aboutsummaryrefslogtreecommitdiffstats
path: root/backends/cxxrtl/cxxrtl.cc
diff options
context:
space:
mode:
Diffstat (limited to 'backends/cxxrtl/cxxrtl.cc')
-rw-r--r--backends/cxxrtl/cxxrtl.cc904
1 files changed, 904 insertions, 0 deletions
diff --git a/backends/cxxrtl/cxxrtl.cc b/backends/cxxrtl/cxxrtl.cc
new file mode 100644
index 000000000..2dc7b3d36
--- /dev/null
+++ b/backends/cxxrtl/cxxrtl.cc
@@ -0,0 +1,904 @@
+/*
+ * yosys -- Yosys Open SYnthesis Suite
+ *
+ * Copyright (C) 2019 whitequark <whitequark@whitequark.org>
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ *
+ */
+
+#include "kernel/rtlil.h"
+#include "kernel/register.h"
+#include "kernel/sigtools.h"
+#include "kernel/celltypes.h"
+#include "kernel/log.h"
+
+USING_YOSYS_NAMESPACE
+PRIVATE_NAMESPACE_BEGIN
+
+struct CxxrtlWorker {
+ std::ostream &f;
+ std::string indent;
+ int temporary = 0;
+
+ dict<const RTLIL::Module*, SigMap> sigmaps;
+ pool<const RTLIL::Wire*> sync_wires;
+ dict<RTLIL::SigBit, RTLIL::SyncType> sync_types;
+ pool<const RTLIL::Memory*> writable_memories;
+
+ CxxrtlWorker(std::ostream &f) : f(f) {}
+
+ void inc_indent() {
+ indent += "\t";
+ }
+ void dec_indent() {
+ indent.resize(indent.size() - 1);
+ }
+
+ // RTLIL allows any characters in names other than whitespace. This presents an issue for generating C++ code
+ // because C++ identifiers may be only alphanumeric, cannot clash with C++ keywords, and cannot clash with cxxrtl
+ // identifiers. This issue can be solved with a name mangling scheme. We choose a name mangling scheme that results
+ // in readable identifiers, does not depend on an up-to-date list of C++ keywords, and is easy to apply. Its rules:
+ // 1. All generated identifiers start with `_`.
+ // 1a. Generated identifiers for public names (beginning with `\`) start with `p_`.
+ // 1b. Generated identifiers for internal names (beginning with `$`) start with `i_`.
+ // 2. An underscore is escaped with another underscore, i.e. `__`.
+ // 3. Any other non-alnum character is escaped with underscores around its lowercase hex code, e.g. `@` as `_40_`.
+ std::string mangle_name(const RTLIL::IdString &name)
+ {
+ std::string mangled;
+ bool first = true;
+ for (char c : name.str()) {
+ if (first) {
+ first = false;
+ if (c == '\\')
+ mangled += "p_";
+ else if (c == '$')
+ mangled += "i_";
+ else
+ log_assert(false);
+ } else {
+ if (isalnum(c)) {
+ mangled += c;
+ } else if (c == '_') {
+ mangled += "__";
+ } else {
+ char l = c & 0xf, h = (c >> 4) & 0xf;
+ mangled += '_';
+ mangled += (h < 10 ? '0' + h : 'a' + h - 10);
+ mangled += (l < 10 ? '0' + l : 'a' + l - 10);
+ mangled += '_';
+ }
+ }
+ }
+ return mangled;
+ }
+
+ std::string mangle_module_name(const RTLIL::IdString &name)
+ {
+ // Class namespace.
+ return mangle_name(name);
+ }
+
+ std::string mangle_memory_name(const RTLIL::IdString &name)
+ {
+ // Class member namespace.
+ return "memory_" + mangle_name(name);
+ }
+
+ std::string mangle_wire_name(const RTLIL::IdString &name)
+ {
+ // Class member namespace.
