aboutsummaryrefslogtreecommitdiffstats
path: root/backends/cxxrtl/cxxrtl.cc
diff options
context:
space:
mode:
Diffstat (limited to 'backends/cxxrtl/cxxrtl.cc')
-rw-r--r--backends/cxxrtl/cxxrtl.cc1688
1 files changed, 1688 insertions, 0 deletions
diff --git a/backends/cxxrtl/cxxrtl.cc b/backends/cxxrtl/cxxrtl.cc
new file mode 100644
index 000000000..465882858
--- /dev/null
+++ b/backends/cxxrtl/cxxrtl.cc
@@ -0,0 +1,1688 @@
+/*
+ * yosys -- Yosys Open SYnthesis Suite
+ *
+ * Copyright (C) 2019-2020 whitequark <whitequark@whitequark.org>
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ *
+ */
+
+#include "kernel/rtlil.h"
+#include "kernel/register.h"
+#include "kernel/sigtools.h"
+#include "kernel/utils.h"
+#include "kernel/celltypes.h"
+#include "kernel/log.h"
+
+USING_YOSYS_NAMESPACE
+PRIVATE_NAMESPACE_BEGIN
+
+// [[CITE]]
+// Peter Eades; Xuemin Lin; W. F. Smyth, "A Fast Effective Heuristic For The Feedback Arc Set Problem"
+// Information Processing Letters, Vol. 47, pp 319-323, 1993
+// https://pdfs.semanticscholar.org/c7ed/d9acce96ca357876540e19664eb9d976637f.pdf
+
+// A topological sort (on a cell/wire graph) is always possible in a fully flattened RTLIL design without
+// processes or logic loops where every wire has a single driver. Logic loops are illegal in RTLIL and wires
+// with multiple drivers can be split by the `splitnets` pass; however, interdependencies between processes
+// or module instances can create strongly connected components without introducing evaluation nondeterminism.
+// We wish to support designs with such benign SCCs (as well as designs with multiple drivers per wire), so
+// we sort the graph in a way that minimizes feedback arcs. If there are no feedback arcs in the sorted graph,
+// then a more efficient evaluation method is possible, since eval() will always immediately converge.
+template<class T>
+struct Scheduler {
+ struct Vertex {
+ T *data;
+ Vertex *prev, *next;
+ pool<Vertex*, hash_ptr_ops> preds, succs;
+
+ Vertex() : data(NULL), prev(this), next(this) {}
+ Vertex(T *data) : data(data), prev(NULL), next(NULL) {}
+
+ bool empty() const
+ {
+ log_assert(data == NULL);
+ if (next == this) {
+ log_assert(prev == next);
+ return true;
+ }
+ return false;
+ }
+
+ void link(Vertex *list)
+ {
+ log_assert(prev == NULL && next == NULL);
+ next = list;
+ prev = list->prev;
+ list->prev->next = this;
+ list->prev = this;
+ }
+
+ void unlink()
+ {
+ log_assert(prev->next == this && next->prev == this);
+ prev->next = next;
+ next->prev = prev;
+ next = prev = NULL;
+ }
+
+ int delta() const
+ {
+ return succs.size() - preds.size();
+ }
+ };
+
+ std::vector<Vertex*> vertices;
+ Vertex *sources = new Vertex;
+ Vertex *sinks = new Vertex;
+ dict<int, Vertex*> bins;
+
+ ~Scheduler()
+ {
+ delete sources;
+ delete sinks;
+ for (auto bin : bins)
+ delete bin.second;
+ for (auto vertex : vertices)
+ delete vertex;
+ }
+
+ Vertex *add(T *data)
+ {
+ Vertex *vertex = new Vertex(data);
+ vertices.push_back(vertex);
+ return vertex;
+ }
+
+ void relink(Vertex *vertex)
+ {
+ if (vertex->succs.empty())
+ vertex->link(sinks);
+ else if (vertex->preds.empty())
+ vertex->link(sources);
+ else {
+ int delta = vertex->delta();
+ if (!bins.count(delta))
+ bins[delta] = new Vertex;
+ vertex->link(bins[delta]);
+ }
+ }
+
+ Vertex *remove(Vertex *vertex)
+ {
+ vertex->unlink();
+ for (auto pred : vertex->preds) {
+ if (pred == vertex)
+ continue;
+ log_assert(pred->succs[vertex]);
+ pred->unlink();
+ pred->succs.erase(vertex);
+ relink(pred);
+ }
+ for (auto succ : vertex->succs) {
+ if (succ == vertex)
+ continue;
+ log_assert(succ->preds[vertex]);
+ succ->unlink();
+ succ->preds.erase(vertex);
+ relink(succ);
+ }
+ vertex->preds.clear();
+ vertex->succs.clear();
+ return vertex;
+ }
+
+ std::vector<Vertex*> schedule()
+ {
+ std::vector<Vertex*> s1, s2r;
+ for (auto vertex : vertices)
+ relink(vertex);
+ bool bins_empty = false;
+ while (!(sinks->empty() && sources->empty() && bins_empty)) {
+ while (!sinks->empty())
+ s2r.push_back(remove(sinks->next));
+ while (!sources->empty())
+ s1.push_back(remove(sources->next));
+ // Choosing u in this implementation isn't O(1), but the paper handwaves which data structure they suggest
+ // using to get O(1) relinking *and* find-max-key ("it is clear"... no it isn't), so this code uses a very
+ // naive implementation of find-max-key.
+ bins_empty = true;
+ bins.template sort<std::greater<int>>();
+ for (auto bin : bins) {
+ if (!bin.second->empty()) {
+ bins_empty = false;
+ s1.push_back(remove(bin.second->next));
+ break;
+ }
+ }
+ }
+ s1.insert(s1.end(), s2r.rbegin(), s2r.rend());
+ return s1;
+ }
+};
+
+static bool is_unary_cell(RTLIL::IdString type)
+{
+ return type.in(
+ ID($not), ID($logic_not), ID($reduce_and), ID($reduce_or), ID($reduce_xor), ID($reduce_xnor), ID($reduce_bool),
+ ID($pos), ID($neg));
+}
+
+static bool is_binary_cell(RTLIL::IdString type)
+{
+ return type.in(
+ ID($and), ID($or), ID($xor), ID($xnor), ID($logic_and), ID($logic_or),
+ ID($shl), ID($sshl), ID($shr), ID($sshr), ID($shift), ID($shiftx),
+ ID($eq), ID($ne), ID($eqx), ID($nex), ID($gt), ID($ge), ID($lt), ID($le),
+ ID($add), ID($sub), ID($mul), ID($div), ID($mod));
+}
+
+static bool is_elidable_cell(RTLIL::IdString type)
+{
+ return is_unary_cell(type) || is_binary_cell(type) || type.in(
+ ID($mux), ID($concat), ID($slice));
+}
+
+static bool is_sync_ff_cell(RTLIL::IdString type)
+{
+ return type.in(
+ ID($dff), ID($dffe));
+}
+
+static bool is_ff_cell(RTLIL::IdString type)
+{
+ return is_sync_ff_cell(type) || type.in(
+ ID($adff), ID($dffsr), ID($dlatch), ID($dlatchsr), ID($sr));
+}
+
+static bool is_internal_cell(RTLIL::IdString type)
+{
+ return type[0] == '$' && !type.begins_with("$paramod\\");
+}
+
+struct FlowGraph {
+ struct Node {
+ enum class Type {
+ CONNECT,
+ CELL,
+ PROCESS
+ };
+
+ Type type;
+ RTLIL::SigSig connect = {};
+ const RTLIL::Cell *cell = NULL;
+ const RTLIL::Process *process = NULL;
+ };
+
+ std::vector<Node*> nodes;
+ dict<const RTLIL::Wire*, pool<Node*, hash_ptr_ops>> wire_defs, wire_uses;
+ dict<const RTLIL::Wire*, bool> wire_def_elidable, wire_use_elidable;
+
+ ~FlowGraph()
+ {
+ for (auto node : nodes)
+ delete node;
+ }
+
+ void add_defs(Node *node, const RTLIL::SigSpec &sig, bool elidable)
+ {
+ for (auto chunk : sig.chunks())
+ if (chunk.wire)
+ wire_defs[chunk.wire].insert(node);
+ // Only defs of an entire wire in the right order can be elided.
