diff options
Diffstat (limited to 'backends/cxxrtl/cxxrtl.cc')
-rw-r--r-- | backends/cxxrtl/cxxrtl.cc | 904 |
1 files changed, 904 insertions, 0 deletions
diff --git a/backends/cxxrtl/cxxrtl.cc b/backends/cxxrtl/cxxrtl.cc new file mode 100644 index 000000000..2dc7b3d36 --- /dev/null +++ b/backends/cxxrtl/cxxrtl.cc @@ -0,0 +1,904 @@ +/* + * yosys -- Yosys Open SYnthesis Suite + * + * Copyright (C) 2019 whitequark <whitequark@whitequark.org> + * + * Permission to use, copy, modify, and/or distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + * + */ + +#include "kernel/rtlil.h" +#include "kernel/register.h" +#include "kernel/sigtools.h" +#include "kernel/celltypes.h" +#include "kernel/log.h" + +USING_YOSYS_NAMESPACE +PRIVATE_NAMESPACE_BEGIN + +struct CxxrtlWorker { + std::ostream &f; + std::string indent; + int temporary = 0; + + dict<const RTLIL::Module*, SigMap> sigmaps; + pool<const RTLIL::Wire*> sync_wires; + dict<RTLIL::SigBit, RTLIL::SyncType> sync_types; + pool<const RTLIL::Memory*> writable_memories; + + CxxrtlWorker(std::ostream &f) : f(f) {} + + void inc_indent() { + indent += "\t"; + } + void dec_indent() { + indent.resize(indent.size() - 1); + } + + // RTLIL allows any characters in names other than whitespace. This presents an issue for generating C++ code + // because C++ identifiers may be only alphanumeric, cannot clash with C++ keywords, and cannot clash with cxxrtl + // identifiers. This issue can be solved with a name mangling scheme. We choose a name mangling scheme that results + // in readable identifiers, does not depend on an up-to-date list of C++ keywords, and is easy to apply. Its rules: + // 1. All generated identifiers start with `_`. + // 1a. Generated identifiers for public names (beginning with `\`) start with `p_`. + // 1b. Generated identifiers for internal names (beginning with `$`) start with `i_`. + // 2. An underscore is escaped with another underscore, i.e. `__`. + // 3. Any other non-alnum character is escaped with underscores around its lowercase hex code, e.g. `@` as `_40_`. + std::string mangle_name(const RTLIL::IdString &name) + { + std::string mangled; + bool first = true; + for (char c : name.str()) { + if (first) { + first = false; + if (c == '\\') + mangled += "p_"; + else if (c == '$') + mangled += "i_"; + else + log_assert(false); + } else { + if (isalnum(c)) { + mangled += c; + } else if (c == '_') { + mangled += "__"; + } else { + char l = c & 0xf, h = (c >> 4) & 0xf; + mangled += '_'; + mangled += (h < 10 ? '0' + h : 'a' + h - 10); + mangled += (l < 10 ? '0' + l : 'a' + l - 10); + mangled += '_'; + } + } + } + return mangled; + } + + std::string mangle_module_name(const RTLIL::IdString &name) + { + // Class namespace. + return mangle_name(name); + } + + std::string mangle_memory_name(const RTLIL::IdString &name) + { + // Class member namespace. + return "memory_" + mangle_name(name); + } + + std::string mangle_wire_name(const RTLIL::IdString &name) + { + // Class member namespace. + return mangle_name(name); + } + + std::string mangle(const RTLIL::Module *module) + { + return mangle_module_name(module->name); + } + + std::string mangle(const RTLIL::Memory *memory) + { + return mangle_memory_name(memory->name); + } + + std::string mangle(const RTLIL::Wire *wire) + { + return mangle_wire_name(wire->name); + } + + std::string mangle(RTLIL::SigBit sigbit) + { + log_assert(sigbit.wire != NULL); + if (sigbit.wire->width == 1) + return mangle(sigbit.wire); + return mangle(sigbit.wire) + "_" + std::to_string(sigbit.offset); + } + + std::string fresh_temporary() + { + return stringf("tmp_%d", temporary++); + } + + void dump_attrs(const RTLIL::AttrObject *object) + { + for (auto attr : object->attributes) { + f << indent << "// " << attr.first.str() << ": "; + if (attr.second.flags & RTLIL::CONST_FLAG_STRING) { + f << attr.second.decode_string(); + } else { + f << attr.second.as_int(/*is_signed=*/attr.second.flags & RTLIL::CONST_FLAG_SIGNED); + } + f << "\n"; + } + } + + void dump_const_init(const RTLIL::Const &data, int width, int offset = 0, bool fixed_width = false) + { + f << "{"; + while (width > 0) { + const int CHUNK_SIZE = 32; + uint32_t chunk = data.extract(offset, width > CHUNK_SIZE ? CHUNK_SIZE : width).as_int(); + if (fixed_width) + f << stringf("0x%08xu", chunk); + else + f << stringf("%#xu", chunk); + if (width > CHUNK_SIZE) + f << ','; + offset += CHUNK_SIZE; + width -= CHUNK_SIZE; + } + f << "}"; + } + + void dump_const_init(const RTLIL::Const &data) + { + dump_const_init(data, data.size()); + } + + void dump_const(const RTLIL::Const &data, int width, int offset = 0, bool fixed_width = false) + { + f << "value<" << width << ">"; + dump_const_init(data, width, offset, fixed_width); + } + + void dump_const(const RTLIL::Const &data) + { + dump_const(data, data.size()); + } + + bool dump_sigchunk(const RTLIL::SigChunk &chunk, bool is_lhs) + { + if (chunk.wire == NULL) { + dump_const(chunk.data, chunk.width, chunk.offset); + return false; + } else { + f << mangle(chunk.wire) << (is_lhs ? ".next" : ".curr"); + if (chunk.width == chunk.wire->width && chunk.offset == 0) + return false; + else if (chunk.width == 1) + f << ".slice<" << chunk.offset << ">()"; + else + f << ".slice<" << chunk.offset+chunk.width-1 << "," << chunk.offset << ">()"; + return true; + } + } + + bool dump_sigspec(const RTLIL::SigSpec &sig, bool is_lhs) + { + if (sig.empty()) { + f << "value<0>()"; + return false; + } else if (sig.is_chunk()) { + return dump_sigchunk(sig.as_chunk(), is_lhs); + } else { + dump_sigchunk(*sig.chunks().rbegin(), is_lhs); + for (auto it = sig.chunks().rbegin() + 1; it != sig.chunks().rend(); ++it) { + f << ".concat("; + dump_sigchunk(*it, is_lhs); + f << ")"; + } + return true; + } + } + + void dump_sigspec_lhs(const RTLIL::SigSpec &sig) + { + dump_sigspec(sig, /*is_lhs=*/true); + } + + void dump_sigspec_rhs(const RTLIL::SigSpec &sig) + { + // In the contexts where we want template argument deduction to occur for `template<size_t Bits> ... value<Bits>`, + // it is necessary to have the argument to already be a `value<N>`, since template argument deduction and implicit + // type conversion are mutually exclusive. In these contexts, we use dump_sigspec_rhs() to emit an explicit + // type conversion, but only if the expression needs it. + bool is_complex = dump_sigspec(sig, /*is_lhs=*/false); + if (is_complex) + f << ".val()"; + } + + void dump_assign(const RTLIL::SigSig &sigsig) + { + f << indent; + dump_sigspec_lhs(sigsig.first); + f << " = "; + dump_sigspec_rhs(sigsig.second); + f << ";\n"; + } + + void dump_cell(const RTLIL::Cell *cell) + { + dump_attrs(cell); + f << indent << "// cell " << cell->name.str() << "\n"; + // Unary cells + if (cell->type.in( + ID($not), ID($logic_not), ID($reduce_and), ID($reduce_or), ID($reduce_xor), ID($reduce_xnor), ID($reduce_bool), + ID($pos), ID($neg))) { + f << indent; + dump_sigspec_lhs(cell->getPort(ID(Y))); + f << " = " << cell->type.substr(1) << '_' << + (cell->getParam(ID(A_SIGNED)).as_bool() ? 