+ return mangle_name(name);
+ }
+
+ std::string mangle(const RTLIL::Module *module)
+ {
+ return mangle_module_name(module->name);
+ }
+
+ std::string mangle(const RTLIL::Memory *memory)
+ {
+ return mangle_memory_name(memory->name);
+ }
+
+ std::string mangle(const RTLIL::Wire *wire)
+ {
+ return mangle_wire_name(wire->name);
+ }
+
+ std::string mangle(RTLIL::SigBit sigbit)
+ {
+ log_assert(sigbit.wire != NULL);
+ if (sigbit.wire->width == 1)
+ return mangle(sigbit.wire);
+ return mangle(sigbit.wire) + "_" + std::to_string(sigbit.offset);
+ }
+
+ std::string fresh_temporary()
+ {
+ return stringf("tmp_%d", temporary++);
+ }
+
+ void dump_attrs(const RTLIL::AttrObject *object)
+ {
+ for (auto attr : object->attributes) {
+ f << indent << "// " << attr.first.str() << ": ";
+ if (attr.second.flags & RTLIL::CONST_FLAG_STRING) {
+ f << attr.second.decode_string();
+ } else {
+ f << attr.second.as_int(/*is_signed=*/attr.second.flags & RTLIL::CONST_FLAG_SIGNED);
+ }
+ f << "\n";
+ }
+ }
+
+ void dump_const_init(const RTLIL::Const &data, int width, int offset = 0, bool fixed_width = false)
+ {
+ f << "{";
+ while (width > 0) {
+ const int CHUNK_SIZE = 32;
+ uint32_t chunk = data.extract(offset, width > CHUNK_SIZE ? CHUNK_SIZE : width).as_int();
+ if (fixed_width)
+ f << stringf("0x%08xu", chunk);
+ else
+ f << stringf("%#xu", chunk);
+ if (width > CHUNK_SIZE)
+ f << ',';
+ offset += CHUNK_SIZE;
+ width -= CHUNK_SIZE;
+ }
+ f << "}";
+ }
+
+ void dump_const_init(const RTLIL::Const &data)
+ {
+ dump_const_init(data, data.size());
+ }
+
+ void dump_const(const RTLIL::Const &data, int width, int offset = 0, bool fixed_width = false)
+ {
+ f << "value<" << width << ">";
+ dump_const_init(data, width, offset, fixed_width);
+ }
+
+ void dump_const(const RTLIL::Const &data)
+ {
+ dump_const(data, data.size());
+ }
+
+ bool dump_sigchunk(const RTLIL::SigChunk &chunk, bool is_lhs)
+ {
+ if (chunk.wire == NULL) {
+ dump_const(chunk.data, chunk.width, chunk.offset);
+ return false;
+ } else {
+ f << mangle(chunk.wire) << (is_lhs ? ".next" : ".curr");
+ if (chunk.width == chunk.wire->width && chunk.offset == 0)
+ return false;
+ else if (chunk.width == 1)
+ f << ".slice<" << chunk.offset << ">()";
+ else
+ f << ".slice<" << chunk.offset+chunk.width-1 << "," << chunk.offset << ">()";
+ return true;
+ }
+ }
+
+ bool dump_sigspec(const RTLIL::SigSpec &sig, bool is_lhs)
+ {
+ if (sig.empty()) {
+ f << "value<0>()";
+ return false;
+ } else if (sig.is_chunk()) {
+ return dump_sigchunk(sig.as_chunk(), is_lhs);
+ } else {
+ dump_sigchunk(*sig.chunks().rbegin(), is_lhs);
+ for (auto it = sig.chunks().rbegin() + 1; it != sig.chunks().rend(); ++it) {
+ f << ".concat(";
+ dump_sigchunk(*it, is_lhs);
+ f << ")";
+ }
+ return true;
+ }
+ }
+
+ void dump_sigspec_lhs(const RTLIL::SigSpec &sig)
+ {
+ dump_sigspec(sig, /*is_lhs=*/true);
+ }
+
+ void dump_sigspec_rhs(const RTLIL::SigSpec &sig)
+ {
+ // In the contexts where we want template argument deduction to occur for `template<size_t Bits> ... value<Bits>`,
+ // it is necessary to have the argument to already be a `value<N>`, since template argument deduction and implicit
+ // type conversion are mutually exclusive. In these contexts, we use dump_sigspec_rhs() to emit an explicit
+ // type conversion, but only if the expression needs it.