+ if (sig.is_wire())
+ wire_def_elidable[sig.as_wire()] = elidable;
+ }
+
+ void add_uses(Node *node, const RTLIL::SigSpec &sig)
+ {
+ for (auto chunk : sig.chunks())
+ if (chunk.wire) {
+ wire_uses[chunk.wire].insert(node);
+ // Only a single use of an entire wire in the right order can be elided.
+ // (But the use can include other chunks.)
+ if (!wire_use_elidable.count(chunk.wire))
+ wire_use_elidable[chunk.wire] = true;
+ else
+ wire_use_elidable[chunk.wire] = false;
+ }
+ }
+
+ bool is_elidable(const RTLIL::Wire *wire) const
+ {
+ if (wire_def_elidable.count(wire) && wire_use_elidable.count(wire))
+ return wire_def_elidable.at(wire) && wire_use_elidable.at(wire);
+ return false;
+ }
+
+ // Connections
+ void add_connect_defs_uses(Node *node, const RTLIL::SigSig &conn)
+ {
+ add_defs(node, conn.first, /*elidable=*/true);
+ add_uses(node, conn.second);
+ }
+
+ Node *add_node(const RTLIL::SigSig &conn)
+ {
+ Node *node = new Node;
+ node->type = Node::Type::CONNECT;
+ node->connect = conn;
+ nodes.push_back(node);
+ add_connect_defs_uses(node, conn);
+ return node;
+ }
+
+ // Cells
+ void add_cell_defs_uses(Node *node, const RTLIL::Cell *cell)
+ {
+ log_assert(cell->known());
+ for (auto conn : cell->connections()) {
+ if (cell->output(conn.first)) {
+ if (is_sync_ff_cell(cell->type) || (cell->type == ID($memrd) && cell->getParam(ID(CLK_ENABLE)).as_bool()))
+ /* non-combinatorial outputs do not introduce defs */;
+ else if (is_elidable_cell(cell->type))
+ add_defs(node, conn.second, /*elidable=*/true);
+ else if (is_internal_cell(cell->type))
+ add_defs(node, conn.second, /*elidable=*/false);
+ else {
+ // Unlike outputs of internal cells (which generate code that depends on the ability to set the output
+ // wire bits), outputs of user cells are normal wires, and the wires connected to them can be elided.
+ add_defs(node, conn.second, /*elidable=*/true);
+ }
+ }
+ if (cell->input(conn.first))
+ add_uses(node, conn.second);
+ }
+ }
+
+ Node *add_node(const RTLIL::Cell *cell)
+ {
+ Node *node = new Node;
+ node->type = Node::Type::CELL;
+ node->cell = cell;
+ nodes.push_back(node);
+ add_cell_defs_uses(node, cell);
+ return node;
+ }
+
+ // Processes
+ void add_case_defs_uses(Node *node, const RTLIL::CaseRule *case_)
+ {
+ for (auto &action : case_->actions) {
+ add_defs(node, action.first, /*elidable=*/false);
+ add_uses(node, action.second);
+ }
+ for (auto sub_switch : case_->switches) {
+ add_uses(node, sub_switch->signal);
+ for (auto sub_case : sub_switch->cases) {
+ for (auto &compare : sub_case->compare)
+ add_uses(node, compare);
+ add_case_defs_uses(node, sub_case);
+ }
+ }
+ }
+
+ void add_process_defs_uses(Node *node, const RTLIL::Process *process)
+ {
+ add_case_defs_uses(node, &process->root_case);
+ for (auto sync : process->syncs)
+ for (auto action : sync->actions) {
+ if (sync->type == RTLIL::STp || sync->type == RTLIL::STn || sync->type == RTLIL::STe)
+ /* sync actions do not introduce feedback */;
+ else
+ add_defs(node, action.first, /*elidable=*/false);
+ add_uses(node, action.second);
+ }
+ }
+
+ Node *add_node(const RTLIL::Process *process)
+ {
+ Node *node = new Node;
+ node->type = Node::Type::PROCESS;
+ node->process = process;
+ nodes.push_back(node);
+ add_process_defs_uses(node, process);
+ return node;
+ }
+};
+
+struct CxxrtlWorker {
+ bool elide_internal = false;
+ bool elide_public = false;
+ bool localize_internal = false;
+ bool localize_public = false;
+ bool run_splitnets = false;
+
+ std::ostream &f;
+ std::string indent;
+ int temporary = 0;
+
+ dict<const RTLIL::Module*, SigMap> sigmaps;
+ pool<const RTLIL::Wire*> sync_wires;
+ dict<RTLIL::SigBit, RTLIL::SyncType> sync_types;
+ pool<const RTLIL::Memory*> writable_memories;
+ dict<const RTLIL::Cell*, pool<const RTLIL::Cell*>> transparent_for;
+ dict<const RTLIL::Cell*, dict<RTLIL::Wire*, RTLIL::IdString>> cell_wire_defs;
+ dict<const RTLIL::Wire*, FlowGraph::Node> elided_wires;
+ dict<const RTLIL::Module*, std::vector<FlowGraph::Node>> schedule;
+ pool<const RTLIL::Wire*> localized_wires;
+
+ CxxrtlWorker(std::ostream &f) : f(f) {}
+
+ void inc_indent() {
+ indent += "\t";
+ }
+ void dec_indent() {
+ indent.resize(indent.size() - 1);
+ }
+
+ // RTLIL allows any characters in names other than whitespace. This presents an issue for generating C++ code
+ // because C++ identifiers may be only alphanumeric, cannot clash with C++ keywords, and cannot clash with cxxrtl
+ // identifiers. This issue can be solved with a name mangling scheme. We choose a name mangling scheme that results
+ // in readable identifiers, does not depend on an up-to-date list of C++ keywords, and is easy to apply. Its rules:
+ // 1. All generated identifiers start with `_`.
+ // 1a. Generated identifiers for public names (beginning with `\`) start with `p_`.
+ // 1b. Generated identifiers for internal names (beginning with `$`) start with `i_`.
+ // 2. An underscore is escaped with another underscore, i.e. `__`.
+ // 3. Any other non-alnum character is escaped with underscores around its lowercase hex code, e.g. `@` as `_40_`.
+ std::string mangle_name(const RTLIL::IdString &name)
+ {
+ std::string mangled;
+ bool first = true;
+ for (char c : name.str()) {
+ if (first) {
+ first = false;
+ if (c == '\\')
+ mangled += "p_";
+ else if (c == '$')
+ mangled += "i_";
+ else
+ log_assert(false);
+ } else {
+ if (isalnum(c)) {
+ mangled += c;
+ } else if (c == '_') {
+ mangled += "__";
+ } else {
+ char l = c & 0xf, h = (c >> 4) & 0xf;
+ mangled += '_';
+ mangled += (h < 10 ? '0' + h : 'a' + h - 10);
+ mangled += (l < 10 ? '0' + l : 'a' + l - 10);
+ mangled += '_';
+ }
+ }
+ }
+ return mangled;
+ }
+
+ std::string mangle_module_name(const RTLIL::IdString &name)
+ {
+ // Class namespace.
+ return mangle_name(name);
+ }
+
+ std::string mangle_memory_name(const RTLIL::IdString &name)
+ {
+ // Class member namespace.
+ return "memory_" + mangle_name(name);
+ }
+
+ std::string mangle_cell_name(const RTLIL::IdString &name)
+ {
+ // Class member namespace.
+ return "cell_" + mangle_name(name);
+ }
+
+ std::string mangle_wire_name(const RTLIL::IdString &name)
+ {
+ // Class member namespace.
