diff options
author | KrystalDelusion <krystinedawn@yosyshq.com> | 2022-12-08 05:54:08 +1300 |
---|---|---|
committer | KrystalDelusion <krystinedawn@yosyshq.com> | 2022-12-08 05:54:08 +1300 |
commit | 1eec255e60f2854b4dd1fa212f02d57eb31c9f19 (patch) | |
tree | 9aae278e98bb5f210061c22bcf22d40854d98e8c /manual/CHAPTER_Optimize.tex | |
parent | 4b95fac13934a39525a934329648cf76e4b4f219 (diff) | |
download | yosys-1eec255e60f2854b4dd1fa212f02d57eb31c9f19.tar.gz yosys-1eec255e60f2854b4dd1fa212f02d57eb31c9f19.tar.bz2 yosys-1eec255e60f2854b4dd1fa212f02d57eb31c9f19.zip |
Removing manual files
Diffstat (limited to 'manual/CHAPTER_Optimize.tex')
-rw-r--r-- | manual/CHAPTER_Optimize.tex | 324 |
1 files changed, 0 insertions, 324 deletions
diff --git a/manual/CHAPTER_Optimize.tex b/manual/CHAPTER_Optimize.tex deleted file mode 100644 index eee92ef5c..000000000 --- a/manual/CHAPTER_Optimize.tex +++ /dev/null @@ -1,324 +0,0 @@ - -\chapter{Optimizations} -\label{chapter:opt} - -Yosys employs a number of optimizations to generate better and cleaner results. -This chapter outlines these optimizations. - -\section{Simple Optimizations} - -The Yosys pass {\tt opt} runs a number of simple optimizations. This includes removing unused -signals and cells and const folding. It is recommended to run this pass after each major step -in the synthesis script. At the time of this writing the {\tt opt} pass executes the following -passes that each perform a simple optimization: - -\begin{itemize} -\item Once at the beginning of {\tt opt}: -\begin{itemize} -\item {\tt opt\_expr} -\item {\tt opt\_merge -nomux} -\end{itemize} -\item Repeat until result is stable: -\begin{itemize} -\item {\tt opt\_muxtree} -\item {\tt opt\_reduce} -\item {\tt opt\_merge} -\item {\tt opt\_rmdff} -\item {\tt opt\_clean} -\item {\tt opt\_expr} -\end{itemize} -\end{itemize} - -The following section describes each of the {\tt opt\_*} passes. - -\subsection{The opt\_expr pass} - -This pass performs const folding on the internal combinational cell types -described in Chap.~\ref{chapter:celllib}. This means a cell with all constant -inputs is replaced with the constant value this cell drives. In some cases -this pass can also optimize cells with some constant inputs. - -\begin{table} - \hfil - \begin{tabular}{cc|c} - A-Input & B-Input & Replacement \\ - \hline - any & 0 & 0 \\ - 0 & any & 0 \\ - 1 & 1 & 1 \\ - \hline - X/Z & X/Z & X \\ - 1 & X/Z & X \\ - X/Z & 1 & X \\ - \hline - any & X/Z & 0 \\ - X/Z & any & 0 \\ - \hline - $a$ & 1 & $a$ \\ - 1 & $b$ & $b$ \\ - \end{tabular} - \caption{Const folding rules for {\tt\$\_AND\_} cells as used in {\tt opt\_expr}.} - \label{tab:opt_expr_and} -\end{table} - -Table~\ref{tab:opt_expr_and} shows the replacement rules used for optimizing -an {\tt\$\_AND\_} gate. The first three rules implement the obvious const folding -rules. Note that `any' might include dynamic values calculated by other parts -of the circuit. The following three lines propagate undef (X) states. -These are the only three cases in which it is allowed to propagate an undef -according to Sec.~5.1.10 of IEEE Std. 1364-2005 \cite{Verilog2005}. - -The next two lines assume the value 0 for undef states. These two rules are only -used if no other substitutions are possible in the current module. If other substitutions -are possible they are performed first, in the hope that the `any' will change to -an undef value or a 1 and therefore the output can be set to undef. - -The last two lines simply replace an {\tt\$\_AND\_} gate with one constant-1 -input with a buffer. - -Besides this basic const folding the {\tt opt\_expr} pass can replace 1-bit wide -{\tt \$eq} and {\tt \$ne} cells with buffers or not-gates if one input is constant. - -The {\tt opt\_expr} pass is very conservative regarding optimizing {\tt \$mux} cells, -as these cells are often used to model decision-trees and breaking these trees can -interfere with other optimizations. - -\subsection{The opt\_muxtree pass} - -This pass optimizes trees of multiplexer cells by analyzing the select inputs. -Consider the following simple example: - -\begin{lstlisting}[numbers=left,frame=single,language=Verilog] -module uut(a, y); -input a; -output [1:0] y = a ? (a ? 1 : 2) : 3; -endmodule -\end{lstlisting} - -The output can never be 2, as this would require \lstinline[language=Verilog];a; -to be 1 for the outer multiplexer and 0 for the inner multiplexer. The {\tt -opt\_muxtree} pass detects this contradiction and replaces the inner multiplexer -with a constant 1, yielding the logic for \lstinline[language=Verilog];y = a ? 