_PORTS*WR\_PORTS} bits wide, containing a concatenation of all
-\B{PRIORITY\_MASK} values of the original {\tt \$memwr\_v2} cells.
-\end{itemize}
-
-The {\tt \$mem\_v2} cell has the following ports:
-
-\begin{itemize}
-\item \B{RD\_CLK} \\
-This input is \B{RD\_PORTS} bits wide, containing all clock signals for the read ports.
-
-\item \B{RD\_EN} \\
-This input is \B{RD\_PORTS} bits wide, containing all enable signals for the read ports.
-
-\item \B{RD\_ADDR} \\
-This input is \B{RD\_PORTS}*\B{ABITS} bits wide, containing all address signals for the read ports.
-
-\item \B{RD\_DATA} \\
-This input is \B{RD\_PORTS}*\B{WIDTH} bits wide, containing all data signals for the read ports.
-
-\item \B{RD\_ARST} \\
-This input is \B{RD\_PORTS} bits wide, containing all asynchronous reset signals for the read ports.
-
-\item \B{RD\_SRST} \\
-This input is \B{RD\_PORTS} bits wide, containing all synchronous reset signals for the read ports.
-
-\item \B{WR\_CLK} \\
-This input is \B{WR\_PORTS} bits wide, containing all clock signals for the write ports.
-
-\item \B{WR\_EN} \\
-This input is \B{WR\_PORTS}*\B{WIDTH} bits wide, containing all enable signals for the write ports.
-
-\item \B{WR\_ADDR} \\
-This input is \B{WR\_PORTS}*\B{ABITS} bits wide, containing all address signals for the write ports.
-
-\item \B{WR\_DATA} \\
-This input is \B{WR\_PORTS}*\B{WIDTH} bits wide, containing all data signals for the write ports.
-\end{itemize}
-
-The {\tt memory\_collect} pass can be used to convert discrete {\tt \$memrd\_v2}, {\tt \$memwr\_v2}, and {\tt \$meminit\_v2} cells
-belonging to the same memory to a single {\tt \$mem\_v2} cell, whereas the {\tt memory\_unpack} pass performs the inverse operation.
-The {\tt memory\_dff} pass can combine asynchronous memory ports that are fed by or feeding registers into synchronous memory ports.
-The {\tt memory\_bram} pass can be used to recognize {\tt \$mem\_v2} cells that can be implemented with a block RAM resource on an FPGA.
-The {\tt memory\_map} pass can be used to implement {\tt \$mem\_v2} cells as basic logic: word-wide DFFs and address decoders.
-
-\subsection{Finite State Machines}
-
-\begin{fixme}
-Add a brief description of the {\tt \$fsm} cell type.
-\end{fixme}
-
-\subsection{Specify rules}
-
-\begin{fixme}
-Add information about {\tt \$specify2}, {\tt \$specify3}, and {\tt \$specrule} cells.
-\end{fixme}
-
-\subsection{Formal verification cells}
-
-\begin{fixme}
-Add information about {\tt \$assert}, {\tt \$assume}, {\tt \$live}, {\tt \$fair}, {\tt \$cover}, {\tt \$equiv},
-{\tt \$initstate}, {\tt \$anyconst}, {\tt \$anyseq}, {\tt \$anyinit}, {\tt \$allconst}, {\tt \$allseq} cells.
-\end{fixme}
-
-\begin{fixme}
-Add information about {\tt \$ff} and {\tt \$\_FF\_} cells.
-\end{fixme}
-
-\section{Gates}
-\label{sec:celllib_gates}
-
-For gate level logic networks, fixed function single bit cells are used that do
-not provide any parameters.
-
-Simulation models for these cells can be found in the file {\tt techlibs/common/simcells.v} in the Yosys
-source tree.