+ return mangle_name(name);
+ }
+
+ std::string mangle(const RTLIL::Module *module)
+ {
+ return mangle_module_name(module->name);
+ }
+
+ std::string mangle(const RTLIL::Memory *memory)
+ {
+ return mangle_memory_name(memory->name);
+ }
+
+ std::string mangle(const RTLIL::Cell *cell)
+ {
+ return mangle_cell_name(cell->name);
+ }
+
+ std::string mangle(const RTLIL::Wire *wire)
+ {
+ return mangle_wire_name(wire->name);
+ }
+
+ std::string mangle(RTLIL::SigBit sigbit)
+ {
+ log_assert(sigbit.wire != NULL);
+ if (sigbit.wire->width == 1)
+ return mangle(sigbit.wire);
+ return mangle(sigbit.wire) + "_" + std::to_string(sigbit.offset);
+ }
+
+ std::string fresh_temporary()
+ {
+ return stringf("tmp_%d", temporary++);
+ }
+
+ void dump_attrs(const RTLIL::AttrObject *object)
+ {
+ for (auto attr : object->attributes) {
+ f << indent << "// " << attr.first.str() << ": ";
+ if (attr.second.flags & RTLIL::CONST_FLAG_STRING) {
+ f << attr.second.decode_string();
+ } else {
+ f << attr.second.as_int(/*is_signed=*/attr.second.flags & RTLIL::CONST_FLAG_SIGNED);
+ }
+ f << "\n";
+ }
+ }
+
+ void dump_const_init(const RTLIL::Const &data, int width, int offset = 0, bool fixed_width = false)
+ {
+ f << "{";
+ while (width > 0) {
+ const int CHUNK_SIZE = 32;
+ uint32_t chunk = data.extract(offset, width > CHUNK_SIZE ? CHUNK_SIZE : width).as_int();
+ if (fixed_width)
+ f << stringf("0x%08xu", chunk);
+ else
+ f << stringf("%#xu", chunk);
+ if (width > CHUNK_SIZE)
+ f << ',';
+ offset += CHUNK_SIZE;
+ width -= CHUNK_SIZE;
+ }
+ f << "}";
+ }
+
+ void dump_const_init(const RTLIL::Const &data)
+ {
+ dump_const_init(data, data.size());
+ }
+
+ void dump_const(const RTLIL::Const &data, int width, int offset = 0, bool fixed_width = false)
+ {
+ f << "value<" << width << ">";
+ dump_const_init(data, width, offset, fixed_width);
+ }
+
+ void dump_const(const RTLIL::Const &data)
+ {
+ dump_const(data, data.size());
+ }
+
+ bool dump_sigchunk(const RTLIL::SigChunk &chunk, bool is_lhs)
+ {
+ if (chunk.wire == NULL) {
+ dump_const(chunk.data, chunk.width, chunk.offset);
+ return false;
+ } else {
+ if (!is_lhs && elided_wires.count(chunk.wire)) {
+ const FlowGraph::Node &node = elided_wires[chunk.wire];
+ switch (node.type) {
+ case FlowGraph::Node::Type::CONNECT:
+ dump_connect_elided(node.connect);
+ break;
+ case FlowGraph::Node::Type::CELL:
+ if (is_elidable_cell(node.cell->type)) {
+ dump_cell_elided(node.cell);
+ } else {
+ f << mangle(node.cell) << "." << mangle_wire_name(cell_wire_defs[node.cell][chunk.wire]) << ".curr";
+ }
+ break;
+ default:
+ log_assert(false);
+ }
+ } else if (localized_wires[chunk.wire]) {
+ f << mangle(chunk.wire);
+ } else {
+ f << mangle(chunk.wire) << (is_lhs ? ".next" : ".curr");
+ }
+ if (chunk.width == chunk.wire->width && chunk.offset == 0)
+ return false;
+ else if (chunk.width == 1)
+ f << ".slice<" << chunk.offset << ">()";
+ else
+ f << ".slice<" << chunk.offset+chunk.width-1 << "," << chunk.offset << ">()";
+ return true;
+ }
+ }
+
+ bool dump_sigspec(const RTLIL::SigSpec &sig, bool is_lhs)
+ {
+ if (sig.empty()) {
+ f << "value<0>()";
+ return false;
+ } else if (sig.is_chunk()) {
+ return dump_sigchunk(sig.as_chunk(), is_lhs);
+ } else {
+ dump_sigchunk(*sig.chunks().rbegin(), is_lhs);
+ for (auto it = sig.chunks().rbegin() + 1; it != sig.chunks().rend(); ++it) {
+ f << ".concat(";
+ dump_sigchunk(*it, is_lhs);
+ f << ")";
+ }
+ return true;
+ }
+ }
+
+ void dump_sigspec_lhs(const RTLIL::SigSpec &sig)
+ {
+ dump_sigspec(sig, /*is_lhs=*/true);
+ }
+
+ void dump_sigspec_rhs(const RTLIL::SigSpec &sig)
+ {
+ // In the contexts where we want template argument deduction to occur for `template<size_t Bits> ... value<Bits>`,
+ // it is necessary to have the argument to already be a `value<N>`, since template argument deduction and implicit
+ // type conversion are mutually exclusive. In these contexts, we use dump_sigspec_rhs() to emit an explicit
+ // type conversion, but only if the expression needs it.
+ bool is_complex = dump_sigspec(sig, /*is_lhs=*/false);
+ if (is_complex)
+ f << ".val()";
+ }
+
+ void collect_sigspec_rhs(const RTLIL::SigSpec &sig, std::vector<RTLIL::IdString> &cells)
+ {
+ for (auto chunk : sig.chunks()) {
+ if (!chunk.wire || !elided_wires.count(chunk.wire))
+ continue;
+
+ const FlowGraph::Node &node = elided_wires[chunk.wire];
+ switch (node.type) {
+ case FlowGraph::Node::Type::CONNECT:
+ collect_connect(node.connect, cells);
+ break;
+ case FlowGraph::Node::Type::CELL:
+ collect_cell(node.cell, cells);
+ break;
+ default:
+ log_assert(false);
+ }
+ }
+ }
+
+ void dump_connect_elided(const RTLIL::SigSig &conn)
+ {
+ dump_sigspec_rhs(conn.second);
+ }
+
+ bool is_connect_elided(const RTLIL::SigSig &conn)
+ {
+ return conn.first.is_wire() && elided_wires.count(conn.first.as_wire());
+ }
+
+ void collect_connect(const RTLIL::SigSig &conn, std::vector<RTLIL::IdString> &cells)
+ {
+ if (!is_connect_elided(conn))
+ return;
+
+ collect_sigspec_rhs(conn.second, cells);
+ }
+
+ void dump_connect(const RTLIL::SigSig &conn)
+ {
+ if (is_connect_elided(conn))
+ return;
+
+ f << indent << "// connection\n";
+ f << indent;
+ dump_sigspec_lhs(conn.first);
+ f << " = ";
+ dump_connect_elided(conn);
+ f << ";\n";
+ }
+
+ void dump_cell_elided(const RTLIL::Cell *cell)
+ {
+ // Unary cells
+ if (is_unary_cell(cell->type)) {
+ f << cell->type.substr(1) << '_' <<
+ (cell->getParam(ID(A_SIGNED)).as_bool() ? 's' : 'u') <<
+ "<" << cell->getParam(ID(Y_WIDTH)).as_int() << ">(";
+ dump_sigspec_rhs(cell->getPort(ID(A)));
+ f << ")";
+ // Binary cells
+ } else if (is_binary_cell(cell->type)) {
+ f << cell->type.substr(1) << '_' <<
+ (cell->getParam(ID(A_SIGNED)).as_bool() ? 's' : 'u') <<
+ (cell->getParam(ID(B_SIGNED)).as_bool() ? 's' : 'u') <<
+ "<" << cell->getParam(ID(Y_WIDTH)).as_int() << ">(";
+ dump_sigspec_rhs(cell->getPort(ID(A)));
+ f << ", ";
+ dump_sigspec_rhs(cell->getPort(ID(B)));
+ f << ")";
+ // Muxes
+ } else if (cell->type == ID($mux)) {
+ f << "(";
+ dump_sigspec_rhs(cell->getPort(ID(S)));
+ f << " ? ";
+ dump_sigspec_rhs(cell->getPort(ID(B)));
+ f << " : ";
+ dump_sigspec_rhs(cell->getPort(ID(A)));
+ f << ")";
+ // Concats
+ } else if (cell->type == ID($concat)) {
+ dump_sigspec_rhs(cell->getPort(ID(B)));
+ f << ".concat(";
+ dump_sigspec_rhs(cell->getPort(ID(A)));
+ f << ").val()";
+ // Slices
+ } else if (cell->type == ID($slice)) {
+ dump_sigspec_rhs(cell->getPort(ID(A)));
+ f << ".slice<";
+ f << cell->getParam(ID(OFFSET)).as_int() + cell->getParam(ID(Y_WIDTH)).as_int() - 1;
+ f << ",";
+ f << cell->getParam(ID(OFFSET)).as_int();
+ f << ">().val()";
+ } else {
+ log_assert(false);
+ }
+ }
+
+ bool is_cell_elided(const RTLIL::Cell *cell)
+ {
+ return is_elidable_cell(cell->type) && cell->hasPort(ID(Y)) && cell->getPort(ID(Y)).is_wire() &&
+ elided_wires.count(cell->getPort(ID(Y)).as_wire());
+ }
+
+ void collect_cell(const RTLIL::Cell *cell, std::vector<RTLIL::IdString> &cells)
+ {
+ if (!is_cell_elided(cell))
+ return;
+
+ cells.push_back(cell->name);
+ for (auto port : cell->connections())
+ if (port.first != ID(Y))
+ collect_sigspec_rhs(port.second, cells);
+ }
+
+ void dump_cell(const RTLIL::Cell *cell)
+ {
+ if (is_cell_elided(cell))
+ return;
+ if (cell->type == ID($meminit))
+ return; // Handled elsewhere.
