diff options
Diffstat (limited to 'backends/cxxrtl')
-rw-r--r-- | backends/cxxrtl/cxxrtl.cc | 1305 | ||||
-rw-r--r-- | backends/cxxrtl/cxxrtl.h | 67 |
2 files changed, 1025 insertions, 347 deletions
diff --git a/backends/cxxrtl/cxxrtl.cc b/backends/cxxrtl/cxxrtl.cc index d1a855bf0..237700b29 100644 --- a/backends/cxxrtl/cxxrtl.cc +++ b/backends/cxxrtl/cxxrtl.cc @@ -171,14 +171,19 @@ struct Scheduler { } }; -static bool is_unary_cell(RTLIL::IdString type) +bool is_input_wire(const RTLIL::Wire *wire) +{ + return wire->port_input && !wire->port_output; +} + +bool is_unary_cell(RTLIL::IdString type) { return type.in( ID($not), ID($logic_not), ID($reduce_and), ID($reduce_or), ID($reduce_xor), ID($reduce_xnor), ID($reduce_bool), ID($pos), ID($neg)); } -static bool is_binary_cell(RTLIL::IdString type) +bool is_binary_cell(RTLIL::IdString type) { return type.in( ID($and), ID($or), ID($xor), ID($xnor), ID($logic_and), ID($logic_or), @@ -187,34 +192,77 @@ static bool is_binary_cell(RTLIL::IdString type) ID($add), ID($sub), ID($mul), ID($div), ID($mod)); } -static bool is_elidable_cell(RTLIL::IdString type) +bool is_elidable_cell(RTLIL::IdString type) { return is_unary_cell(type) || is_binary_cell(type) || type.in( ID($mux), ID($concat), ID($slice)); } -static bool is_sync_ff_cell(RTLIL::IdString type) +bool is_sync_ff_cell(RTLIL::IdString type) { return type.in( ID($dff), ID($dffe)); } -static bool is_ff_cell(RTLIL::IdString type) +bool is_ff_cell(RTLIL::IdString type) { return is_sync_ff_cell(type) || type.in( ID($adff), ID($dffsr), ID($dlatch), ID($dlatchsr), ID($sr)); } -static bool is_internal_cell(RTLIL::IdString type) +bool is_internal_cell(RTLIL::IdString type) { return type[0] == '$' && !type.begins_with("$paramod\\"); } +bool is_cxxrtl_blackbox_cell(const RTLIL::Cell *cell) +{ + RTLIL::Module *cell_module = cell->module->design->module(cell->type); + log_assert(cell_module != nullptr); + return cell_module->get_bool_attribute(ID(cxxrtl.blackbox)); +} + +enum class CxxrtlPortType { + UNKNOWN = 0, // or mixed comb/sync + COMB = 1, + SYNC = 2, +}; + +CxxrtlPortType cxxrtl_port_type(const RTLIL::Cell *cell, RTLIL::IdString port) +{ + RTLIL::Module *cell_module = cell->module->design->module(cell->type); + if (cell_module == nullptr || !cell_module->get_bool_attribute(ID(cxxrtl.blackbox))) + return CxxrtlPortType::UNKNOWN; + RTLIL::Wire *cell_output_wire = cell_module->wire(port); + log_assert(cell_output_wire != nullptr); + bool is_comb = cell_output_wire->get_bool_attribute(ID(cxxrtl.comb)); + bool is_sync = cell_output_wire->get_bool_attribute(ID(cxxrtl.sync)); + if (is_comb && is_sync) + log_cmd_error("Port `%s.%s' is marked as both `cxxrtl.comb` and `cxxrtl.sync`.\n", + log_id(cell_module), log_signal(cell_output_wire)); + else if (is_comb) + return CxxrtlPortType::COMB; + else if (is_sync) + return CxxrtlPortType::SYNC; + return CxxrtlPortType::UNKNOWN; +} + +bool is_cxxrtl_comb_port(const RTLIL::Cell *cell, RTLIL::IdString port) +{ + return cxxrtl_port_type(cell, port) == CxxrtlPortType::COMB; +} + +bool is_cxxrtl_sync_port(const RTLIL::Cell *cell, RTLIL::IdString port) +{ + return cxxrtl_port_type(cell, port) == CxxrtlPortType::SYNC; +} + struct FlowGraph { struct Node { enum class Type { CONNECT, - CELL, + CELL_SYNC, + CELL_EVAL, PROCESS }; @@ -225,7 +273,7 @@ struct FlowGraph { }; std::vector<Node*> nodes; - dict<const RTLIL::Wire*, pool<Node*, hash_ptr_ops>> wire_defs, wire_uses; + dict<const RTLIL::Wire*, pool<Node*, hash_ptr_ops>> wire_comb_defs, wire_sync_defs, wire_uses; dict<const RTLIL::Wire*, bool> wire_def_elidable, wire_use_elidable; ~FlowGraph() @@ -234,13 +282,17 @@ struct FlowGraph { delete node; } - void add_defs(Node *node, const RTLIL::SigSpec &sig, bool elidable) + void add_defs(Node *node, const RTLIL::SigSpec &sig, bool fully_sync, bool elidable) { for (auto chunk : sig.chunks()) - if (chunk.wire) - wire_defs[chunk.wire].insert(node); - // Only defs of an entire wire in the right order can be elided. - if (sig.is_wire()) + if (chunk.wire) { + if (fully_sync) + wire_sync_defs[chunk.wire].insert(node); + else + wire_comb_defs[chunk.wire].insert(node); + } + // Only comb defs of an entire wire in the right order can be elided. + if (!fully_sync && sig.is_wire()) wire_def_elidable[sig.as_wire()] = elidable; } @@ -268,7 +320,7 @@ struct FlowGraph { // Connections void add_connect_defs_uses(Node *node, const RTLIL::SigSig &conn) { - add_defs(node, conn.first, /*elidable=*/true); + add_defs(node, conn.first, /*fully_sync=*/false, /*elidable=*/true); add_uses(node, conn.second); } @@ -283,21 +335,59 @@ struct FlowGraph { } // Cells - void add_cell_defs_uses(Node *node, const RTLIL::Cell *cell) + void add_cell_sync_defs(Node *node, const RTLIL::Cell *cell) + { + // To understand why this node type is necessary and why it produces comb defs, consider a cell + // with input \i and sync output \o, used in a design such that \i is connected to \o. This does + // not result in a feedback arc because the output is synchronous. However, a naive implementation + // of code generation for cells that assigns to inputs, evaluates cells, assigns from outputs + // would not be able to immediately converge... + // + // wire<1> i_tmp; + // cell->p_i = i_tmp.curr; + // cell->eval(); + // i_tmp.next = cell->p_o.curr; + // + // ... since the wire connecting the input and output ports would not be localizable. To solve + // this, the cell is split into two scheduling nodes; one exclusively for sync outputs, and + // another for inputs and all non-sync outputs. This way the generated code can be rearranged... + // + // value<1> i_tmp; + // i_tmp = cell->p_o.curr; + // cell->p_i = i_tmp; + // cell->eval(); + // + // eliminating the unnecessary delta cycle. Conceptually, the CELL_SYNC node type is a series of + // connections of the form `connect \lhs \cell.\sync_output`; the right-hand side of these is not + // as a wire in RTLIL. If it was expressible, then `\cell.\sync_output` would have a sync def, + // and this node would be an ordinary CONNECT node, with `\lhs` having a comb def. Because it isn't, + // a special node type is used, the right-hand side does not appear anywhere, and the left-hand + // side has a comb def. + for (auto conn : cell->connections()) + if (cell->output(conn.first)) + if (is_cxxrtl_sync_port(cell, conn.first)) { + // See note regarding elidability below. + add_defs(node, conn.second, /*fully_sync=*/false, /*elidable=*/false); + } + } + + void add_cell_eval_defs_uses(Node *node, const RTLIL::Cell *cell) { - log_assert(cell->known()); for (auto conn : cell->connections()) { if (cell->output(conn.first)) { - if (is_sync_ff_cell(cell->type) || (cell->type == ID($memrd) && cell->getParam(ID(CLK_ENABLE)).as_bool())) - /* non-combinatorial outputs do not introduce defs */; - else if (is_elidable_cell(cell->type)) - add_defs(node, conn.second, /*elidable=*/true); + if (is_elidable_cell(cell->type)) + add_defs(node, conn.second, /*fully_sync=*/false, /*elidable=*/true); + else if (is_sync_ff_cell(cell->type) || (cell->type == ID($memrd) && cell->getParam(ID::CLK_ENABLE).as_bool())) + add_defs(node, conn.second, /*fully_sync=*/true, /*elidable=*/false); else if (is_internal_cell(cell->type)) - add_defs(node, conn.second, /*elidable=*/false); - else { - // Unlike outputs of internal cells (which generate code that depends on the ability to set the output - // wire bits), outputs of user cells are normal