1 : 3;. - -\subsection{The opt\_reduce pass} - -\begin{sloppypar} -This is a simple optimization pass that identifies and consolidates identical input -bits to {\tt \$reduce\_and} and {\tt \$reduce\_or} cells. It also sorts the input -bits to ease identification of shareable {\tt \$reduce\_and} and {\tt \$reduce\_or} cells -in other passes. -\end{sloppypar} - -This pass also identifies and consolidates identical inputs to multiplexer cells. In this -case the new shared select bit is driven using a {\tt \$reduce\_or} cell that combines -the original select bits. - -Lastly this pass consolidates trees of {\tt \$reduce\_and} cells and trees of -{\tt \$reduce\_or} cells to single large {\tt \$reduce\_and} or {\tt \$reduce\_or} cells. - -These three simple optimizations are performed in a loop until a stable result is -produced. - -\subsection{The opt\_rmdff pass} - -This pass identifies single-bit d-type flip-flops ({\tt \$\_DFF\_*}, {\tt \$dff}, and {\tt -\$adff} cells) with a constant data input and replaces them with a constant driver. - -\subsection{The opt\_clean pass} - -This pass identifies unused signals and cells and removes them from the design. It also -creates an \B{unused\_bits} attribute on wires with unused bits. This attribute can be -used for debugging or by other optimization passes. - -\subsection{The opt\_merge pass} - -This pass performs trivial resource sharing. This means that this pass identifies cells -with identical inputs and replaces them with a single instance of the cell. - -The option {\tt -nomux} can be used to disable resource sharing for multiplexer -cells ({\tt \$mux} and {\tt \$pmux}. This can be useful as -it prevents multiplexer trees to be merged, which might prevent {\tt opt\_muxtree} -to identify possible optimizations. - -\section{FSM Extraction and Encoding} - -The {\tt fsm} pass performs finite-state-machine (FSM) extraction and recoding. The {\tt fsm} -pass simply executes the following other passes: - -\begin{itemize} -\item Identify and extract FSMs: -\begin{itemize} -\item {\tt fsm\_detect} -\item {\tt fsm\_extract} -\end{itemize} - -\item Basic optimizations: -\begin{itemize} -\item {\tt fsm\_opt} -\item {\tt opt\_clean} -\item {\tt fsm\_opt} -\end{itemize} - -\item Expanding to nearby gate-logic (if called with {\tt -expand}): -\begin{itemize} -\item {\tt fsm\_expand} -\item {\tt opt\_clean} -\item {\tt fsm\_opt} -\end{itemize} - -\item Re-code FSM states (unless called with {\tt -norecode}): -\begin{itemize} -\item {\tt fsm\_recode} -\end{itemize} - -\item Print information about FSMs: -\begin{itemize} -\item {\tt fsm\_info} -\end{itemize} - -\item Export FSMs in KISS2 file format (if called with {\tt -export}): -\begin{itemize} -\item {\tt fsm\_export} -\end{itemize} - -\item Map FSMs to RTL cells (unless called with {\tt -nomap}): -\begin{itemize} -\item {\tt fsm\_map} -\end{itemize} -\end{itemize} - -The {\tt fsm\_detect} pass identifies FSM state registers and marks them using the -\B{fsm\_encoding}{\tt = "auto"} attribute. The {\tt fsm\_extract} extracts all -FSMs marked using the \B{fsm\_encoding} attribute (unless \B{fsm\_encoding} is -set to {\tt "none"}) and replaces the corresponding RTL cells with a {\tt \$fsm} -cell. All other {\tt fsm\_*} passes operate on these {\tt \$fsm} cells. The -{\tt fsm\_map} call finally replaces the {\tt \$fsm} cells with RTL cells. - -Note that these optimizations operate on an RTL netlist. I.e.~the {\tt fsm} pass -should be executed after the {\tt proc} pass has transformed all -{\tt RTLIL::Process} objects to RTL cells. - -The algorithms used for FSM detection and extraction are influenced by a more -general reported technique \cite{fsmextract}. - -\subsection{FSM Detection} - -The {\tt fsm\_detect} pass identifies FSM state registers. It sets the -\B{fsm\_encoding}{\tt = "auto"} attribute on any (multi-bit) wire that matches -the following description: - -\begin{itemize} -\item Does not already have the \B{fsm\_encoding} attribute. -\item Is not an output of the containing module. -\item Is driven by single {\tt \$dff} or {\tt \$adff} cell. -\item The \B{D}-Input of this {\tt \$dff} or {\tt \$adff} cell is driven by a multiplexer -tree that only has constants or the old state value on its leaves. -\item The state value is only used in the said multiplexer tree or by simple relational -cells that compare the state value to a constant (usually {\tt \$eq} cells). -\end{itemize} - -This heuristic has proven to work very well. It is possible to overwrite it by setting -\B{fsm\_encoding}{\tt = "auto"} on registers that should be considered FSM state registers -and setting \B{fsm\_encoding}{\tt = "none"} on registers that match the above criteria -but should not be considered FSM state registers. - -Note however that marking state registers with \B{fsm\_encoding} that are not -suitable for FSM recoding can cause synthesis to fail or produce invalid -results. - -\subsection{FSM Extraction} - -The {\tt fsm\_extract} pass operates on all state signals marked with the -\B{fsm\_encoding} ({\tt != "none"}) attribute. For each state signal the following -information is determined: - -\begin{itemize} -\item The state registers -\item The asynchronous reset state if the state registers use asynchronous reset -\item All states and the control input signals used in the state transition functions -\item The control output signals calculated from the state signals and control inputs -\item A table of all state transitions and corresponding control inputs- and outputs -\end{itemize} - -The state registers (and asynchronous reset state, if applicable) is simply determined -by identifying the driver for the state signal. - -From there the {\tt \$mux}-tree driving the state register inputs is -recursively traversed. All select inputs are control signals and the leaves of the -{\tt \$mux}-tree are the states. The algorithm fails if a non-constant leaf -that is not the state signal itself is found. - -The list of control outputs is initialized with the bits from the state signal. -It is then extended by adding all values that are calculated by cells that -compare the state signal with a constant value. - -In most cases this will cover all uses of the state register, thus rendering the -state encoding arbitrary. If however a design uses e.g.~a single bit of the state -value to drive a control output directly, this bit of the state signal will be -transformed to a control output of the same value. - -Finally, a transition table for the FSM is generated. This is done by using the -{\tt ConstEval} C++ helper class (defined in {\tt kernel/consteval.h}) that can -be used to evaluate parts of the design. The {\tt ConstEval} class can be asked -to calculate a given set of result signals using a set of signal-value -assignments. It can also be passed a list of stop-signals that abort the {\tt -ConstEval} algorithm if the value of a stop-signal is needed in order to -calculate the result signals. - -The {\tt fsm\_extract} pass uses the {\tt ConstEval} class in the following way -to create a transition table. For each state: - -\begin{enumerate} -\item Create a {\tt ConstEval} object for the module containing the FSM -\item Add all control inputs to the list of stop signals -\item Set the state signal to the current state -\item Try to evaluate the next state and control output \label{enum:fsm_extract_cealg_try} -\item If step~\ref{enum:fsm_extract_cealg_try} was not successful: -\begin{itemize} -\item Recursively goto step~\ref{enum:fsm_extract_cealg_try} with the offending stop-signal set to 0. -\item Recursively goto step~\ref{enum:fsm_extract_cealg_try} with the offending stop-signal set to 1. -\end{itemize} -\item If step~\ref{enum:fsm_extract_cealg_try} was successful: Emit transition -\end{enumerate} - -Finally a {\tt \$fsm} cell is created with the generated transition table and added to the -module. This new cell is connected to the control signals and the old drivers for the -control outputs are disconnected. - -\subsection{FSM Optimization} - -The {\tt fsm\_opt} pass performs basic optimizations on {\tt \$fsm} cells (not including state -recoding). The following optimizations are performed (in this order): - -\begin{itemize} -\item Unused control outputs are removed from the {\tt \$fsm} cell. The attribute \B{unused\_bits} -(that is usually set by the {\tt opt\_clean} pass) is used to determine which control -outputs are unused. -\item Control inputs that are connected to the same driver are merged. -\item When a control input is driven by a control output, the control input is removed and the transition -table altered to give the same performance without the external feedback path. -\item Entries in the transition table that yield the same output and only -differ in the value of a single control input bit are merged and the different bit is removed -from the sensitivity list (turned into a don't-care bit). -\item Constant inputs are removed and the transition table is altered to give an unchanged behaviour. -\item Unused inputs are removed. -\end{itemize} - -\subsection{FSM Recoding} - -The {\tt fsm\_recode} pass assigns new bit pattern to the states. Usually this -also implies a change in the width of the state signal. At the moment of this -writing only one-hot encoding with all-zero for the reset state is supported. - -The {\tt fsm\_recode} pass can also write a text file with the changes performed -by it that can be used when verifying designs synthesized by Yosys using Synopsys -Formality \citeweblink{Formality}. - -\section{Logic Optimization} - -Yosys can perform multi-level combinational logic optimization on gate-level netlists using the -external program ABC \citeweblink{ABC}. The {\tt abc} pass extracts the combinational gate-level -parts of the design, passes it through ABC, and re-integrates the results. The {\tt abc} pass -can also be used to perform other operations using ABC, such as technology mapping (see -Sec.~\ref{sec:techmap_extern} for details). - |