+
+ std::vector<RTLIL::IdString> elided_cells;
+ if (is_elidable_cell(cell->type)) {
+ for (auto port : cell->connections())
+ if (port.first != ID(Y))
+ collect_sigspec_rhs(port.second, elided_cells);
+ }
+ if (elided_cells.empty()) {
+ dump_attrs(cell);
+ f << indent << "// cell " << cell->name.str() << "\n";
+ } else {
+ f << indent << "// cells";
+ for (auto elided_cell : elided_cells)
+ f << " " << elided_cell.str();
+ f << "\n";
+ }
+
+ // Elidable cells
+ if (is_elidable_cell(cell->type)) {
+ f << indent;
+ dump_sigspec_lhs(cell->getPort(ID(Y)));
+ f << " = ";
+ dump_cell_elided(cell);
+ f << ";\n";
+ // Parallel (one-hot) muxes
+ } else if (cell->type == ID($pmux)) {
+ int width = cell->getParam(ID(WIDTH)).as_int();
+ int s_width = cell->getParam(ID(S_WIDTH)).as_int();
+ bool first = true;
+ for (int part = 0; part < s_width; part++) {
+ f << (first ? indent : " else ");
+ first = false;
+ f << "if (";
+ dump_sigspec_rhs(cell->getPort(ID(S)).extract(part));
+ f << ") {\n";
+ inc_indent();
+ f << indent;
+ dump_sigspec_lhs(cell->getPort(ID(Y)));
+ f << " = ";
+ dump_sigspec_rhs(cell->getPort(ID(B)).extract(part * width, width));
+ f << ";\n";
+ dec_indent();
+ f << indent << "}";
+ }
+ f << " else {\n";
+ inc_indent();
+ f << indent;
+ dump_sigspec_lhs(cell->getPort(ID(Y)));
+ f << " = ";
+ dump_sigspec_rhs(cell->getPort(ID(A)));
+ f << ";\n";
+ dec_indent();
+ f << indent << "}\n";
+ // Flip-flops
+ } else if (is_ff_cell(cell->type)) {
+ if (cell->hasPort(ID(CLK)) && cell->getPort(ID(CLK)).is_wire()) {
+ // Edge-sensitive logic
+ RTLIL::SigBit clk_bit = cell->getPort(ID(CLK))[0];
+ clk_bit = sigmaps[clk_bit.wire->module](clk_bit);
+ f << indent << "if (" << (cell->getParam(ID(CLK_POLARITY)).as_bool() ? "posedge_" : "negedge_")
+ << mangle(clk_bit) << ") {\n";
+ inc_indent();
+ if (cell->type == ID($dffe)) {
+ f << indent << "if (";
+ dump_sigspec_rhs(cell->getPort(ID(EN)));
+ f << " == value<1> {" << cell->getParam(ID(EN_POLARITY)).as_bool() << "u}) {\n";
+ inc_indent();
+ }
+ f << indent;
+ dump_sigspec_lhs(cell->getPort(ID(Q)));
+ f << " = ";
+ dump_sigspec_rhs(cell->getPort(ID(D)));
+ f << ";\n";
+ if (cell->type == ID($dffe)) {
+ dec_indent();
+ f << indent << "}\n";
+ }
+ dec_indent();
+ f << indent << "}\n";
+ } else if (cell->hasPort(ID(EN))) {
+ // Level-sensitive logic
+ f << indent << "if (";
+ dump_sigspec_rhs(cell->getPort(ID(EN)));
+ f << " == value<1> {" << cell->getParam(ID(EN_POLARITY)).as_bool() << "u}) {\n";
+ inc_indent();
+ f << indent;
+ dump_sigspec_lhs(cell->getPort(ID(Q)));
+ f << " = ";
+ dump_sigspec_rhs(cell->getPort(ID(D)));
+ f << ";\n";
+ dec_indent();
+ f << indent << "}\n";
+ }
+ if (cell->hasPort(ID(ARST))) {
+ // Asynchronous reset (entire coarse cell at once)
+ f << indent << "if (";
+ dump_sigspec_rhs(cell->getPort(ID(ARST)));
+ f << " == value<1> {" << cell->getParam(ID(ARST_POLARITY)).as_bool() << "u}) {\n";
+ inc_indent();
+ f << indent;
+ dump_sigspec_lhs(cell->getPort(ID(Q)));
+ f << " = ";
+ dump_const(cell->getParam(ID(ARST_VALUE)));
+ f << ";\n";
+ dec_indent();
+ f << indent << "}\n";
+ }
+ if (cell->hasPort(ID(SET))) {
+ // Asynchronous set (for individual bits)
+ f << indent;
+ dump_sigspec_lhs(cell->getPort(ID(Q)));
+ f << " = ";
+ dump_sigspec_lhs(cell->getPort(ID(Q)));
+ f << ".update(";
+ dump_const(RTLIL::Const(RTLIL::S1, cell->getParam(ID(WIDTH)).as_int()));
+ f << ", ";
+ dump_sigspec_rhs(cell->getPort(ID(SET)));
+ f << (cell->getParam(ID(SET_POLARITY)).as_bool() ? "" : ".bit_not()") << ");\n";
+ }
+ if (cell->hasPort(ID(CLR))) {
+ // Asynchronous clear (for individual bits; priority over set)
+ f << indent;
+ dump_sigspec_lhs(cell->getPort(ID(Q)));
+ f << " = ";
+ dump_sigspec_lhs(cell->getPort(ID(Q)));
+ f << ".update(";
+ dump_const(RTLIL::Const(RTLIL::S0, cell->getParam(ID(WIDTH)).as_int()));
+ f << ", ";
+ dump_sigspec_rhs(cell->getPort(ID(CLR)));
+ f << (cell->getParam(ID(CLR_POLARITY)).as_bool() ? "" : ".bit_not()") << ");\n";
+ }
+ // Memory ports
+ } else if (cell->type.in(ID($memrd), ID($memwr))) {
+ if (cell->getParam(ID(CLK_ENABLE)).as_bool()) {
+ RTLIL::SigBit clk_bit = cell->getPort(ID(CLK))[0];
+ clk_bit = sigmaps[clk_bit.wire->module](clk_bit);
+ f << indent << "if (" << (cell->getParam(ID(CLK_POLARITY)).as_bool() ? "posedge_" : "negedge_")
+ << mangle(clk_bit) << ") {\n";
+ inc_indent();
+ }
+ RTLIL::Memory *memory = cell->module->memories[cell->getParam(ID(MEMID)).decode_string()];
+ std::string valid_index_temp = fresh_temporary();
+ f << indent << "auto " << valid_index_temp << " = memory_index(";
+ dump_sigspec_rhs(cell->getPort(ID(ADDR)));
+ f << ", " << memory->start_offset << ", " << memory->size << ");\n";
+ if (cell->type == ID($memrd)) {
+ if (!cell->getPort(ID(EN)).is_fully_ones()) {
+ f << indent << "if (";
+ dump_sigspec_rhs(cell->getPort(ID(EN)));
+ f << ") {\n";
+ inc_indent();
+ }
+ // The generated code has two bounds checks; one in an assertion, and another that guards the read.