wires, and the wires connected to them can be elided. - add_defs(node, conn.second, /*elidable=*/true); + add_defs(node, conn.second, /*fully_sync=*/false, /*elidable=*/false); + else if (!is_cxxrtl_sync_port(cell, conn.first)) { + // Although at first it looks like outputs of user-defined cells may always be elided, the reality is + // more complex. Fully sync outputs produce no defs and so don't participate in elision. Fully comb + // outputs are assigned in a different way depending on whether the cell's eval() immediately converged. + // Unknown/mixed outputs could be elided, but should be rare in practical designs and don't justify + // the infrastructure required to elide outputs of cells with many of them. + add_defs(node, conn.second, /*fully_sync=*/false, /*elidable=*/false); } } if (cell->input(conn.first)) @@ -307,11 +397,27 @@ struct FlowGraph { Node *add_node(const RTLIL::Cell *cell) { + log_assert(cell->known()); + + bool has_fully_sync_outputs = false; + for (auto conn : cell->connections()) + if (cell->output(conn.first) && is_cxxrtl_sync_port(cell, conn.first)) { + has_fully_sync_outputs = true; + break; + } + if (has_fully_sync_outputs) { + Node *node = new Node; + node->type = Node::Type::CELL_SYNC; + node->cell = cell; + nodes.push_back(node); + add_cell_sync_defs(node, cell); + } + Node *node = new Node; - node->type = Node::Type::CELL; + node->type = Node::Type::CELL_EVAL; node->cell = cell; nodes.push_back(node); - add_cell_defs_uses(node, cell); + add_cell_eval_defs_uses(node, cell); return node; } @@ -319,7 +425,7 @@ struct FlowGraph { void add_case_defs_uses(Node *node, const RTLIL::CaseRule *case_) { for (auto &action : case_->actions) { - add_defs(node, action.first, /*elidable=*/false); + add_defs(node, action.first, /*is_sync=*/false, /*elidable=*/false); add_uses(node, action.second); } for (auto sub_switch : case_->switches) { @@ -338,9 +444,9 @@ struct FlowGraph { for (auto sync : process->syncs) for (auto action : sync->actions) { if (sync->type == RTLIL::STp || sync->type == RTLIL::STn || sync->type == RTLIL::STe) - /* sync actions do not introduce feedback */; + add_defs(node, action.first, /*is_sync=*/true, /*elidable=*/false); else - add_defs(node, action.first, /*elidable=*/false); + add_defs(node, action.first, /*is_sync=*/false, /*elidable=*/false); add_uses(node, action.second); } } @@ -356,6 +462,46 @@ struct FlowGraph { } }; +std::vector<std::string> split_by(const std::string &str, const std::string &sep) +{ + std::vector<std::string> result; + size_t prev = 0; + while (true) { + size_t curr = str.find_first_of(sep, prev + 1); + if (curr > str.size()) + curr = str.size(); + if (curr > prev + 1) + result.push_back(str.substr(prev, curr - prev)); + if (curr == str.size()) + break; + prev = curr; + } + return result; +} + +std::string escape_cxx_string(const std::string &input) +{ + std::string output = "\""; + for (auto c : input) { + if (::isprint(c)) { + if (c == '\\') + output.push_back('\\'); + output.push_back(c); + } else { + char l = c & 0xf, h = (c >> 4) & 0xf; + output.append("\\x"); + output.push_back((h < 10 ? '0' + h : 'a' + h - 10)); + output.push_back((l < 10 ? '0' + l : 'a' + l - 10)); + } + } + output.push_back('"'); + if (output.find('\0') != std::string::npos) { + output.insert(0, "std::string {"); + output.append(stringf(", %zu}", input.size())); + } + return output; +} + struct CxxrtlWorker { bool split_intf = false; std::string intf_filename; @@ -367,21 +513,24 @@ struct CxxrtlWorker { bool elide_public = false; bool localize_internal = false; bool localize_public = false; - bool run_splitnets = false; + bool run_opt_clean_purge = false; + bool run_proc_flatten = false; + bool max_opt_level = false; std::ostringstream f; std::string indent; int temporary = 0; dict<const RTLIL::Module*, SigMap> sigmaps; - pool<const RTLIL::Wire*> sync_wires; - dict<RTLIL::SigBit, RTLIL::SyncType> sync_types; + pool<const RTLIL::Wire*> edge_wires; + dict<RTLIL::SigBit, RTLIL::SyncType> edge_types; pool<const RTLIL::Memory*> writable_memories; dict<const RTLIL::Cell*, pool<const RTLIL::Cell*>> transparent_for; - dict<const RTLIL::Cell*, dict<RTLIL::Wire*, RTLIL::IdString>> cell_wire_defs; dict<const RTLIL::Wire*, FlowGraph::Node> elided_wires; dict<const RTLIL::Module*, std::vector<FlowGraph::Node>> schedule; pool<const RTLIL::Wire*> localized_wires; + dict<const RTLIL::Module*, pool<std::string>> blackbox_specializations; + dict<const RTLIL::Module*, bool> eval_converges; void inc_indent() { indent += "\t"; @@ -429,9 +578,11 @@ struct CxxrtlWorker { return mangled; } - std::string mangle_module_name(const RTLIL::IdString &name) + std::string mangle_module_name(const RTLIL::IdString &name, bool is_blackbox = false) { // Class namespace. + if (is_blackbox) + return "bb_" + mangle_name(name); return mangle_name(name); } @@ -455,7 +606,7 @@ struct CxxrtlWorker { std::string mangle(const RTLIL::Module *module) { - return mangle_module_name(module->name); + return mangle_module_name(module->name, /*is_blackbox=*/module->get_bool_attribute(ID(cxxrtl.blackbox))); } std::string mangle(const RTLIL::Memory *memory) @@ -481,6 +632,80 @@ struct CxxrtlWorker { return mangle(sigbit.wire) + "_" + std::to_string(sigbit.offset); } + std::vector<std::string> template_param_names(const RTLIL::Module *module) + { + if (!module->has_attribute(ID(cxxrtl.template))) + return {}; + + if (module->attributes.at(ID(cxxrtl.template)).flags != RTLIL::CONST_FLAG_STRING) + log_cmd_error("Attribute `cxxrtl.template' of module `%s' is not a string.\n", log_id(module)); + + std::vector<std::string> param_names = split_by(module->get_string_attribute(ID(cxxrtl.template)), " \t"); + for (const auto ¶m_name : param_names) { + // Various lowercase prefixes (p_, i_, cell_, ...) are used for member variables, so require + // parameters to start with an uppercase letter to avoid name conflicts. (This is the convention + // in both Verilog and C++, anyway.) + if (!isupper(param_name[0])) + log_cmd_error("Attribute `cxxrtl.template' of module `%s' includes a parameter `%s', " + "which does not start with an uppercase letter.\n", + log_id(module), param_name.c_str()); + } + return param_names; + } + + std::string template_params(const RTLIL::Module *module, bool is_decl) + { + std::vector<std::string> param_names = template_param_names(module); + if (param_names.empty()) + return ""; + + std::string params = "<"; + bool first = true; + for (const auto ¶m_name : param_names) { + if (!first) + params += ", "; + first = false; + if (is_decl) + params += "size_t "; + params += param_name; + } + params += ">"; + return params; + } + + std::string template_args(const RTLIL::Cell *cell) + { + RTLIL::Module *cell_module = cell->module->design->module(cell->type); + log_assert(cell_module != nullptr); + if (!cell_module->get_bool_attribute(ID(cxxrtl.blackbox))) + return ""; + + std::vector<std::string> param_names = template_param_names(cell_module); + if (param_names.empty()) + return ""; + + std::string params = "<"; + bool first = true; + for (const auto ¶m_name : param_names) { + if (!first) + params += ", "; + first = false; + params += "/*" + param_name + "=*/"; + RTLIL::IdString id_param_name = '\\' + param_name; + if (!cell->hasParam(id_param_name)) + log_cmd_error("Cell `%s.%s' does not have a parameter `%s', which is required by the templated module `%s'.