-
-\begin{table}[t]
-\hfil
-\begin{tabular}[t]{ll}
-Verilog & Cell Type \\
-\hline
-\lstinline[language=Verilog]; Y = A; & {\tt \$\_BUF\_} \\
-\lstinline[language=Verilog]; Y = ~A; & {\tt \$\_NOT\_} \\
-\lstinline[language=Verilog]; Y = A & B; & {\tt \$\_AND\_} \\
-\lstinline[language=Verilog]; Y = ~(A & B); & {\tt \$\_NAND\_} \\
-\lstinline[language=Verilog]; Y = A & ~B; & {\tt \$\_ANDNOT\_} \\
-\lstinline[language=Verilog]; Y = A | B; & {\tt \$\_OR\_} \\
-\lstinline[language=Verilog]; Y = ~(A | B); & {\tt \$\_NOR\_} \\
-\lstinline[language=Verilog]; Y = A | ~B; & {\tt \$\_ORNOT\_} \\
-\lstinline[language=Verilog]; Y = A ^ B; & {\tt \$\_XOR\_} \\
-\lstinline[language=Verilog]; Y = ~(A ^ B); & {\tt \$\_XNOR\_} \\
-\lstinline[language=Verilog]; Y = ~((A & B) | C); & {\tt \$\_AOI3\_} \\
-\lstinline[language=Verilog]; Y = ~((A | B) & C); & {\tt \$\_OAI3\_} \\
-\lstinline[language=Verilog]; Y = ~((A & B) | (C & D)); & {\tt \$\_AOI4\_} \\
-\lstinline[language=Verilog]; Y = ~((A | B) & (C | D)); & {\tt \$\_OAI4\_} \\
-\lstinline[language=Verilog]; Y = S ? B : A; & {\tt \$\_MUX\_} \\
-\lstinline[language=Verilog]; Y = ~(S ? B : A); & {\tt \$\_NMUX\_} \\
-(see below) & {\tt \$\_MUX4\_} \\
-(see below) & {\tt \$\_MUX8\_} \\
-(see below) & {\tt \$\_MUX16\_} \\
-\lstinline[language=Verilog]; Y = EN ? A : 1'bz; & {\tt \$\_TBUF\_} \\
-\hline
-\lstinline[language=Verilog]; always @(negedge C) Q <= D; & {\tt \$\_DFF\_N\_} \\
-\lstinline[language=Verilog]; always @(posedge C) Q <= D; & {\tt \$\_DFF\_P\_} \\
-\lstinline[language=Verilog]; always @* if (!E) Q <= D; & {\tt \$\_DLATCH\_N\_} \\
-\lstinline[language=Verilog]; always @* if (E) Q <= D; & {\tt \$\_DLATCH\_P\_} \\
-\end{tabular}
-\caption{Cell types for gate level logic networks (main list)}
-\label{tab:CellLib_gates}
-\end{table}
-
-\begin{table}[t]
-\hfil
-\begin{tabular}[t]{llll}
-$ClkEdge$ & $RstLvl$ & $RstVal$ & Cell Type \\
-\hline
-\lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & {\tt \$\_DFF\_NN0\_}, {\tt \$\_SDFF\_NN0\_} \\
-\lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & {\tt \$\_DFF\_NN1\_}, {\tt \$\_SDFF\_NN1\_} \\
-\lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & {\tt \$\_DFF\_NP0\_}, {\tt \$\_SDFF\_NP0\_} \\
-\lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & {\tt \$\_DFF\_NP1\_}, {\tt \$\_SDFF\_NP1\_} \\
-\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & {\tt \$\_DFF\_PN0\_}, {\tt \$\_SDFF\_PN0\_} \\
-\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & {\tt \$\_DFF\_PN1\_}, {\tt \$\_SDFF\_PN1\_} \\
-\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & {\tt \$\_DFF\_PP0\_}, {\tt \$\_SDFF\_PP0\_} \\
-\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & {\tt \$\_DFF\_PP1\_}, {\tt \$\_SDFF\_PP1\_} \\
-\end{tabular}
-\caption{Cell types for gate level logic networks (FFs with reset)}
-\label{tab:CellLib_gates_adff}
-\end{table}
-
-\begin{table}[t]
-\hfil
-\begin{tabular}[t]{lll}
-$ClkEdge$ & $EnLvl$ & Cell Type \\
-\hline
-\lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];0; & {\tt \$\_DFFE\_NN\_} \\