+ // This is done so that the code does not invoke undefined behavior under any conditions, but nevertheless
+ // loudly crashes if an illegal condition is encountered. The assert may be turned off with -NDEBUG not
+ // just for release builds, but also to make sure the simulator (which is presumably embedded in some
+ // larger program) will never crash the code that calls into it.
+ //
+ // If assertions are disabled, out of bounds reads are defined to return zero.
+ f << indent << "assert(" << valid_index_temp << ".valid && \"out of bounds read\");\n";
+ f << indent << "if(" << valid_index_temp << ".valid) {\n";
+ inc_indent();
+ if (writable_memories[memory]) {
+ std::string addr_temp = fresh_temporary();
+ f << indent << "const value<" << cell->getPort(ID(ADDR)).size() << "> &" << addr_temp << " = ";
+ dump_sigspec_rhs(cell->getPort(ID(ADDR)));
+ f << ";\n";
+ std::string lhs_temp = fresh_temporary();
+ f << indent << "value<" << memory->width << "> " << lhs_temp << " = "
+ << mangle(memory) << "[" << valid_index_temp << ".index];\n";
+ std::vector<const RTLIL::Cell*> memwr_cells(transparent_for[cell].begin(), transparent_for[cell].end());
+ std::sort(memwr_cells.begin(), memwr_cells.end(),
+ [](const RTLIL::Cell *a, const RTLIL::Cell *b) {
+ return a->getParam(ID(PRIORITY)).as_int() < b->getParam(ID(PRIORITY)).as_int();
+ });
+ for (auto memwr_cell : memwr_cells) {
+ f << indent << "if (" << addr_temp << " == ";
+ dump_sigspec_rhs(memwr_cell->getPort(ID(ADDR)));
+ f << ") {\n";
+ inc_indent();
+ f << indent << lhs_temp << " = " << lhs_temp;
+ f << ".update(";
+ dump_sigspec_rhs(memwr_cell->getPort(ID(DATA)));
+ f << ", ";
+ dump_sigspec_rhs(memwr_cell->getPort(ID(EN)));
+ f << ");\n";
+ dec_indent();
+ f << indent << "}\n";
+ }
+ f << indent;
+ dump_sigspec_lhs(cell->getPort(ID(DATA)));
+ f << " = " << lhs_temp << ";\n";
+ } else {
+ f << indent;
+ dump_sigspec_lhs(cell->getPort(ID(DATA)));
+ f << " = " << mangle(memory) << "[" << valid_index_temp << ".index];\n";
+ }
+ dec_indent();
+ f << indent << "} else {\n";
+ inc_indent();
+ f << indent;
+ dump_sigspec_lhs(cell->getPort(ID(DATA)));
+ f << " = value<" << memory->width << "> {};\n";
+ dec_indent();
+ f << indent << "}\n";
+ if (!cell->getPort(ID(EN)).is_fully_ones()) {
+ dec_indent();
+ f << indent << "}\n";
+ }
+ } else /*if (cell->type == ID($memwr))*/ {
+ log_assert(writable_memories[memory]);
+ // See above for rationale of having both the assert and the condition.
+ //
+ // If assertions are disabled, out of bounds writes are defined to do nothing.
+ f << indent << "assert(" << valid_index_temp << ".valid && \"out of bounds write\");\n";
+ f << indent << "if (" << valid_index_temp << ".valid) {\n";
+ inc_indent();
+ f << indent << mangle(memory) << ".update(" << valid_index_temp << ".index, ";
+ dump_sigspec_rhs(cell->getPort(ID(DATA)));
+ f << ", ";
+ dump_sigspec_rhs(cell->getPort(ID(EN)));
+ f << ", " << cell->getParam(ID(PRIORITY)).as_int() << ");\n";
+ dec_indent();
+ f << indent << "}\n";
+ }
+ if (cell->getParam(ID(CLK_ENABLE)).as_bool()) {
+ dec_indent();
+ f << indent << "}\n";
+ }
+ // Internal cells
+ } else if (is_internal_cell(cell->type)) {
+ log_cmd_error("Unsupported internal cell `%s'.\n", cell->type.c_str());
+ // User cells
+ } else {
+ log_assert(cell->known());
+ for (auto conn : cell->connections())
+ if (cell->input(conn.first)) {
+ f << indent << mangle(cell) << "." << mangle_wire_name(conn.first) << ".next = ";
+ dump_sigspec_rhs(conn.second);
+ f << ";\n";
+ }
+ f << indent << mangle(cell) << ".eval();\n";
+ for (auto conn : cell->connections()) {
+ if (conn.second.is_wire()) {
+ RTLIL::Wire *wire = conn.second.as_wire();
+ if (elided_wires.count(wire) && cell_wire_defs[cell].count(wire))
+ continue;
+ }
+ if (cell->output(conn.first)) {
+ f << indent;
+ dump_sigspec_lhs(conn.second);
+ f << " = " << mangle(cell) << "." << mangle_wire_name(conn.first) << ".curr;\n";
+ }
+ }
+ }
+ }
+
+ void dump_assign(const RTLIL::SigSig &sigsig)
+ {
+ f << indent;
+ dump_sigspec_lhs(sigsig.first);
+ f << " = ";
+ dump_sigspec_rhs(sigsig.second);
+ f << ";\n";
+ }
+
+ void dump_case_rule(const RTLIL::CaseRule *rule)
+ {
+ for (auto action : rule->actions)
+ dump_assign(action);
+ for (auto switch_ : rule->switches)
+ dump_switch_rule(switch_);
+ }
+
+ void dump_switch_rule(const RTLIL::SwitchRule *rule)
+ {
+ // The switch attributes are printed before the switch condition is captured.
+ dump_attrs(rule);
+ std::string signal_temp = fresh_temporary();
+ f << indent << "const value<" << rule->signal.size() << "> &" << signal_temp << " = ";
+ dump_sigspec(rule->signal, /*is_lhs=*/false);
+ f << ";\n";
+
+ bool first = true;
+ for (auto case_ : rule->cases) {
+ // The case attributes (for nested cases) are printed before the if/else if/else statement.
+ dump_attrs(rule);
+ f << indent;
+ if (!first)
+ f << "} else ";
+ first = false;
+ if (!case_->compare.empty()) {
+ f << "if (";
+ bool first = true;
+ for (auto &compare : case_->compare) {
+ if (!first)
+ f << " || ";
+ first = false;
+ if (compare.is_fully_def()) {
+ f << signal_temp << " == ";
+ dump_sigspec(compare, /*is_lhs=*/false);
+ } else if (compare.is_fully_const()) {
+ RTLIL::Const compare_mask, compare_value;
+ for (auto bit : compare.as_const()) {
+ switch (bit) {
+ case RTLIL::S0:
+ case RTLIL::S1:
+ compare_mask.bits.push_back(RTLIL::S1);
+ compare_value.bits.push_back(bit);
+ break;
+
+ case RTLIL::Sx:
+ case RTLIL::Sz:
+ case RTLIL::Sa:
+ compare_mask.bits.push_back(RTLIL::S0);
+ compare_value.bits.push_back(RTLIL::S0);
+ break;
+
+ default:
+ log_assert(false);
+ }
+ }
+ f << "and_uu<" << compare.size() << ">(" << signal_temp << ", ";
+ dump_const(compare_mask);
+ f << ") == ";
+ dump_const(compare_value);
+ } else {
+ log_assert(false);
+ }
+ }
+ f << ") ";
+ }
+ f << "{\n";
+ inc_indent();
+ dump_case_rule(case_);
+ dec_indent();
+ }
+ f << indent << "}\n";
+ }
+
+ void dump_process(const RTLIL::Process *proc)
+ {
+ dump_attrs(proc);
+ f << indent << "// process " << proc->name.str() << "\n";
+ // The case attributes (for root case) are always empty.