+ bool is_complex = dump_sigspec(sig, /*is_lhs=*/false);
+ if (is_complex)
+ f << ".val()";
+ }
+
+ void dump_assign(const RTLIL::SigSig &sigsig)
+ {
+ f << indent;
+ dump_sigspec_lhs(sigsig.first);
+ f << " = ";
+ dump_sigspec_rhs(sigsig.second);
+ f << ";\n";
+ }
+
+ void dump_cell(const RTLIL::Cell *cell)
+ {
+ dump_attrs(cell);
+ f << indent << "// cell " << cell->name.str() << "\n";
+ // Unary cells
+ if (cell->type.in(
+ ID($not), ID($logic_not), ID($reduce_and), ID($reduce_or), ID($reduce_xor), ID($reduce_xnor), ID($reduce_bool),
+ ID($pos), ID($neg))) {
+ f << indent;
+ dump_sigspec_lhs(cell->getPort(ID(Y)));
+ f << " = " << cell->type.substr(1) << '_' <<
+ (cell->getParam(ID(A_SIGNED)).as_bool() ? 's' : 'u') <<
+ "<" << cell->getParam(ID(Y_WIDTH)).as_int() << ">(";
+ dump_sigspec_rhs(cell->getPort(ID(A)));
+ f << ");\n";
+ // Binary cells
+ } else if (cell->type.in(
+ ID($and), ID($or), ID($xor), ID($xnor), ID($logic_and), ID($logic_or),
+ ID($shl), ID($sshl), ID($shr), ID($sshr), ID($shift), ID($shiftx),
+ ID($eq), ID($ne), ID($eqx), ID($nex), ID($gt), ID($ge), ID($lt), ID($le),
+ ID($add), ID($sub), ID($mul), ID($div), ID($mod))) {
+ f << indent;
+ dump_sigspec_lhs(cell->getPort(ID(Y)));
+ f << " = " << cell->type.substr(1) << '_' <<
+ (cell->getParam(ID(A_SIGNED)).as_bool() ? 's' : 'u') <<
+ (cell->getParam(ID(B_SIGNED)).as_bool() ? 's' : 'u') <<
+ "<" << cell->getParam(ID(Y_WIDTH)).as_int() << ">(";
+ dump_sigspec_rhs(cell->getPort(ID(A)));
+ f << ", ";
+ dump_sigspec_rhs(cell->getPort(ID(B)));
+ f << ");\n";
+ // Muxes
+ } else if (cell->type == ID($mux)) {
+ f << indent;
+ dump_sigspec_lhs(cell->getPort(ID(Y)));
+ f << " = ";
+ dump_sigspec_rhs(cell->getPort(ID(S)));
+ f << " ? ";
+ dump_sigspec_rhs(cell->getPort(ID(B)));
+ f << " : ";
+ dump_sigspec_rhs(cell->getPort(ID(A)));
+ f << ";\n";
+ // Parallel (one-hot) muxes
+ } else if (cell->type == ID($pmux)) {
+ int width = cell->getParam(ID(WIDTH)).as_int();
+ int s_width = cell->getParam(ID(S_WIDTH)).as_int();
+ bool first = true;
+ for (int part = 0; part < s_width; part++) {
+ f << (first ? indent : " else ");
+ first = false;
+ f << "if (";
+ dump_sigspec_rhs(cell->getPort(ID(S)).extract(part));
+ f << ") {\n";
+ inc_indent();
+ f << indent;
+ dump_sigspec_lhs(cell->getPort(ID(Y)));
+ f << " = ";
+ dump_sigspec_rhs(cell->getPort(ID(B)).extract(part * width, width));
+ f << ";\n";
+ dec_indent();
+ f << indent << "}";
+ }
+ f << " else {\n";
+ inc_indent();
+ f << indent;
+ dump_sigspec_lhs(cell->getPort(ID(Y)));
+ f << " = ";
+ dump_sigspec_rhs(cell->getPort(ID(A)));
+ f << ";\n";
+ dec_indent();
+ f << indent << "}\n";
+ // Flip-flops
+ } else if (cell->type.in(ID($dff), ID($dffe), ID($adff), ID($dffsr))) {
+ if (cell->getPort(ID(CLK)).is_wire()) {
+ // Edge-sensitive logic
+ RTLIL::SigBit clk_bit = cell->getPort(ID(CLK))[0];
+ clk_bit = sigmaps[clk_bit.wire->module](clk_bit);
+ f << indent << "if (" << (cell->getParam(ID(CLK_POLARITY)).as_bool() ? "posedge_" : "negedge_")
+ << mangle(clk_bit) << ") {\n";
+ inc_indent();
+ if (cell->type == ID($dffe)) {
+ f << indent << "if (";
+ dump_sigspec_rhs(cell->getPort(ID(EN)));
+ f << " == value<1> {" << cell->getParam(ID(EN_POLARITY)).as_bool() << "}) {\n";
+ inc_indent();
+ }
+ f << indent;
+ dump_sigspec_lhs(cell->getPort(ID(Q)));
+ f << " = ";
+ dump_sigspec_rhs(cell->getPort(ID(D)));
+ f << ";\n";
+ if (cell->type == ID($dffe)) {
+ dec_indent();
+ f << indent << "}\n";
+ }
+ dec_indent();
+ f << indent << "}\n";
+ }
+ // Level-sensitive logic
+ if (cell->type == ID($adff)) {
+ f << indent << "if (";
+ dump_sigspec_rhs(cell->getPort(ID(ARST)));