-\lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];1; & {\tt \$\_DFFE\_NP\_} \\
-\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];0; & {\tt \$\_DFFE\_PN\_} \\
-\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];1; & {\tt \$\_DFFE\_PP\_} \\
-\end{tabular}
-\caption{Cell types for gate level logic networks (FFs with enable)}
-\label{tab:CellLib_gates_dffe}
-\end{table}
-
-\begin{table}[t]
-\begin{tabular}[t]{lllll}
-$ClkEdge$ & $RstLvl$ & $RstVal$ & $EnLvl$ & Cell Type \\
-\hline
-\lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & {\tt \$\_DFFE\_NN0N\_}, {\tt \$\_SDFFE\_NN0N\_}, {\tt \$\_SDFFCE\_NN0N\_} \\
-\lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & {\tt \$\_DFFE\_NN0P\_}, {\tt \$\_SDFFE\_NN0P\_}, {\tt \$\_SDFFCE\_NN0P\_} \\
-\lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & {\tt \$\_DFFE\_NN1N\_}, {\tt \$\_SDFFE\_NN1N\_}, {\tt \$\_SDFFCE\_NN1N\_} \\
-\lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & {\tt \$\_DFFE\_NN1P\_}, {\tt \$\_SDFFE\_NN1P\_}, {\tt \$\_SDFFCE\_NN1P\_} \\
-\lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & {\tt \$\_DFFE\_NP0N\_}, {\tt \$\_SDFFE\_NP0N\_}, {\tt \$\_SDFFCE\_NP0N\_} \\
-\lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & {\tt \$\_DFFE\_NP0P\_}, {\tt \$\_SDFFE\_NP0P\_}, {\tt \$\_SDFFCE\_NP0P\_} \\
-\lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & {\tt \$\_DFFE\_NP1N\_}, {\tt \$\_SDFFE\_NP1N\_}, {\tt \$\_SDFFCE\_NP1N\_} \\
-\lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & {\tt \$\_DFFE\_NP1P\_}, {\tt \$\_SDFFE\_NP1P\_}, {\tt \$\_SDFFCE\_NP1P\_} \\
-\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & {\tt \$\_DFFE\_PN0N\_}, {\tt \$\_SDFFE\_PN0N\_}, {\tt \$\_SDFFCE\_PN0N\_} \\
-\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & {\tt \$\_DFFE\_PN0P\_}, {\tt \$\_SDFFE\_PN0P\_}, {\tt \$\_SDFFCE\_PN0P\_} \\
-\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & {\tt \$\_DFFE\_PN1N\_}, {\tt \$\_SDFFE\_PN1N\_}, {\tt \$\_SDFFCE\_PN1N\_} \\
-\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & {\tt \$\_DFFE\_PN1P\_}, {\tt \$\_SDFFE\_PN1P\_}, {\tt \$\_SDFFCE\_PN1P\_} \\
-\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & {\tt \$\_DFFE\_PP0N\_}, {\tt \$\_SDFFE\_PP0N\_}, {\tt \$\_SDFFCE\_PP0N\_} \\
-\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & {\tt \$\_DFFE\_PP0P\_}, {\tt \$\_SDFFE\_PP0P\_}, {\tt \$\_SDFFCE\_PP0P\_} \\
-\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & {\tt \$\_DFFE\_PP1N\_}, {\tt \$\_SDFFE\_PP1N\_}, {\tt \$\_SDFFCE\_PP1N\_} \\
-\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & {\tt \$\_DFFE\_PP1P\_}, {\tt \$\_SDFFE\_PP1P\_}, {\tt \$\_SDFFCE\_PP1P\_} \\
-\end{tabular}
-\caption{Cell types for gate level logic networks (FFs with reset and enable)}
-\label{tab:CellLib_gates_adffe}
-\end{table}
-
-\begin{table}[t]
-\hfil
-\begin{tabular}[t]{llll}
-$ClkEdge$ & $SetLvl$ & $RstLvl$ & Cell Type \\
-\hline
-\lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & {\tt \$\_DFFSR\_NNN\_} \\
-\lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & {\tt \$\_DFFSR\_NNP\_} \\
-\lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & {\tt \$\_DFFSR\_NPN\_} \\