+ log_assert(proc->root_case.attributes.empty());
+ dump_case_rule(&proc->root_case);
+ for (auto sync : proc->syncs) {
+ RTLIL::SigBit sync_bit = sync->signal[0];
+ sync_bit = sigmaps[sync_bit.wire->module](sync_bit);
+
+ pool<std::string> events;
+ switch (sync->type) {
+ case RTLIL::STp:
+ events.insert("posedge_" + mangle(sync_bit));
+ break;
+ case RTLIL::STn:
+ events.insert("negedge_" + mangle(sync_bit));
+ case RTLIL::STe:
+ events.insert("posedge_" + mangle(sync_bit));
+ events.insert("negedge_" + mangle(sync_bit));
+ break;
+
+ case RTLIL::ST0:
+ case RTLIL::ST1:
+ case RTLIL::STa:
+ case RTLIL::STg:
+ case RTLIL::STi:
+ log_assert(false);
+ }
+ if (!events.empty()) {
+ f << indent << "if (";
+ bool first = true;
+ for (auto &event : events) {
+ if (!first)
+ f << " || ";
+ first = false;
+ f << event;
+ }
+ f << ") {\n";
+ inc_indent();
+ for (auto action : sync->actions)
+ dump_assign(action);
+ dec_indent();
+ f << indent << "}\n";
+ }
+ }
+ }
+
+ void dump_wire(const RTLIL::Wire *wire, bool is_local)
+ {
+ if (elided_wires.count(wire))
+ return;
+
+ if (is_local) {
+ if (!localized_wires.count(wire))
+ return;
+
+ dump_attrs(wire);
+ f << indent << "value<" << wire->width << "> " << mangle(wire) << ";\n";
+ } else {
+ if (localized_wires.count(wire))
+ return;
+
+ dump_attrs(wire);
+ f << indent << "wire<" << wire->width << "> " << mangle(wire);
+ if (wire->attributes.count(ID(init))) {
+ f << " ";
+ dump_const_init(wire->attributes.at(ID(init)));
+ }
+ f << ";\n";
+ if (sync_wires[wire]) {
+ for (auto sync_type : sync_types) {
+ if (sync_type.first.wire == wire) {
+ if (sync_type.second != RTLIL::STn)
+ f << indent << "bool posedge_" << mangle(sync_type.first) << " = false;\n";
+ if (sync_type.second != RTLIL::STp)
+ f << indent << "bool negedge_" << mangle(sync_type.first) << " = false;\n";
+ }
+ }
+ }
+ }
+ }
+
+ void dump_memory(RTLIL::Module *module, const RTLIL::Memory *memory)
+ {
+ vector<const RTLIL::Cell*> init_cells;
+ for (auto cell : module->cells())
+ if (cell->type == ID($meminit) && cell->getParam(ID(MEMID)).decode_string() == memory->name.str())
+ init_cells.push_back(cell);
+
+ std::sort(init_cells.begin(), init_cells.end(), [](const RTLIL::Cell *a, const RTLIL::Cell *b) {
+ int a_addr = a->getPort(ID(ADDR)).as_int(), b_addr = b->getPort(ID(ADDR)).as_int();
+ int a_prio = a->getParam(ID(PRIORITY)).as_int(), b_prio = b->getParam(ID(PRIORITY)).as_int();
+ return a_prio > b_prio || (a_prio == b_prio && a_addr < b_addr);
+ });
+
+ dump_attrs(memory);
+ f << indent << (writable_memories[memory] ? "" : "const ")
+ << "memory<" << memory->width << "> " << mangle(memory)
+ << " { " << memory->size << "u";
+ if (init_cells.empty()) {
+ f << " };\n";
+ } else {
+ f << ",\n";
+ inc_indent();
+ for (auto cell : init_cells) {
+ dump_attrs(cell);
+ RTLIL::Const data = cell->getPort(ID(DATA)).as_const();
+ size_t width = cell->getParam(ID(WIDTH)).as_int();
+ size_t words = cell->getParam(ID(WORDS)).as_int();
+ f << indent << "memory<" << memory->width << ">::init<" << words << "> { "
+ << stringf("%#x", cell->getPort(ID(ADDR)).as_int()) << ", {";
+ inc_indent();
+ for (size_t n = 0; n < words; n++) {
+ if (n % 4 == 0)
+ f << "\n" << indent;
+ else
+ f << " ";
+ dump_const(data, width, n * width, /*fixed_width=*/true);
+ f << ",";
+ }
+ dec_indent();
+ f << "\n" << indent << "}},\n";
+ }
+ dec_indent();
+ f << indent << "};\n";
+ }
+ }
+
+ void dump_module(RTLIL::Module *module)
+ {
+ dump_attrs(module);
+ f << "struct " << mangle(module) << " : public module {\n";
+ inc_indent();
+ for (auto wire : module->wires())
+ dump_wire(wire, /*is_local=*/false);
+ f << "\n";
+ bool has_memories = false;
+ for (auto memory : module->memories) {
+ dump_memory(module, memory.second);
+ has_memories = true;
+ }
+ if (has_memories)
+ f << "\n";
+ bool has_cells = false;
+ for (auto cell : module->cells()) {
+ if (is_internal_cell(cell->type))
+ continue;
+ f << indent << mangle_module_name(cell->type) << " " << mangle(cell) << ";\n";
+ has_cells = true;
+ }
+ if (has_cells)
+ f << "\n";
+ f << indent << "void eval() override;\n";
+ f << indent << "bool commit() override;\n";
+ dec_indent();
+ f << "}; // struct " << mangle(module) << "\n";
+ f << "\n";
+
+ f << "void " << mangle(module) << "::eval() {\n";
+ inc_indent();
+ for (auto wire : module->wires())
+ dump_wire(wire, /*is_local=*/true);
+ for (auto node : schedule[module]) {
+ switch (node.type) {
+ case FlowGraph::Node::Type::CONNECT:
+ dump_connect(node.connect);
+ break;
+ case FlowGraph::Node::Type::CELL:
+ dump_cell(node.cell);
+ break;
+ case FlowGraph::Node::Type::PROCESS:
+ dump_process(node.process);
+ break;
+ }
+ }
+ for (auto sync_type : sync_types) {
+ if (sync_type.first.wire->module == module) {
+ if (sync_type.second != RTLIL::STn)
+ f << indent << "posedge_" << mangle(sync_type.first) << " = false;\n";
+ if (sync_type.second != RTLIL::STp)
+ f << indent << "negedge_" << mangle(sync_type.first) << " = false;\n";
+ }
+ }
+ dec_indent();
+ f << "}\n";
+ f << "\n";
+
+ f << "bool " << mangle(module) << "::commit() {\n";
+ inc_indent();
+ f << indent << "bool changed = false;\n";
+ for (auto wire : module->wires()) {
+ if (elided_wires.count(wire) || localized_wires.count(wire))
+ continue;
+ if (sync_wires[wire]) {
+ std::string wire_prev = mangle(wire) + "_prev";
+ std::string wire_curr = mangle(wire) + ".curr";
+ std::string wire_edge = mangle(wire) + "_edge";
+ f << indent << "value<" << wire->width << "> " << wire_prev << " = " << wire_curr << ";\n";
+ f << indent << "if (" << mangle(wire) << ".commit()) {\n";
+ inc_indent();
+ f << indent << "value<" << wire->width << "> " << wire_edge << " = "
+ << wire_prev << ".bit_xor(" << wire_curr << ");\n";
+ for (auto sync_type : sync_types) {
+ if (sync_type.first.wire != wire)
+ continue;
+ if (sync_type.second != RTLIL::STn) {
+ f << indent << "if (" << wire_edge << ".slice<" << sync_type.first.offset << ">().val() && "
+ << wire_curr << ".slice<" << sync_type.first.offset << ">().val())\n";
+ inc_indent();
+ f << indent << "posedge_" << mangle(sync_type.first) << " = true;\n";
+ dec_indent();
+ }
+ if (sync_type.second != RTLIL::STp) {
+ f << indent << "if (" << wire_edge << ".slice<" << sync_type.first.offset << ">().val() && "
+ << "!" << wire_curr << ".slice<" << sync_type.first.offset << ">().val())\n";
+ inc_indent();
+ f << indent << "negedge_" << mangle(sync_type.first) << " = true;\n";
+ dec_indent();
+ }
+ f << indent << "changed = true;\n";
+ }
+ dec_indent();
+ f << indent << "}\n";
+ } else {
+ f << indent << "changed |= " << mangle(wire) << ".commit();\n";
+ }
+ }
+ for (auto memory : module->memories) {
+ if (!writable_memories[memory.second])
+ continue;
+ f << indent << "changed |= " << mangle(memory.second) << ".commit();\n";
+ }
+ for (auto cell : module->cells()) {
+ if (is_internal_cell(cell->type))
+ continue;
+ f << indent << "changed |= " << mangle(cell) << ".commit();\n";
+ }
+ f << indent << "return changed;\n";
+ dec_indent();
+ f << "}\n";
+ f << "\n";
+ }
+
+ void dump_design(RTLIL::Design *design)
+ {
+ TopoSort<RTLIL::Module*> topo_design;
+ for (auto module : design->modules()) {
+ if (module->get_blackbox_attribute() || !design->selected_module(module))
+ continue;
+ topo_design.node(module);
+
+ for (auto cell : module->cells()) {
+ if (is_internal_cell(cell->type))
+ continue;
+ log_assert(design->has(cell->type));
+ topo_design.edge(design->module(cell->type), module);
+ }
+ }
+ log_assert(topo_design.sort());
+
+ f << "#include <cxxrtl.h>\n";
+ f << "\n";
+ f << "using namespace cxxrtl_yosys;\n";
+ f << "\n";
+ f << "namespace cxxrtl_design {\n";
+ f << "\n";
+ for (auto module : topo_design.sorted) {
+ if (!design->selected_module(module))
+ continue;
+ dump_module(module);
+ }
+ f << "} // namespace cxxrtl_design\n";
+ }
+
+ // Edge-type sync rules require us to emit edge detectors, which require coordination between
+ // eval and commit phases. To do this we need to collect them upfront.