's' : 'u') << + "<" << cell->getParam(ID(Y_WIDTH)).as_int() << ">("; + dump_sigspec_rhs(cell->getPort(ID(A))); + f << ");\n"; + // Binary cells + } else if (cell->type.in( + ID($and), ID($or), ID($xor), ID($xnor), ID($logic_and), ID($logic_or), + ID($shl), ID($sshl), ID($shr), ID($sshr), ID($shift), ID($shiftx), + ID($eq), ID($ne), ID($eqx), ID($nex), ID($gt), ID($ge), ID($lt), ID($le), + ID($add), ID($sub), ID($mul), ID($div), ID($mod))) { + f << indent; + dump_sigspec_lhs(cell->getPort(ID(Y))); + f << " = " << cell->type.substr(1) << '_' << + (cell->getParam(ID(A_SIGNED)).as_bool() ? 's' : 'u') << + (cell->getParam(ID(B_SIGNED)).as_bool() ? 's' : 'u') << + "<" << cell->getParam(ID(Y_WIDTH)).as_int() << ">("; + dump_sigspec_rhs(cell->getPort(ID(A))); + f << ", "; + dump_sigspec_rhs(cell->getPort(ID(B))); + f << ");\n"; + // Muxes + } else if (cell->type == ID($mux)) { + f << indent; + dump_sigspec_lhs(cell->getPort(ID(Y))); + f << " = "; + dump_sigspec_rhs(cell->getPort(ID(S))); + f << " ? "; + dump_sigspec_rhs(cell->getPort(ID(B))); + f << " : "; + dump_sigspec_rhs(cell->getPort(ID(A))); + f << ";\n"; + // Parallel (one-hot) muxes + } else if (cell->type == ID($pmux)) { + int width = cell->getParam(ID(WIDTH)).as_int(); + int s_width = cell->getParam(ID(S_WIDTH)).as_int(); + bool first = true; + for (int part = 0; part < s_width; part++) { + f << (first ? indent : " else "); + first = false; + f << "if ("; + dump_sigspec_rhs(cell->getPort(ID(S)).extract(part)); + f << ") {\n"; + inc_indent(); + f << indent; + dump_sigspec_lhs(cell->getPort(ID(Y))); + f << " = "; + dump_sigspec_rhs(cell->getPort(ID(B)).extract(part * width, width)); + f << ";\n"; + dec_indent(); + f << indent << "}"; + } + f << " else {\n"; + inc_indent(); + f << indent; + dump_sigspec_lhs(cell->getPort(ID(Y))); + f << " = "; + dump_sigspec_rhs(cell->getPort(ID(A))); + f << ";\n"; + dec_indent(); + f << indent << "}\n"; + // Flip-flops + } else if (cell->type.in(ID($dff), ID($dffe), ID($adff), ID($dffsr))) { + if (cell->getPort(ID(CLK)).is_wire()) { + // Edge-sensitive logic + RTLIL::SigBit clk_bit = cell->getPort(ID(CLK))[0]; + clk_bit = sigmaps[clk_bit.wire->module](clk_bit); + f << indent << "if (" << (cell->getParam(ID(CLK_POLARITY)).as_bool() ? "posedge_" : "negedge_") + << mangle(clk_bit) << ") {\n"; + inc_indent(); + if (cell->type == ID($dffe)) { + f << indent << "if ("; + dump_sigspec_rhs(cell->getPort(ID(EN))); + f << " == value<1> {" << cell->getParam(ID(EN_POLARITY)).as_bool() << "}) {\n"; + inc_indent(); + } + f << indent; + dump_sigspec_lhs(cell->getPort(ID(Q))); + f << " = "; + dump_sigspec_rhs(cell->getPort(ID(D))); + f << ";\n"; + if (cell->type == ID($dffe)) { + dec_indent(); + f << indent << "}\n"; + } + dec_indent(); + f << indent << "}\n"; + } + // Level-sensitive logic + if (cell->type == ID($adff)) { + f << indent << "if ("; + dump_sigspec_rhs(cell->getPort(ID(ARST))); + f << " == value<1> {" << cell->getParam(ID(ARST_POLARITY)).as_bool() << "}) {\n"; + inc_indent(); + f << indent; + dump_sigspec_lhs(cell->getPort(ID(Q))); + f << " = "; + dump_const(cell->getParam(ID(ARST_VALUE))); + f << ";\n"; + dec_indent(); + f << indent << "}\n"; + } else if (cell->type == ID($dffsr)) { + f << indent << "if ("; + dump_sigspec_rhs(cell->getPort(ID(CLR))); + f << " == value<1> {" << cell->getParam(ID(CLR_POLARITY)).as_bool() << "}) {\n"; + inc_indent(); + f << indent; + dump_sigspec_lhs(cell->getPort(ID(Q))); + f << " = "; + dump_const(RTLIL::Const(RTLIL::S0, cell->getParam(ID(WIDTH)).as_int())); + f << ";\n"; + dec_indent(); + f << indent << "} else if ("; + dump_sigspec_rhs(cell->getPort(ID(SET))); + f << " == value<1> {" << cell->getParam(ID(SET_POLARITY)).as_bool() << "}) {\n"; + inc_indent(); + f << indent; + dump_sigspec_lhs(cell->getPort(ID(Q))); + f << " = "; + dump_const(RTLIL::Const(RTLIL::S1, cell->getParam(ID(WIDTH)).as_int())); + f << ";\n"; + dec_indent(); + f << indent << "}\n"; + } + // Memory ports + } else if (cell->type.in(ID($memrd), ID($memwr))) { + if (cell->getParam(ID(CLK_ENABLE)).as_bool()) { + RTLIL::SigBit clk_bit = cell->getPort(ID(CLK))[0]; + clk_bit = sigmaps[clk_bit.wire->module](clk_bit); + f << indent << "if (" << (cell->getParam(ID(CLK_POLARITY)).as_bool() ? "posedge_" : "negedge_") + << mangle(clk_bit) << ") {\n"; + inc_indent(); + } + RTLIL::Memory *memory = cell->module->memories[cell->getParam(ID(MEMID)).decode_string()]; + if (cell->type == ID($memrd)) { + if (!cell->getPort(ID(EN)).is_fully_ones()) { + f << indent << "if ("; + dump_sigspec_rhs(cell->getPort(ID(EN))); + f << ") {\n"; + inc_indent(); + } + f << indent; + dump_sigspec_lhs(cell->getPort(ID(DATA))); + f << " = " << mangle(memory) << "["; + dump_sigspec_rhs(cell->getPort(ID(ADDR))); + if (writable_memories[memory]) { + // FIXME: the handling of transparent read ports is a bit naughty: normally, nothing on RHS should ever + // read from `next`, since this can result in evaluation order nondeterminism, as well as issues with + // latches. However, for now this is the right tradeoff to make, since it allows to simplify $memrd/$memwr + // codegen dramatically. + f << "]." << (cell->getParam(ID(TRANSPARENT)).as_bool() ? "next" : "curr") << ";\n"; + } else { + f << "];\n"; + } + if (!cell->getPort(ID(EN)).is_fully_ones()) { + dec_indent(); + f << indent << "}\n"; + } + } else /*if (cell->type == ID($memwr))*/ { + log_assert(writable_memories[memory]); + // FIXME: handle write port priority. + int width = cell->getParam(ID(WIDTH)).as_int(); + std::string lhs_temp = fresh_temporary(); + f << indent << "wire<" << width << "> &" << lhs_temp << " = " << mangle(memory) << "["; + dump_sigspec_rhs(cell->getPort(ID(ADDR))); + f << "];\n"; + int start = 0; + RTLIL::SigBit prev_en_bit = RTLIL::Sm; + for (int stop = 0; stop < width + 1; stop++) { + if (stop == width || (prev_en_bit != RTLIL::Sm && prev_en_bit != cell->getPort(ID(EN))[stop])) { + f << indent << "if ("; + dump_sigspec_rhs(prev_en_bit); + f << ") {\n"; + inc_indent(); + f << indent << lhs_temp << ".next.slice<" << (stop - 1) << "," << start << ">() = "; + dump_sigspec_rhs(cell->getPort(ID(DATA)).extract(start, stop - start)); + f << ";\n"; + dec_indent(); + f << indent << "}\n"; + start = stop + 1; + } + if (stop != width) + prev_en_bit = cell->getPort(ID(EN))[stop]; + } + } + if (cell->getParam(ID(CLK_ENABLE)).as_bool()) { + dec_indent(); + f << indent << "}\n"; + } + // Memory initializers + } else if (cell->type == ID($meminit)) { + // Handled elsewhere. + } else if (cell->type[0] == '$') { + log_cmd_error("Unsupported internal cell `%s'.