-\lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & {\tt \$\_DFFSR\_NPP\_} \\
-\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & {\tt \$\_DFFSR\_PNN\_} \\
-\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & {\tt \$\_DFFSR\_PNP\_} \\
-\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & {\tt \$\_DFFSR\_PPN\_} \\
-\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & {\tt \$\_DFFSR\_PPP\_} \\
-\end{tabular}
-\caption{Cell types for gate level logic networks (FFs with set and reset)}
-\label{tab:CellLib_gates_dffsr}
-\end{table}
-
-\begin{table}[t]
-\hfil
-\begin{tabular}[t]{lllll}
-$ClkEdge$ & $SetLvl$ & $RstLvl$ & $EnLvl$ & Cell Type \\
-\hline
-\lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & {\tt \$\_DFFSRE\_NNNN\_} \\
-\lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & {\tt \$\_DFFSRE\_NNNP\_} \\
-\lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & {\tt \$\_DFFSRE\_NNPN\_} \\
-\lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & {\tt \$\_DFFSRE\_NNPP\_} \\
-\lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & {\tt \$\_DFFSRE\_NPNN\_} \\
-\lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & {\tt \$\_DFFSRE\_NPNP\_} \\
-\lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & {\tt \$\_DFFSRE\_NPPN\_} \\
-\lstinline[language=Verilog];negedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & {\tt \$\_DFFSRE\_NPPP\_} \\
-\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & {\tt \$\_DFFSRE\_PNNN\_} \\
-\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & {\tt \$\_DFFSRE\_PNNP\_} \\
-\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & {\tt \$\_DFFSRE\_PNPN\_} \\
-\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & {\tt \$\_DFFSRE\_PNPP\_} \\
-\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & {\tt \$\_DFFSRE\_PPNN\_} \\
-\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & {\tt \$\_DFFSRE\_PPNP\_} \\
-\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & {\tt \$\_DFFSRE\_PPPN\_} \\
-\lstinline[language=Verilog];posedge; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & {\tt \$\_DFFSRE\_PPPP\_} \\
-\end{tabular}
-\caption{Cell types for gate level logic networks (FFs with set and reset and enable)}
-\label{tab:CellLib_gates_dffsre}
-\end{table}
-
-\begin{table}[t]
-\hfil
-\begin{tabular}[t]{llll}
-$EnLvl$ & $RstLvl$ & $RstVal$ & Cell Type \\
-\hline
-\lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & {\tt \$\_DLATCH\_NN0\_} \\
-\lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & {\tt \$\_DLATCH\_NN1\_} \\
-\lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & {\tt \$\_DLATCH\_NP0\_} \\
-\lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & {\tt \$\_DLATCH\_NP1\_} \\
-\lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & {\tt \$\_DLATCH\_PN0\_} \\
-\lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & {\tt \$\_DLATCH\_PN1\_} \\
-\lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & {\tt \$\_DLATCH\_PP0\_} \\
-\lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & {\tt \$\_DLATCH\_PP1\_} \\