+ //
+ // Note that the simulator commit phase operates at wire granularity but edge-type sync rules
+ // operate at wire bit granularity; it is possible to have code similar to:
+ // wire [3:0] clocks;
+ // always @(posedge clocks[0]) ...
+ // To handle this we track edge sensitivity both for wires and wire bits.
+ void register_edge_signal(SigMap &sigmap, RTLIL::SigSpec signal, RTLIL::SyncType type)
+ {
+ signal = sigmap(signal);
+ log_assert(signal.is_wire() && signal.is_bit());
+ log_assert(type == RTLIL::STp || type == RTLIL::STn || type == RTLIL::STe);
+
+ RTLIL::SigBit sigbit = signal[0];
+ if (!sync_types.count(sigbit))
+ sync_types[sigbit] = type;
+ else if (sync_types[sigbit] != type)
+ sync_types[sigbit] = RTLIL::STe;
+ sync_wires.insert(signal.as_wire());
+ }
+
+ void analyze_design(RTLIL::Design *design)
+ {
+ bool has_feedback_arcs = false;
+ for (auto module : design->modules()) {
+ if (!design->selected_module(module))
+ continue;
+
+ FlowGraph flow;
+ SigMap &sigmap = sigmaps[module];
+ sigmap.set(module);
+
+ for (auto conn : module->connections())
+ flow.add_node(conn);
+
+ dict<const RTLIL::Cell*, FlowGraph::Node*> memrw_cell_nodes;
+ dict<std::pair<RTLIL::SigBit, const RTLIL::Memory*>,
+ pool<const RTLIL::Cell*>> memwr_per_domain;
+ for (auto cell : module->cells()) {
+ FlowGraph::Node *node = flow.add_node(cell);
+
+ // Various DFF cells are treated like posedge/negedge processes, see above for details.
+ if (cell->type.in(ID($dff), ID($dffe), ID($adff), ID($dffsr))) {
+ if (cell->getPort(ID(CLK)).is_wire())
+ register_edge_signal(sigmap, cell->getPort(ID(CLK)),
+ cell->parameters[ID(CLK_POLARITY)].as_bool() ? RTLIL::STp : RTLIL::STn);
+ // The $adff and $dffsr cells are level-sensitive, not edge-sensitive (in spite of the fact that they
+ // are inferred from an edge-sensitive Verilog process) and do not correspond to an edge-type sync rule.
+ }
+ // Similar for memory port cells.
+ if (cell->type.in(ID($memrd), ID($memwr))) {
+ if (cell->getParam(ID(CLK_ENABLE)).as_bool()) {
+ if (cell->getPort(ID(CLK)).is_wire())
+ register_edge_signal(sigmap, cell->getPort(ID(CLK)),
+ cell->parameters[ID(CLK_POLARITY)].as_bool() ? RTLIL::STp : RTLIL::STn);
+ }
+ memrw_cell_nodes[cell] = node;
+ }
+ // Optimize access to read-only memories.
+ if (cell->type == ID($memwr))
+ writable_memories.insert(module->memories[cell->getParam(ID(MEMID)).decode_string()]);
+ // Collect groups of memory write ports in the same domain.
+ if (cell->type == ID($memwr) && cell->getParam(ID(CLK_ENABLE)).as_bool() && cell->getPort(ID(CLK)).is_wire()) {
+ RTLIL::SigBit clk_bit = sigmap(cell->getPort(ID(CLK)))[0];
+ const RTLIL::Memory *memory = module->memories[cell->getParam(ID(MEMID)).decode_string()];
+ memwr_per_domain[{clk_bit, memory}].insert(cell);
+ }
+ // Handling of packed memories is delegated to the `memory_unpack` pass, so we can rely on the presence
+ // of RTLIL memory objects and $memrd/$memwr/$meminit cells.
+ if (cell->type.in(ID($mem)))
+ log_assert(false);
+ }
+ for (auto cell : module->cells()) {
+ // Collect groups of memory write ports read by every transparent read port.
+ if (cell->type == ID($memrd) && cell->getParam(ID(CLK_ENABLE)).as_bool() && cell->getPort(ID(CLK)).is_wire() &&
+ cell->getParam(ID(TRANSPARENT)).as_bool()) {
+ RTLIL::SigBit clk_bit = sigmap(cell->getPort(ID(CLK)))[0];
+ const RTLIL::Memory *memory = module->memories[cell->getParam(ID(MEMID)).decode_string()];
+ for (auto memwr_cell : memwr_per_domain[{clk_bit, memory}]) {
+ transparent_for[cell].insert(memwr_cell);
+ // Our implementation of transparent $memrd cells reads \EN, \ADDR and \DATA from every $memwr cell
+ // in the same domain, which isn't directly visible in the netlist. Add these uses explicitly.
+ flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID(EN)));
+ flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID(ADDR)));
+ flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID(DATA)));
+ }
+ }
+ }
+
+ for (auto proc : module->processes) {
+ flow.add_node(proc.second);
+
+ for (auto sync : proc.second->syncs)
+ switch (sync->type) {
+ // Edge-type sync rules require pre-registration.
+ case RTLIL::STp:
+ case RTLIL::STn:
+ case RTLIL::STe:
+ register_edge_signal(sigmap, sync->signal, sync->type);
+ break;
+
+ // Level-type sync rules require no special handling.
+ case RTLIL::ST0:
+ case RTLIL::ST1:
+ case RTLIL::STa:
+ break;
+
+ // Handling of init-type sync rules is delegated to the `proc_init` pass, so we can use the wire
+ // attribute regardless of input.
+ case RTLIL::STi:
+ log_assert(false);
+
+ case RTLIL::STg:
+ log_cmd_error("Global clock is not supported.\n");
+ }
+ }
+
+ for (auto wire : module->wires()) {
+ if (!flow.is_elidable(wire)) continue;
+ if (wire->port_id != 0) continue;
+ if (wire->get_bool_attribute(ID(keep))) continue;
+ if (wire->name.begins_with("$") && !elide_internal) continue;
+ if (wire->name.begins_with("\\") && !elide_public) continue;
+ if (sync_wires[wire]) continue;
+ log_assert(flow.wire_defs[wire].size() == 1);
+ elided_wires[wire] = **flow.wire_defs[wire].begin();
+ }
+
+ // Elided wires that are outputs of internal cells are always connected to a well known port (Y).
+ // For user cells, there could be multiple of them, and we need a way to look up the port name
+ // knowing only the wire.