\n", cell->type.c_str()); + } else { + log_assert(false); + } + } + + void dump_case_rule(const RTLIL::CaseRule *rule) + { + for (auto action : rule->actions) + dump_assign(action); + for (auto switch_ : rule->switches) + dump_switch_rule(switch_); + } + + void dump_switch_rule(const RTLIL::SwitchRule *rule) + { + // The switch attributes are printed before the switch condition is captured. + dump_attrs(rule); + std::string signal_temp = fresh_temporary(); + f << indent << "const value<" << rule->signal.size() << "> &" << signal_temp << " = "; + dump_sigspec(rule->signal, /*is_lhs=*/false); + f << ";\n"; + + bool first = true; + for (auto case_ : rule->cases) { + // The case attributes (for nested cases) are printed before the if/else if/else statement. + dump_attrs(rule); + f << indent; + if (!first) + f << "} else "; + first = false; + if (!case_->compare.empty()) { + f << "if ("; + bool first = true; + for (auto &compare : case_->compare) { + if (!first) + f << " || "; + first = false; + if (compare.is_fully_def()) { + f << signal_temp << " == "; + dump_sigspec(compare, /*is_lhs=*/false); + } else if (compare.is_fully_const()) { + RTLIL::Const compare_mask, compare_value; + for (auto bit : compare.as_const()) { + switch (bit) { + case RTLIL::S0: + case RTLIL::S1: + compare_mask.bits.push_back(RTLIL::S1); + compare_value.bits.push_back(bit); + break; + + case RTLIL::Sx: + case RTLIL::Sz: + case RTLIL::Sa: + compare_mask.bits.push_back(RTLIL::S0); + compare_value.bits.push_back(RTLIL::S0); + break; + + default: + log_assert(false); + } + } + f << "and_uu<" << compare.size() << ">(" << signal_temp << ", "; + dump_const(compare_mask); + f << ") == "; + dump_const(compare_value); + } else { + log_assert(false); + } + } + f << ") "; + } + f << "{\n"; + inc_indent(); + dump_case_rule(case_); + dec_indent(); + } + f << indent << "}\n"; + } + + void dump_process(const RTLIL::Process *proc) + { + dump_attrs(proc); + f << indent << "// process " << proc->name.str() << "\n"; + // The case attributes (for root case) are always empty. + log_assert(proc->root_case.attributes.empty()); + dump_case_rule(&proc->root_case); + for (auto sync : proc->syncs) { + RTLIL::SigBit sync_bit = sync->signal[0]; + sync_bit = sigmaps[sync_bit.wire->module](sync_bit); + + pool<std::string> events; + switch (sync->type) { + case RTLIL::STp: + events.insert("posedge_" + mangle(sync_bit)); + break; + case RTLIL::STn: + events.insert("negedge_" + mangle(sync_bit)); + case RTLIL::STe: + events.insert("posedge_" + mangle(sync_bit)); + events.insert("negedge_" + mangle(sync_bit)); + break; + + case RTLIL::ST0: + case RTLIL::ST1: + case RTLIL::STa: + case RTLIL::STg: + case RTLIL::STi: + log_assert(false); + } + if (!events.empty()) { + f << indent << "if ("; + bool first = true; + for (auto &event : events) { + if (!first) + f << " || "; + first = false; + f << event; + } + f << ") {\n"; + inc_indent(); + for (auto action : sync->actions) + dump_assign(action); + dec_indent(); + f << indent << "}\n"; + } + } + } + + void dump_wire(const RTLIL::Wire *wire) + { + dump_attrs(wire); + f << indent << "wire<" << wire->width << "> " << mangle(wire); + if (wire->attributes.count(ID(init))) { + f << " "; + dump_const_init(wire->attributes.at(ID(init))); + } + f << ";\n"; + if (sync_wires[wire]) { + for (auto sync_type : sync_types) { + if (sync_type.first.wire == wire) { + if (sync_type.second != RTLIL::STn) + f << indent << "bool posedge_" << mangle(sync_type.first) << " = false;\n"; + if (sync_type.second != RTLIL::STp) + f << indent << "bool negedge_" << mangle(sync_type.first) << " = false;\n"; + } + } + } + } + + void dump_memory(RTLIL::Module *module, const RTLIL::Memory *memory) + { + vector<const RTLIL::Cell*> init_cells; + for (auto cell : module->cells()) + if (cell->type == ID($meminit) && cell->getParam(ID(MEMID)).decode_string() == memory->name.str()) + init_cells.push_back(cell); + + std::sort(init_cells.begin(), init_cells.end(), [](const RTLIL::Cell *a, const RTLIL::Cell *b) { + int a_addr = a->getPort(ID(ADDR)).as_int(), b_addr = b->getPort(ID(ADDR)).as_int(); + int a_prio = a->getParam(ID(PRIORITY)).as_int(), b_prio = b->getParam(ID(PRIORITY)).as_int(); + return a_prio > b_prio || (a_prio == b_prio && a_addr < b_addr); + }); + + dump_attrs(memory); + f << indent << "memory_" << (writable_memories[memory] ? "rw" : "ro") + << "<" << memory->width << "> " << mangle(memory) + << " { " << memory->size << "u"; + if (init_cells.empty()) { + f << " };\n"; + } else { + f << ",\n"; + inc_indent(); + for (auto cell : init_cells) { + dump_attrs(cell); + RTLIL::Const data = cell->getPort(ID(DATA)).as_const(); + size_t width = cell->getParam(ID(WIDTH)).as_int(); + size_t words = cell->getParam(ID(WORDS)).as_int(); + f << indent << "memory_" << (writable_memories[memory] ? "rw" : "ro") + << "<" << memory->width << ">::init<" << words << "> { " + << stringf("%#x", cell->getPort(ID(ADDR)).as_int()) << ", {"; + inc_indent(); + for (size_t n = 0; n < words; n++) { + if (n % 4 == 0) + f << "\n" << indent; + else + f << " "; + dump_const(data, width, n * width, /*fixed_width=*/true); + f << ","; + } + dec_indent(); + f << "\n" << indent << "}},\n"; + } + dec_indent(); + f << indent << "};\n"; + } + } + + void dump_module(RTLIL::Module *module) + { + dump_attrs(module); + f << "struct " << mangle(module) << " : public module {\n"; + inc_indent(); + for (auto wire : module->wires()) + dump_wire(wire); + f << "\n"; + for (auto memory : module->memories) + dump_memory(module, memory.second); + if (!module->memories.empty()) + f << "\n"; + f << indent << "void eval() override;\n"; + f << indent << "bool commit() override;\n"; + dec_indent(); + f << "}; // struct " << mangle(module) << "\n"; + f << "\n"; + + f << "void " << mangle(module) << "::eval() {\n"; + inc_indent(); + for (auto cell : module->cells()) + dump_cell(cell); + f << indent << "// connections\n"; + for (auto conn : module->connections()) + dump_assign(conn); + for (auto proc : module->processes) + dump_process(proc.second); + for (auto sync_type : sync_types) { + if (sync_type.first.wire->module == module) { + if (sync_type.second != RTLIL::STn) + f << indent << "posedge_" << mangle(sync_type.first) << " = false;\n"; + if (sync_type.second != RTLIL::STp) + f << indent << "negedge_" << mangle(sync_type.first) << " = false;\n"; + } + } + dec_indent(); + f << "}\n"; + + f << "\n"; + f << "bool " << mangle(module) << "::commit() {\n"; + inc_indent(); + f << indent << "bool changed = false;\n"; + for (auto wire : module->wires()) { + if (sync_wires[wire]) { + std::string wire_prev = mangle(wire) + "_prev"; + std::string wire_curr = mangle(wire) + ".curr"; + std::string wire_edge = mangle(wire) + "_edge"; + f << indent << "value<" << wire->width << "> " << wire_prev << " = " << wire_curr << ";\n"; + f << indent << "if (" << mangle(wire) << ".commit()) {\n"; + inc_indent(); + f << indent << "value<" << wire->width << "> " << wire_edge << " = " + << wire_prev << ".bit_xor(" << wire_curr << ");\n"; + for (auto sync_type : sync_types) { + if (sync_type.first.wire != wire) + continue; + if (sync_type.second != RTLIL::STn) { + f << indent << "if (" << wire_edge << ".slice<" << sync_type.first.offset << ">().val() && " + << wire_curr << ".slice<" << sync_type.first.offset << ">().val())\n"; + inc_indent(); + f << indent << "posedge_" << mangle(sync_type.first) << " = true;\n"; + dec_indent(); + } + if (sync_type.second != RTLIL::STp) { + f << indent << "if (" << wire_edge << ".slice<" << sync_type.first.offset << ">().val() && " + << "!" << wire_curr << ".slice<" << sync_type.first.offset << ">().val())\n"; + inc_indent(); + f << indent << "negedge_" << mangle(sync_type.first) << " = true;\n"; + dec_indent(); + } + f << indent << "changed = true;\n"; + } + dec_indent(); + f << indent << "}\n"; + } else { + f << indent << "changed |= " << mangle(wire) << ".commit();\n"; + } + } + for (auto memory : module->memories) { + if (!writable_memories[memory.second]) + continue; + f << indent << "for (size_t i = 0; i < " << memory.second->size << "u; i++)\n"; + inc_indent(); + f << indent << "changed |= " << mangle(memory.second) << "[i].commit();\n"; + dec_indent(); + } + f << indent << "return changed;\n"; + dec_indent(); + f << "}\n"; + } + + void dump_design(RTLIL::Design *design) + { + f << "#include <cxxrtl.h>\n"; + f << "\n"; + f << "using namespace cxxrtl_yosys;\n"; + f << "\n"; + f << "namespace cxxrtl_design {\n"; + for (auto module : design->modules()) { + if (module->get_blackbox_attribute()) + continue; + + if (!design->selected_module(module)) + continue; + + f << "\n"; + dump_module(module); + } + f << "\n"; + f << "} // namespace cxxrtl_design\n"; + } + + // Edge-type sync rules require us to emit edge detectors, which require coordination between + // eval and commit phases. To do this we need to collect them upfront. + // + // Note that the simulator commit phase operates at wire granularity but edge-type sync rules + // operate at wire bit granularity; it is possible to have code similar to: + // wire [3:0] clocks; + // always @(posedge clocks[0]) ... + // To handle this we track edge sensitivity both for wires and wire bits. + void register_edge_signal(SigMap &sigmap, RTLIL::SigSpec signal, RTLIL::SyncType type) + { + signal = sigmap(signal); + log_assert(signal.is_wire() && signal.is_bit()); + log_assert(type == RTLIL::STp || type == RTLIL::STn || type == RTLIL::STe); + + RTLIL::SigBit sigbit = signal[0]; + if (!sync_types.count(sigbit)) + sync_types[sigbit] = type; + else if (sync_types[sigbit] != type) + sync_types[sigbit] = RTLIL::STe; + sync_wires.insert(signal.as_wire()); + } + + void analyze_design(RTLIL::Design *design) + { + for (auto module : design->modules()) { + SigMap &sigmap = sigmaps[module]; + sigmap.set(module); + + for (auto cell : module->cells()) { + // Various DFF cells are treated like posedge/negedge processes, see above for details. + if (cell->type.in(ID($dff), ID($dffe), ID($adff), ID($dffsr))) { + if (cell->getPort(ID(CLK)).is_wire()) + register_edge_signal(sigmap, cell->getPort(ID(CLK)), + cell->parameters[ID(CLK_POLARITY)].as_bool() ? RTLIL::STp : RTLIL::STn); + // The $adff and $dffsr cells are level-sensitive, not edge-sensitive (in spite of the fact that they + // are inferred from an edge-sensitive Verilog process) and do