-\end{tabular}
-\caption{Cell types for gate level logic networks (latches with reset)}
-\label{tab:CellLib_gates_adlatch}
-\end{table}
-
-\begin{table}[t]
-\hfil
-\begin{tabular}[t]{llll}
-$EnLvl$ & $SetLvl$ & $RstLvl$ & Cell Type \\
-\hline
-\lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & {\tt \$\_DLATCHSR\_NNN\_} \\
-\lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & {\tt \$\_DLATCHSR\_NNP\_} \\
-\lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & {\tt \$\_DLATCHSR\_NPN\_} \\
-\lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & {\tt \$\_DLATCHSR\_NPP\_} \\
-\lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & {\tt \$\_DLATCHSR\_PNN\_} \\
-\lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & {\tt \$\_DLATCHSR\_PNP\_} \\
-\lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & {\tt \$\_DLATCHSR\_PPN\_} \\
-\lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & {\tt \$\_DLATCHSR\_PPP\_} \\
-\end{tabular}
-\caption{Cell types for gate level logic networks (latches with set and reset)}
-\label{tab:CellLib_gates_dlatchsr}
-\end{table}
-
-\begin{table}[t]
-\hfil
-\begin{tabular}[t]{llll}
-$SetLvl$ & $RstLvl$ & Cell Type \\
-\hline
-\lstinline[language=Verilog];0; & \lstinline[language=Verilog];0; & {\tt \$\_SR\_NN\_} \\
-\lstinline[language=Verilog];0; & \lstinline[language=Verilog];1; & {\tt \$\_SR\_NP\_} \\
-\lstinline[language=Verilog];1; & \lstinline[language=Verilog];0; & {\tt \$\_SR\_PN\_} \\
-\lstinline[language=Verilog];1; & \lstinline[language=Verilog];1; & {\tt \$\_SR\_PP\_} \\
-\end{tabular}
-\caption{Cell types for gate level logic networks (SR latches)}
-\label{tab:CellLib_gates_sr}
-\end{table}
-
-Tables~\ref{tab:CellLib_gates}, \ref{tab:CellLib_gates_dffe}, \ref{tab:CellLib_gates_adff}, \ref{tab:CellLib_gates_adffe}, \ref{tab:CellLib_gates_dffsr}, \ref{tab:CellLib_gates_dffsre}, \ref{tab:CellLib_gates_adlatch}, \ref{tab:CellLib_gates_dlatchsr} and \ref{tab:CellLib_gates_sr} list all cell types used for gate level logic. The cell types
-{\tt \$\_BUF\_}, {\tt \$\_NOT\_}, {\tt \$\_AND\_}, {\tt \$\_NAND\_}, {\tt \$\_ANDNOT\_},
-{\tt \$\_OR\_}, {\tt \$\_NOR\_}, {\tt \$\_ORNOT\_}, {\tt \$\_XOR\_}, {\tt \$\_XNOR\_},
-{\tt \$\_AOI3\_}, {\tt \$\_OAI3\_}, {\tt \$\_AOI4\_}, {\tt \$\_OAI4\_},
-{\tt \$\_MUX\_}, {\tt \$\_MUX4\_}, {\tt \$\_MUX8\_}, {\tt \$\_MUX16\_} and {\tt \$\_NMUX\_} are used to model combinatorial logic.
-The cell type {\tt \$\_TBUF\_} is used to model tristate logic.
-
-The {\tt \$\_MUX4\_}, {\tt \$\_MUX8\_} and {\tt \$\_MUX16\_} cells are used to model wide muxes, and correspond to the following Verilog code:
-
-\begin{lstlisting}[language=Verilog]
-// $_MUX4_
-assign Y = T ? (S ? D : C) :
- (S ? B : A);
-// $_MUX8_
-assign Y = U ? T ? (S ? H : G) :
- (S ? F : E) :
- T ? (S ? D : C) :
- (S ? B : A);
-// $_MUX16_
-assign Y = V ? U ? T ? (S ? P : O) :
- (S ? N : M) :
- T ? (S ? L : K) :
- (S ? J : I) :
- U ? T ? (S ? H : G) :
- (S ? F : E) :
- T ? (S ? D : C) :
- (S ? B : A);
-\end{lstlisting}
-
-The cell types {\tt \$\_DFF\_N\_} and {\tt \$\_DFF\_P\_} represent d-type flip-flops.