+ f << " == value<1> {" << cell->getParam(ID(ARST_POLARITY)).as_bool() << "}) {\n";
+ inc_indent();
+ f << indent;
+ dump_sigspec_lhs(cell->getPort(ID(Q)));
+ f << " = ";
+ dump_const(cell->getParam(ID(ARST_VALUE)));
+ f << ";\n";
+ dec_indent();
+ f << indent << "}\n";
+ } else if (cell->type == ID($dffsr)) {
+ f << indent << "if (";
+ dump_sigspec_rhs(cell->getPort(ID(CLR)));
+ f << " == value<1> {" << cell->getParam(ID(CLR_POLARITY)).as_bool() << "}) {\n";
+ inc_indent();
+ f << indent;
+ dump_sigspec_lhs(cell->getPort(ID(Q)));
+ f << " = ";
+ dump_const(RTLIL::Const(RTLIL::S0, cell->getParam(ID(WIDTH)).as_int()));
+ f << ";\n";
+ dec_indent();
+ f << indent << "} else if (";
+ dump_sigspec_rhs(cell->getPort(ID(SET)));
+ f << " == value<1> {" << cell->getParam(ID(SET_POLARITY)).as_bool() << "}) {\n";
+ inc_indent();
+ f << indent;
+ dump_sigspec_lhs(cell->getPort(ID(Q)));
+ f << " = ";
+ dump_const(RTLIL::Const(RTLIL::S1, cell->getParam(ID(WIDTH)).as_int()));
+ f << ";\n";
+ dec_indent();
+ f << indent << "}\n";
+ }
+ // Memory ports
+ } else if (cell->type.in(ID($memrd), ID($memwr))) {
+ if (cell->getParam(ID(CLK_ENABLE)).as_bool()) {
+ RTLIL::SigBit clk_bit = cell->getPort(ID(CLK))[0];
+ clk_bit = sigmaps[clk_bit.wire->module](clk_bit);
+ f << indent << "if (" << (cell->getParam(ID(CLK_POLARITY)).as_bool() ? "posedge_" : "negedge_")
+ << mangle(clk_bit) << ") {\n";
+ inc_indent();
+ }
+ RTLIL::Memory *memory = cell->module->memories[cell->getParam(ID(MEMID)).decode_string()];
+ if (cell->type == ID($memrd)) {
+ if (!cell->getPort(ID(EN)).is_fully_ones()) {
+ f << indent << "if (";
+ dump_sigspec_rhs(cell->getPort(ID(EN)));
+ f << ") {\n";
+ inc_indent();
+ }
+ f << indent;
+ dump_sigspec_lhs(cell->getPort(ID(DATA)));
+ f << " = " << mangle(memory) << "[";
+ dump_sigspec_rhs(cell->getPort(ID(ADDR)));
+ if (writable_memories[memory]) {
+ // FIXME: the handling of transparent read ports is a bit naughty: normally, nothing on RHS should ever
+ // read from `next`, since this can result in evaluation order nondeterminism, as well as issues with
+ // latches. However, for now this is the right tradeoff to make, since it allows to simplify $memrd/$memwr
+ // codegen dramatically.
+ f << "]." << (cell->getParam(ID(TRANSPARENT)).as_bool() ? "next" : "curr") << ";\n";
+ } else {
+ f << "];\n";
+ }
+ if (!cell->getPort(ID(EN)).is_fully_ones()) {
+ dec_indent();
+ f << indent << "}\n";
+ }
+ } else /*if (cell->type == ID($memwr))*/ {
+ log_assert(writable_memories[memory]);
+ // FIXME: handle write port priority.
+ int width = cell->getParam(ID(WIDTH)).as_int();
+ std::string lhs_temp = fresh_temporary();
+ f << indent << "wire<" << width << "> &" << lhs_temp << " = " << mangle(memory) << "[";
+ dump_sigspec_rhs(cell->getPort(ID(ADDR)));
+ f << "];\n";
+ int start = 0;
+ RTLIL::SigBit prev_en_bit = RTLIL::Sm;
+ for (int stop = 0; stop < width + 1; stop++) {
+ if (stop == width || (prev_en_bit != RTLIL::Sm && prev_en_bit != cell->getPort(ID(EN))[stop])) {
+ f << indent << "if (";
+ dump_sigspec_rhs(prev_en_bit);
+ f << ") {\n";
+ inc_indent();
+ f << indent << lhs_temp << ".next.slice<" << (stop - 1) << "," << start << ">() = ";
+ dump_sigspec_rhs(cell->getPort(ID(DATA)).extract(start, stop - start));
+ f << ";\n";
+ dec_indent();
+ f << indent << "}\n";
+ start = stop + 1;
+ }
+ if (stop != width)
+ prev_en_bit = cell->getPort(ID(EN))[stop];
+ }
+ }
+ if (cell->getParam(ID(CLK_ENABLE)).as_bool()) {
+ dec_indent();
+ f << indent << "}\n";
+ }
+ // Memory initializers
+ } else if (cell->type == ID($meminit)) {
+ // Handled elsewhere.