+ for (auto cell : module->cells())
+ for (auto conn : cell->connections())
+ if (conn.second.is_wire() && elided_wires.count(conn.second.as_wire()))
+ cell_wire_defs[cell][conn.second.as_wire()] = conn.first;
+
+ dict<FlowGraph::Node*, pool<const RTLIL::Wire*>, hash_ptr_ops> node_defs;
+ for (auto wire_def : flow.wire_defs)
+ for (auto node : wire_def.second)
+ node_defs[node].insert(wire_def.first);
+
+ Scheduler<FlowGraph::Node> scheduler;
+ dict<FlowGraph::Node*, Scheduler<FlowGraph::Node>::Vertex*, hash_ptr_ops> node_map;
+ for (auto node : flow.nodes)
+ node_map[node] = scheduler.add(node);
+ for (auto node_def : node_defs) {
+ auto vertex = node_map[node_def.first];
+ for (auto wire : node_def.second)
+ for (auto succ_node : flow.wire_uses[wire]) {
+ auto succ_vertex = node_map[succ_node];
+ vertex->succs.insert(succ_vertex);
+ succ_vertex->preds.insert(vertex);
+ }
+ }
+
+ auto eval_order = scheduler.schedule();
+ pool<FlowGraph::Node*, hash_ptr_ops> evaluated;
+ pool<const RTLIL::Wire*> feedback_wires;
+ for (auto vertex : eval_order) {
+ auto node = vertex->data;
+ schedule[module].push_back(*node);
+ // Any wire that is an output of node vo and input of node vi where vo is scheduled later than vi
+ // is a feedback wire. Feedback wires indicate apparent logic loops in the design, which may be
+ // caused by a true logic loop, but usually are a benign result of dependency tracking that works
+ // on wire, not bit, level. Nevertheless, feedback wires cannot be localized.
+ evaluated.insert(node);
+ for (auto wire : node_defs[node])
+ for (auto succ_node : flow.wire_uses[wire])
+ if (evaluated[succ_node]) {
+ feedback_wires.insert(wire);
+ // Feedback wires may never be elided because feedback requires state, but the point of elision
+ // (and localization) is to eliminate state.
+ elided_wires.erase(wire);
+ }
+ }
+
+ if (!feedback_wires.empty()) {
+ has_feedback_arcs = true;
+ log("Module `%s` contains feedback arcs through wires:\n", module->name.c_str());
+ for (auto wire : feedback_wires) {
+ log(" %s\n", wire->name.c_str());
+ }
+ }
+
+ for (auto wire : module->wires()) {
+ if (feedback_wires[wire]) continue;
+ if (wire->port_id != 0) continue;
+ if (wire->get_bool_attribute(ID(keep))) continue;
+ if (wire->name.begins_with("$") && !localize_internal) continue;
+ if (wire->name.begins_with("\\") && !localize_public) continue;
+ if (sync_wires[wire]) continue;
+ // Outputs of FF/$memrd cells and LHS of sync actions do not end up in defs.
+ if (flow.wire_defs[wire].size() != 1) continue;
+ localized_wires.insert(wire);
+ }
+ }
+ if (has_feedback_arcs) {
+ log("Feedback arcs require delta cycles during evaluation.\n");
+ }
+ }
+
+ void check_design(RTLIL::Design *design, bool &has_sync_init, bool &has_packed_mem)
+ {
+ has_sync_init = has_packed_mem = false;
+
+ for (auto module : design->modules()) {
+ if (module->get_blackbox_attribute())
+ continue;
+
+ if (!design->selected_whole_module(module))
+ if (design->selected_module(module))
+ log_cmd_error("Can't handle partially selected module `%s`!\n", id2cstr(module->name));
+ if (!design->selected_module(module))
+ continue;
+
+ for (auto proc : module->processes)
+ for (auto sync : proc.second->syncs)
+ if (sync->type == RTLIL::STi)
+ has_sync_init = true;
+
+ for (auto cell : module->cells())
+ if (cell->type == ID($mem))
+ has_packed_mem = true;
+ }
+ }
+
+ void prepare_design(RTLIL::Design *design)
+ {
+ bool has_sync_init, has_packed_mem;
+ check_design(design, has_sync_init, has_packed_mem);
+ if (has_sync_init) {
+ // We're only interested in proc_init, but it depends on proc_prune and proc_clean, so call those
+ // in case they weren't already. (This allows `yosys foo.v -o foo.cc` to work.)
+ Pass::call(design, "proc_prune");
+ Pass::call(design, "proc_clean");
+ Pass::call(design, "proc_init");
+ }
+ if (has_packed_mem)
+ Pass::call(design, "memory_unpack");
+ // Recheck the design if it was modified.
+ if (has_sync_init || has_packed_mem)
+ check_design(design, has_sync_init, has_packed_mem);
+ log_assert(!(has_sync_init || has_packed_mem));
+
+ if (run_splitnets) {
+ Pass::call(design, "splitnets -driver");
+ Pass::call(design, "opt_clean -purge");
+ }
+ log("\n");
+ analyze_design(design);
+ }
+};
+
+struct CxxrtlBackend : public Backend {
+ static const int DEFAULT_OPT_LEVEL = 5;
+
+ CxxrtlBackend() : Backend("cxxrtl", "convert design to C++ RTL simulation") { }
+ void help() YS_OVERRIDE
+ {
+ // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
+ log("\n");
+ log(" write_cxxrtl [options] [filename]\n");
+ log("\n");
+ log("Write C++ code for simulating the design. The generated code requires a driver;\n");
+ log("the following simple driver is provided as an example:\n");
+ log("\n");
+ log(" #include \"top.cc\"\n");
+ log("\n");
+ log(" int main() {\n");
+ log(" cxxrtl_design::p_top top;\n");
+ log(" while (1) {\n");
+ log(" top.p_clk.next = value<1> {1u};\n");
+ log(" top.step();\n");
+ log(" top.p_clk.next = value<1> {0u};\n");
+ log(" top.step();\n");
+ log(" }\n");
+ log(" }\n");
+ log("\n");
+ log("The following options are supported by this backend:\n");
+ log("\n");
+ log(" -O <level>\n");
+ log(" set the optimization level. the default is -O%d. higher optimization\n", DEFAULT_OPT_LEVEL);
+ log(" levels dramatically decrease compile and run time, and highest level\n");
+ log(" possible for a design should be used.\n");
+ log("\n");
+ log(" -O0\n");
+ log(" no optimization.\n");
+ log("\n");
+ log(" -O1\n");
+ log(" elide internal wires if possible.\n");
+ log("\n");
+ log(" -O2\n");
+ log(" like -O1, and localize internal wires if possible.\n");
+ log("\n");
+ log(" -O3\n");
+ log(" like -O2, and elide public wires not marked (*keep*) if possible.\n");
+ log("\n");
+ log(" -O4\n");
+ log(" like -O3, and localize public wires not marked (*keep*) if possible.\n");
+ log("\n");
+ log(" -O5\n");
+ log(" like -O4, and run `splitnets -driver; opt_clean -purge` first.\n");
+ log("\n");
+ }
+ void execute(std::ostream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
+ {
+ int opt_level = DEFAULT_OPT_LEVEL;
+
+ log_header(design, "Executing CXXRTL backend.\n");
+
+ size_t argidx;
+ for (argidx = 1; argidx < args.size(); argidx++)
+ {
+ if (args[argidx] == "-O" && argidx+1 < args.size()) {
+ opt_level = std::stoi(args[++argidx]);
+ continue;
+ }
+ if (args[argidx].substr(0, 2) == "-O" && args[argidx].size() == 3 && isdigit(args[argidx][2])) {
+ opt_level = std::stoi(args[argidx].substr(2));
+ continue;
+ }
+ break;
+ }
+ extra_args(f, filename, args, argidx);
+
+ CxxrtlWorker worker(*f);
+ switch (opt_level) {
+ case 5:
+ worker.run_splitnets = true;
+ case 4:
+ worker.localize_public = true;
+ case 3:
+ worker.elide_public = true;
+ case 2:
+ worker.localize_internal = true;
+ case 1:
+ worker.elide_internal = true;
+ case 0:
+ break;
+ default:
+ log_cmd_error("Invalid optimization level %d.\n", opt_level);
+ }
+ worker.prepare_design(design);
+ worker.dump_design(design);
+ }
+} CxxrtlBackend;
+
+PRIVATE_NAMESPACE_END