-
-The cell types {\tt \$\_DFFE\_[NP][NP]\_}
-implement d-type flip-flops with enable. The values in the table for these cell types relate to the
-following Verilog code template.
-
-\begin{lstlisting}[mathescape,language=Verilog]
- always @($ClkEdge$ C)
- if (EN == $EnLvl$)
- Q <= D;
-\end{lstlisting}
-
-The cell types {\tt \$\_DFF\_[NP][NP][01]\_} implement
-d-type flip-flops with asynchronous reset. The values in the table for these cell types relate to the
-following Verilog code template, where \lstinline[mathescape,language=Verilog];$RstEdge$; is \lstinline[language=Verilog];posedge;
-if \lstinline[mathescape,language=Verilog];$RstLvl$; if \lstinline[language=Verilog];1;, and \lstinline[language=Verilog];negedge;
-otherwise.
-
-\begin{lstlisting}[mathescape,language=Verilog]
- always @($ClkEdge$ C, $RstEdge$ R)
- if (R == $RstLvl$)
- Q <= $RstVal$;
- else
- Q <= D;
-\end{lstlisting}
-
-The cell types {\tt \$\_SDFF\_[NP][NP][01]\_} implement
-d-type flip-flops with synchronous reset. The values in the table for these cell types relate to the
-following Verilog code template:
-
-\begin{lstlisting}[mathescape,language=Verilog]
- always @($ClkEdge$ C)
- if (R == $RstLvl$)
- Q <= $RstVal$;
- else
- Q <= D;
-\end{lstlisting}
-
-The cell types {\tt \$\_DFFE\_[NP][NP][01][NP]\_} implement
-d-type flip-flops with asynchronous reset and enable. The values in the table for these cell types relate to the
-following Verilog code template, where \lstinline[mathescape,language=Verilog];$RstEdge$; is \lstinline[language=Verilog];posedge;
-if \lstinline[mathescape,language=Verilog];$RstLvl$; if \lstinline[language=Verilog];1;, and \lstinline[language=Verilog];negedge;
-otherwise.
-
-\begin{lstlisting}[mathescape,language=Verilog]
- always @($ClkEdge$ C, $RstEdge$ R)
- if (R == $RstLvl$)
- Q <= $RstVal$;
- else if (EN == $EnLvl$)
- Q <= D;
-\end{lstlisting}
-
-The cell types {\tt \$\_SDFFE\_[NP][NP][01][NP]\_} implement d-type flip-flops
-with synchronous reset and enable, with reset having priority over enable.
-The values in the table for these cell types relate to the
-following Verilog code template:
-
-\begin{lstlisting}[mathescape,language=Verilog]
- always @($ClkEdge$ C)
- if (R == $RstLvl$)
- Q <= $RstVal$;
- else if (EN == $EnLvl$)
- Q <= D;
-\end{lstlisting}
-
-The cell types {\tt \$\_SDFFCE\_[NP][NP][01][NP]\_} implement d-type flip-flops
-with synchronous reset and enable, with enable having priority over reset.
-The values in the table for these cell types relate to the
-following Verilog code template:
-
-\begin{lstlisting}[mathescape,language=Verilog]
- always @($ClkEdge$ C)
- if (EN == $EnLvl$)
- if (R == $RstLvl$)
- Q <= $RstVal$;
- else
- Q <= D;
-\end{lstlisting}
-
-The cell types {\tt \$\_DFFSR\_[NP][NP][NP]\_} implement
-d-type flip-flops with asynchronous set and reset. The values in the table for these cell types relate to the
-following Verilog code template, where \lstinline[mathescape,language=Verilog];$RstEdge$; is \lstinline[language=Verilog];posedge;
-if \lstinline[mathescape,language=Verilog];$RstLvl$; if \lstinline[language=Verilog];1;, \lstinline[language=Verilog];negedge;
-otherwise, and \lstinline[mathescape,language=Verilog];$SetEdge$; is \lstinline[language=Verilog];posedge;
-if \lstinline[mathescape,language=Verilog];$SetLvl$; if \lstinline[language=Verilog];1;, \lstinline[language=Verilog];negedge;
-otherwise.