+ } else if (cell->type[0] == '$') {
+ log_cmd_error("Unsupported internal cell `%s'.\n", cell->type.c_str());
+ } else {
+ log_assert(false);
+ }
+ }
+
+ void dump_case_rule(const RTLIL::CaseRule *rule)
+ {
+ for (auto action : rule->actions)
+ dump_assign(action);
+ for (auto switch_ : rule->switches)
+ dump_switch_rule(switch_);
+ }
+
+ void dump_switch_rule(const RTLIL::SwitchRule *rule)
+ {
+ // The switch attributes are printed before the switch condition is captured.
+ dump_attrs(rule);
+ std::string signal_temp = fresh_temporary();
+ f << indent << "const value<" << rule->signal.size() << "> &" << signal_temp << " = ";
+ dump_sigspec(rule->signal, /*is_lhs=*/false);
+ f << ";\n";
+
+ bool first = true;
+ for (auto case_ : rule->cases) {
+ // The case attributes (for nested cases) are printed before the if/else if/else statement.
+ dump_attrs(rule);
+ f << indent;
+ if (!first)
+ f << "} else ";
+ first = false;
+ if (!case_->compare.empty()) {
+ f << "if (";
+ bool first = true;
+ for (auto &compare : case_->compare) {
+ if (!first)
+ f << " || ";
+ first = false;
+ if (compare.is_fully_def()) {
+ f << signal_temp << " == ";
+ dump_sigspec(compare, /*is_lhs=*/false);
+ } else if (compare.is_fully_const()) {
+ RTLIL::Const compare_mask, compare_value;
+ for (auto bit : compare.as_const()) {
+ switch (bit) {
+ case RTLIL::S0:
+ case RTLIL::S1:
+ compare_mask.bits.push_back(RTLIL::S1);
+ compare_value.bits.push_back(bit);
+ break;
+
+ case RTLIL::Sx:
+ case RTLIL::Sz:
+ case RTLIL::Sa:
+ compare_mask.bits.push_back(RTLIL::S0);
+ compare_value.bits.push_back(RTLIL::S0);
+ break;
+
+ default:
+ log_assert(false);
+ }
+ }
+ f << "and_uu<" << compare.size() << ">(" << signal_temp << ", ";
+ dump_const(compare_mask);
+ f << ") == ";
+ dump_const(compare_value);
+ } else {
+ log_assert(false);
+ }
+ }
+ f << ") ";
+ }
+ f << "{\n";
+ inc_indent();
+ dump_case_rule(case_);
+ dec_indent();
+ }
+ f << indent << "}\n";
+ }
+
+ void dump_process(const RTLIL::Process *proc)
+ {
+ dump_attrs(proc);
+ f << indent << "// process " << proc->name.str() << "\n";
+ // The case attributes (for root case) are always empty.