not correspond to an edge-type sync rule. + } + // Similar for memory port cells. + if (cell->type.in(ID($memrd), ID($memwr))) { + if (cell->getParam(ID(CLK_ENABLE)).as_bool()) { + if (cell->getPort(ID(CLK)).is_wire()) + register_edge_signal(sigmap, cell->getPort(ID(CLK)), + cell->parameters[ID(CLK_POLARITY)].as_bool() ? RTLIL::STp : RTLIL::STn); + } + } + // Optimize access to read-only memories. + if (cell->type == ID($memwr)) + writable_memories.insert(module->memories[cell->getParam(ID(MEMID)).decode_string()]); + // Handling of packed memories is delegated to the `memory_unpack` pass, so we can rely on the presence + // of RTLIL memory objects and $memrd/$memwr/$meminit cells. + if (cell->type.in(ID($mem))) + log_assert(false); + } + + for (auto proc : module->processes) + for (auto sync : proc.second->syncs) + switch (sync->type) { + // Edge-type sync rules require pre-registration. + case RTLIL::STp: + case RTLIL::STn: + case RTLIL::STe: + register_edge_signal(sigmap, sync->signal, sync->type); + break; + + // Level-type sync rules require no special handling. + case RTLIL::ST0: + case RTLIL::ST1: + case RTLIL::STa: + break; + + // Handling of init-type sync rules is delegated to the `proc_init` pass, so we can use the wire + // attribute regardless of input. + case RTLIL::STi: + log_assert(false); + + case RTLIL::STg: + log_cmd_error("Global clock is not supported.\n"); + } + } + } + + void check_design(RTLIL::Design *design, bool &has_sync_init, bool &has_packed_mem) + { + has_sync_init = has_packed_mem = false; + + for (auto module : design->modules()) { + if (module->get_blackbox_attribute()) + continue; + + if (!design->selected_whole_module(module)) + if (design->selected_module(module)) + log_cmd_error("Can't handle partially selected module %s!\n", id2cstr(module->name)); + + for (auto proc : module->processes) + for (auto sync : proc.second->syncs) + if (sync->type == RTLIL::STi) + has_sync_init = true; + + for (auto cell : module->cells()) + if (cell->type == ID($mem)) + has_packed_mem = true; + } + } + + void prepare_design(RTLIL::Design *design) + { + bool has_sync_init, has_packed_mem; + check_design(design, has_sync_init, has_packed_mem); + if (has_sync_init) + Pass::call(design, "proc_init"); + if (has_packed_mem) + Pass::call(design, "memory_unpack"); + // Recheck the design if it was modified. + if (has_sync_init || has_packed_mem) + check_design(design, has_sync_init, has_packed_mem); + + log_assert(!(has_sync_init || has_packed_mem)); + analyze_design(design); + } +}; + +struct CxxrtlBackend : public Backend { + CxxrtlBackend() : Backend("cxxrtl", "convert design to C++ RTL simulation") { } + void help() YS_OVERRIDE + { + // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| + log("\n"); + log(" write_cxxrtl [options] [filename]\n"); + log("\n"); + log("Write C++ code for simulating the design.\n"); + log("\n"); + } + void execute(std::ostream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE + { + log_header(design, "Executing CXXRTL backend.\n"); + + size_t argidx; + for (argidx = 1; argidx < args.size(); argidx++) + { + // if (args[argidx] == "-top" && argidx+1 < args.size()) { + // top_module_name = args[++argidx]; + // continue; + // } + break; + } + extra_args(f, filename, args, argidx); + + CxxrtlWorker worker(*f); + worker.prepare_design(design); + worker.dump_design(design); + } +} CxxrtlBackend; + +PRIVATE_NAMESPACE_END |