-
-\begin{lstlisting}[mathescape,language=Verilog]
- always @($ClkEdge$ C, $RstEdge$ R, $SetEdge$ S)
- if (R == $RstLvl$)
- Q <= 0;
- else if (S == $SetLvl$)
- Q <= 1;
- else
- Q <= D;
-\end{lstlisting}
-
-The cell types {\tt \$\_DFFSRE\_[NP][NP][NP][NP]\_} implement
-d-type flip-flops with asynchronous set and reset and enable. The values in the table for these cell types relate to the
-following Verilog code template, where \lstinline[mathescape,language=Verilog];$RstEdge$; is \lstinline[language=Verilog];posedge;
-if \lstinline[mathescape,language=Verilog];$RstLvl$; if \lstinline[language=Verilog];1;, \lstinline[language=Verilog];negedge;
-otherwise, and \lstinline[mathescape,language=Verilog];$SetEdge$; is \lstinline[language=Verilog];posedge;
-if \lstinline[mathescape,language=Verilog];$SetLvl$; if \lstinline[language=Verilog];1;, \lstinline[language=Verilog];negedge;
-otherwise.
-
-\begin{lstlisting}[mathescape,language=Verilog]
- always @($ClkEdge$ C, $RstEdge$ R, $SetEdge$ S)
- if (R == $RstLvl$)
- Q <= 0;
- else if (S == $SetLvl$)
- Q <= 1;
- else if (E == $EnLvl$)
- Q <= D;
-\end{lstlisting}
-
-The cell types {\tt \$\_DLATCH\_N\_} and {\tt \$\_DLATCH\_P\_} represent d-type latches.
-
-The cell types {\tt \$\_DLATCH\_[NP][NP][01]\_} implement
-d-type latches with reset. The values in the table for these cell types relate to the
-following Verilog code template:
-
-\begin{lstlisting}[mathescape,language=Verilog]
- always @*
- if (R == $RstLvl$)
- Q <= $RstVal$;
- else if (E == $EnLvl$)
- Q <= D;
-\end{lstlisting}
-
-The cell types {\tt \$\_DLATCHSR\_[NP][NP][NP]\_} implement
-d-type latches with set and reset. The values in the table for these cell types relate to the
-following Verilog code template:
-
-\begin{lstlisting}[mathescape,language=Verilog]
- always @*
- if (R == $RstLvl$)
- Q <= 0;
- else if (S == $SetLvl$)
- Q <= 1;
- else if (E == $EnLvl$)
- Q <= D;
-\end{lstlisting}
-
-The cell types {\tt \$\_SR\_[NP][NP]\_} implement
-sr-type latches. The values in the table for these cell types relate to the
-following Verilog code template:
-
-\begin{lstlisting}[mathescape,language=Verilog]
- always @*
- if (R == $RstLvl$)
- Q <= 0;
- else if (S == $SetLvl$)
- Q <= 1;
-\end{lstlisting}
-
-In most cases gate level logic networks are created from RTL networks using the {\tt techmap} pass. The flip-flop cells
-from the gate level logic network can be mapped to physical flip-flop cells from a Liberty file using the {\tt dfflibmap}
-pass. The combinatorial logic cells can be mapped to physical cells from a Liberty file via ABC \citeweblink{ABC}
-using the {\tt abc} pass.
-
-\begin{fixme}
-Add information about {\tt \$slice} and {\tt \$concat} cells.
-\end{fixme}
-
-\begin{fixme}
-Add information about {\tt \$lut} and {\tt \$sop} cells.
-\end{fixme}
-
-\begin{fixme}
-Add information about {\tt \$alu}, {\tt \$macc}, {\tt \$fa}, and {\tt \$lcu} cells.
-\end{fixme}