+ log_assert(proc->root_case.attributes.empty());
+ dump_case_rule(&proc->root_case);
+ for (auto sync : proc->syncs) {
+ RTLIL::SigBit sync_bit = sync->signal[0];
+ sync_bit = sigmaps[sync_bit.wire->module](sync_bit);
+
+ pool<std::string> events;
+ switch (sync->type) {
+ case RTLIL::STp:
+ events.insert("posedge_" + mangle(sync_bit));
+ break;
+ case RTLIL::STn:
+ events.insert("negedge_" + mangle(sync_bit));
+ case RTLIL::STe:
+ events.insert("posedge_" + mangle(sync_bit));
+ events.insert("negedge_" + mangle(sync_bit));
+ break;
+
+ case RTLIL::ST0:
+ case RTLIL::ST1:
+ case RTLIL::STa:
+ case RTLIL::STg:
+ case RTLIL::STi:
+ log_assert(false);
+ }
+ if (!events.empty()) {
+ f << indent << "if (";
+ bool first = true;
+ for (auto &event : events) {
+ if (!first)
+ f << " || ";
+ first = false;
+ f << event;
+ }
+ f << ") {\n";
+ inc_indent();
+ for (auto action : sync->actions)
+ dump_assign(action);
+ dec_indent();
+ f << indent << "}\n";
+ }
+ }
+ }
+
+ void dump_wire(const RTLIL::Wire *wire)
+ {
+ dump_attrs(wire);
+ f << indent << "wire<" << wire->width << "> " << mangle(wire);
+ if (wire->attributes.count(ID(init))) {
+ f << " ";
+ dump_const_init(wire->attributes.at(ID(init)));
+ }
+ f << ";\n";
+ if (sync_wires[wire]) {
+ for (auto sync_type : sync_types) {
+ if (sync_type.first.wire == wire) {
+ if (sync_type.second != RTLIL::STn)
+ f << indent << "bool posedge_" << mangle(sync_type.first) << " = false;\n";
+ if (sync_type.second != RTLIL::STp)
+ f << indent << "bool negedge_" << mangle(sync_type.first) << " = false;\n";
+ }
+ }
+ }
+ }
+
+ void dump_memory(RTLIL::Module *module, const RTLIL::Memory *memory)
+ {
+ vector<const RTLIL::Cell*> init_cells;
+ for (auto cell : module->cells())
+ if (cell->type == ID($meminit) && cell->getParam(ID(MEMID)).decode_string() == memory->name.str())
+ init_cells.push_back(cell);
+
+ std::sort(init_cells.begin(), init_cells.end(), [](const RTLIL::Cell *a, const RTLIL::Cell *b) {
+ int a_addr = a->getPort(ID(ADDR)).as_int(), b_addr = b->getPort(ID(ADDR)).as_int();
+ int a_prio = a->getParam(ID(PRIORITY)).as_int(), b_prio = b->getParam(ID(PRIORITY)).as_int();
+ return a_prio > b_prio || (a_prio == b_prio && a_addr < b_addr);
+ });
+
+ dump_attrs(memory);
+ f << indent << "memory_" << (writable_memories[memory] ? "rw" : "ro")
+ << "<" << memory->width << "> " << mangle(memory)
+ << " { " << memory->size << "u";
+ if (init_cells.empty()) {
+ f << " };\n";
+ } else {
+ f << ",\n";
+ inc_indent();
+ for (auto cell : init_cells) {
+ dump_attrs(cell);
+ RTLIL::Const data = cell->getPort(ID(DATA)).as_const();
+ size_t width = cell->getParam(ID(WIDTH)).as_int();
+ size_t words = cell->getParam(ID(WORDS)).as_int();
+ f << indent << "memory_" << (writable_memories[memory] ? "rw" : "ro")
+ << "<" << memory->width << ">::init<" << words << "> { "
+ << stringf("%#x", cell->getPort(ID(ADDR)).as_int()) << ", {";
+ inc_indent();
+ for (size_t n = 0; n < words; n++) {
+ if (n % 4 == 0)
+ f << "\n" << indent;
+ else
+ f << " ";
+ dump_const(data, width, n * width, /*fixed_width=*/true);
+ f << ",";
+ }
+ dec_indent();
+ f << "\n" << indent << "}},\n";
+ }
+ dec_indent();
+ f << indent << "};\n";
+ }
+ }
+
+ void dump_module(RTLIL::Module *module)
+ {
+ dump_attrs(module);
+ f << "struct " << mangle(module) << " : public module {\n";
+ inc_indent();
+ for (auto wire : module->wires())
+ dump_wire(wire);
+ f << "\n";
+ for (auto memory : module->memories)
+ dump_memory(module, memory.second);
+ if (!module->memories.empty())
+ f << "\n";
+ f << indent << "void eval() override;\n";
+ f << indent << "bool commit() override;\n";
+ dec_indent();
+ f << "}; // struct " << mangle(module) << "\n";
+ f << "\n";
+
+ f << "void " << mangle(module) << "::eval() {\n";
+ inc_indent();
+ for (auto cell : module->cells())
+ dump_cell(cell);
+ f << indent << "// connections\n";
+ for (auto conn : module->connections())
+ dump_assign(conn);
+ for (auto proc : module->processes)
+ dump_process(proc.second);
+ for (auto sync_type : sync_types) {
+ if (sync_type.first.wire->module == module) {
+ if (sync_type.second != RTLIL::STn)
+ f << indent << "posedge_" << mangle(sync_type.first) << " = false;\n";
+ if (sync_type.second != RTLIL::STp)
+ f << indent << "negedge_" << mangle(sync_type.first) << " = false;\n";
+ }
+ }
+ dec_indent();
+ f << "}\n";
+
+ f << "\n";
+ f << "bool " << mangle(module) << "::commit() {\n";
+ inc_indent();
+ f << indent << "bool changed = false;\n";
+ for (auto wire : module->wires()) {
+ if (sync_wires[wire]) {
+ std::string wire_prev = mangle(wire) + "_prev";
+ std::string wire_curr = mangle(wire) + ".curr";
+ std::string wire_edge = mangle(wire) + "_edge";
+ f << indent << "value<" << wire->width << "> " << wire_prev << " = " << wire_curr << ";\n";
+ f << indent << "if (" << mangle(wire) << ".commit()) {\n";
+ inc_indent();
+ f << indent << "value<" << wire->width << "> " << wire_edge << " = "
+ << wire_prev << ".bit_xor(" << wire_curr << ");\n";
+ for (auto sync_type : sync_types) {
+ if (sync_type.first.wire != wire)
+ continue;
+ if (sync_type.second != RTLIL::STn) {
+ f << indent << "if (" << wire_edge << ".slice<" << sync_type.first.offset << ">().val() && "
+ << wire_curr << ".slice<" << sync_type.first.offset << ">().val())\n";
+ inc_indent();
+ f << indent << "posedge_" << mangle(sync_type.first) << " = true;\n";
+ dec_indent();
+ }
+ if (sync_type.second != RTLIL::STp) {
+ f << indent << "if (" << wire_edge << ".slice<" << sync_type.first.offset << ">().val() && "
+ << "!" << wire_curr << ".slice<" << sync_type.first.offset << ">().val())\n";
+ inc_indent();
+ f << indent << "negedge_" << mangle(sync_type.first) << " = true;\n";
+ dec_indent();
+ }
+ f << indent << "changed = true;\n";
+ }
+ dec_indent();
+ f << indent << "}\n";
+ } else {
+ f << indent << "changed |= " << mangle(wire) << ".commit();\n";
+ }
+ }
+ for (auto memory : module->memories) {
+ if (!writable_memories[memory.second])
+ continue;
+ f << indent << "for (size_t i = 0; i < " << memory.second->size << "u; i++)\n";
+ inc_indent();
+ f << indent << "changed |= " << mangle(memory.second) << "[i].commit();\n";
+ dec_indent();
+ }
+ f << indent << "return changed;\n";
+ dec_indent();
+ f << "}\n";
+ }
+
+ void dump_design(RTLIL::Design *design)
+ {
+ f << "#include <cxxrtl.h>\n";
+ f << "\n";
+ f << "using namespace cxxrtl_yosys;\n";
+ f << "\n";
+ f << "namespace cxxrtl_design {\n";
+ for (auto module : design->modules()) {
+ if (module->get_blackbox_attribute())
+ continue;
+
+ if (!design->selected_module(module))
+ continue;
+
+ f << "\n";
+ dump_module(module);
+ }
+ f << "\n";
+ f << "} // namespace cxxrtl_design\n";
+ }
+
+ // Edge-type sync rules require us to emit edge detectors, which require coordination between
+ // eval and commit phases. To do this we need to collect them upfront.
+ //
+ // Note that the simulator commit phase operates at wire granularity but edge-type sync rules
+ // operate at wire bit granularity; it is possible to have code similar to:
+ // wire [3:0] clocks;
+ // always @(posedge clocks[0]) ...
+ // To handle this we track edge sensitivity both for wires and wire bits.
+ void register_edge_signal(SigMap &sigmap, RTLIL::SigSpec signal, RTLIL::SyncType type)
+ {
+ signal = sigmap(signal);
+ log_assert(signal.is_wire() && signal.is_bit());
+ log_assert(type == RTLIL::STp || type == RTLIL::STn || type == RTLIL::STe);
+
+ RTLIL::SigBit sigbit = signal[0];
+ if (!sync_types.count(sigbit))
+ sync_types[sigbit] = type;
+ else if (sync_types[sigbit] != type)
+ sync_types[sigbit] = RTLIL::STe;
+ sync_wires.insert(signal.as_wire());
+ }
+
+ void analyze_design(RTLIL::Design *design)
+ {
+ for (auto module : design->modules()) {
+ SigMap &sigmap = sigmaps[module];
+ sigmap.set(module);
+
+ for (auto cell : module->cells()) {
+ // Various DFF cells are treated like posedge/negedge processes, see above for details.
+ if (cell->type.in(ID($dff), ID($dffe), ID($adff), ID($dffsr))) {
+ if (cell->getPort(ID(CLK)).is_wire())
+ register_edge_signal(sigmap, cell->getPort(ID(CLK)),
+ cell->parameters[ID(CLK_POLARITY)].as_bool() ? RTLIL::STp : RTLIL::STn);
+ // The $adff and $dffsr cells are level-sensitive, not edge-sensitive (in spite of the fact that they
+ // are inferred from an edge-sensitive Verilog process) and do not correspond to an edge-type sync rule.
+ }
+ // Similar for memory port cells.
+ if (cell->type.in(ID($memrd), ID($memwr))) {
+ if (cell->getParam(ID(CLK_ENABLE)).as_bool()) {
+ if (cell->getPort(ID(CLK)).is_wire())
+ register_edge_signal(sigmap, cell->getPort(ID(CLK)),
+ cell->parameters[ID(CLK_POLARITY)].as_bool() ? RTLIL::STp : RTLIL::STn);
+ }
+ }
+ // Optimize access to read-only memories.
+ if (cell->type == ID($memwr))
+ writable_memories.insert(module->memories[cell->getParam(ID(MEMID)).decode_string()]);
+ // Handling of packed memories is delegated to the `memory_unpack` pass, so we can rely on the presence
+ // of RTLIL memory objects and $memrd/$memwr/$meminit cells.
+ if (cell->type.in(ID($mem)))
+ log_assert(false);
+ }
+
+ for (auto proc : module->processes)
+ for (auto sync : proc.second->syncs)
+ switch (sync->type) {
+ // Edge-type sync rules require pre-registration.
+ case RTLIL::STp:
+ case RTLIL::STn:
+ case RTLIL::STe:
+ register_edge_signal(sigmap, sync->signal, sync->type);
+ break;
+
+ // Level-type sync rules require no special handling.
+ case RTLIL::ST0:
+ case RTLIL::ST1:
+ case RTLIL::STa:
+ break;
+
+ // Handling of init-type sync rules is delegated to the `proc_init` pass, so we can use the wire
+ // attribute regardless of input.
+ case RTLIL::STi:
+ log_assert(false);
+
+ case RTLIL::STg:
+ log_cmd_error("Global clock is not supported.\n");
+ }
+ }
+ }
+
+ void check_design(RTLIL::Design *design, bool &has_sync_init, bool &has_packed_mem)
+ {
+ has_sync_init = has_packed_mem = false;
+
+ for (auto module : design->modules()) {
+ if (module->get_blackbox_attribute())
+ continue;
+
+ if (!design->selected_whole_module(module))
+ if (design->selected_module(module))
+ log_cmd_error("Can't handle partially selected module %s!\n", id2cstr(module->name));
+
+ for (auto proc : module->processes)
+ for (auto sync : proc.second->syncs)
+ if (sync->type == RTLIL::STi)
+ has_sync_init = true;
+
+ for (auto cell : module->cells())
+ if (cell->type == ID($mem))
+ has_packed_mem = true;
+ }
+ }
+
+ void prepare_design(RTLIL::Design *design)
+ {
+ bool has_sync_init, has_packed_mem;
+ check_design(design, has_sync_init, has_packed_mem);
+ if (has_sync_init)
+ Pass::call(design, "proc_init");
+ if (has_packed_mem)
+ Pass::call(design, "memory_unpack");
+ // Recheck the design if it was modified.
+ if (has_sync_init || has_packed_mem)
+ check_design(design, has_sync_init, has_packed_mem);
+
+ log_assert(!(has_sync_init || has_packed_mem));
+ analyze_design(design);
+ }
+};
+
+struct CxxrtlBackend : public Backend {
+ CxxrtlBackend() : Backend("cxxrtl", "convert design to C++ RTL simulation") { }
+ void help() YS_OVERRIDE
+ {
+ // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
+ log("\n");
+ log(" write_cxxrtl [options] [filename]\n");
+ log("\n");
+ log("Write C++ code for simulating the design.\n");
+ log("\n");
+ }
+ void execute(std::ostream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
+ {
+ log_header(design, "Executing CXXRTL backend.\n");
+
+ size_t argidx;
+ for (argidx = 1; argidx < args.size(); argidx++)
+ {
+ // if (args[argidx] == "-top" && argidx+1 < args.size()) {
+ // top_module_name = args[++argidx];
+ // continue;
+ // }
+ break;
+ }
+ extra_args(f, filename, args, argidx);
+
+ CxxrtlWorker worker(*f);
+ worker.prepare_design(design);
+ worker.dump_design(design);
+ }
+} CxxrtlBackend;
+
+PRIVATE_NAMESPACE_END