\n", + log_id(cell->module), log_id(cell), param_name.c_str(), log_id(cell_module)); + RTLIL::Const param_value = cell->getParam(id_param_name); + if (((param_value.flags & ~RTLIL::CONST_FLAG_SIGNED) != 0) || param_value.as_int() < 0) + log_cmd_error("Parameter `%s' of cell `%s.%s', which is required by the templated module `%s', " + "is not a positive integer.\n", + param_name.c_str(), log_id(cell->module), log_id(cell), log_id(cell_module)); + params += std::to_string(cell->getParam(id_param_name).as_int()); + } + params += ">"; + return params; + } + std::string fresh_temporary() { return stringf("tmp_%d", temporary++); @@ -545,17 +770,14 @@ struct CxxrtlWorker { case FlowGraph::Node::Type::CONNECT: dump_connect_elided(node.connect); break; - case FlowGraph::Node::Type::CELL: - if (is_elidable_cell(node.cell->type)) { - dump_cell_elided(node.cell); - } else { - f << mangle(node.cell) << "." << mangle_wire_name(cell_wire_defs[node.cell][chunk.wire]) << ".curr"; - } + case FlowGraph::Node::Type::CELL_EVAL: + log_assert(is_elidable_cell(node.cell->type)); + dump_cell_elided(node.cell); break; default: log_assert(false); } - } else if (localized_wires[chunk.wire]) { + } else if (localized_wires[chunk.wire] || is_input_wire(chunk.wire)) { f << mangle(chunk.wire); } else { f << mangle(chunk.wire) << (is_lhs ? ".next" : ".curr"); @@ -615,8 +837,8 @@ struct CxxrtlWorker { case FlowGraph::Node::Type::CONNECT: collect_connect(node.connect, cells); break; - case FlowGraph::Node::Type::CELL: - collect_cell(node.cell, cells); + case FlowGraph::Node::Type::CELL_EVAL: + collect_cell_eval(node.cell, cells); break; default: log_assert(false); @@ -655,47 +877,60 @@ struct CxxrtlWorker { f << ";\n"; } + void dump_cell_sync(const RTLIL::Cell *cell) + { + const char *access = is_cxxrtl_blackbox_cell(cell) ? "->" : "."; + f << indent << "// cell " << cell->name.str() << " syncs\n"; + for (auto conn : cell->connections()) + if (cell->output(conn.first)) + if (is_cxxrtl_sync_port(cell, conn.first)) { + f << indent; + dump_sigspec_lhs(conn.second); + f << " = " << mangle(cell) << access << mangle_wire_name(conn.first) << ".curr;\n"; + } + } + void dump_cell_elided(const RTLIL::Cell *cell) { // Unary cells if (is_unary_cell(cell->type)) { f << cell->type.substr(1) << '_' << - (cell->getParam(ID(A_SIGNED)).as_bool() ? 's' : 'u') << - "<" << cell->getParam(ID(Y_WIDTH)).as_int() << ">("; - dump_sigspec_rhs(cell->getPort(ID(A))); + (cell->getParam(ID::A_SIGNED).as_bool() ? 's' : 'u') << + "<" << cell->getParam(ID::Y_WIDTH).as_int() << ">("; + dump_sigspec_rhs(cell->getPort(ID::A)); f << ")"; // Binary cells } else if (is_binary_cell(cell->type)) { f << cell->type.substr(1) << '_' << - (cell->getParam(ID(A_SIGNED)).as_bool() ? 's' : 'u') << - (cell->getParam(ID(B_SIGNED)).as_bool() ? 's' : 'u') << - "<" << cell->getParam(ID(Y_WIDTH)).as_int() << ">("; - dump_sigspec_rhs(cell->getPort(ID(A))); + (cell->getParam(ID::A_SIGNED).as_bool() ? 's' : 'u') << + (cell->getParam(ID::B_SIGNED).as_bool() ? 's' : 'u') << + "<" << cell->getParam(ID::Y_WIDTH).as_int() << ">("; + dump_sigspec_rhs(cell->getPort(ID::A)); f << ", "; - dump_sigspec_rhs(cell->getPort(ID(B))); + dump_sigspec_rhs(cell->getPort(ID::B)); f << ")"; // Muxes } else if (cell->type == ID($mux)) { f << "("; - dump_sigspec_rhs(cell->getPort(ID(S))); + dump_sigspec_rhs(cell->getPort(ID::S)); f << " ? "; - dump_sigspec_rhs(cell->getPort(ID(B))); + dump_sigspec_rhs(cell->getPort(ID::B)); f << " : "; - dump_sigspec_rhs(cell->getPort(ID(A))); + dump_sigspec_rhs(cell->getPort(ID::A)); f << ")"; // Concats } else if (cell->type == ID($concat)) { - dump_sigspec_rhs(cell->getPort(ID(B))); + dump_sigspec_rhs(cell->getPort(ID::B)); f << ".concat("; - dump_sigspec_rhs(cell->getPort(ID(A))); + dump_sigspec_rhs(cell->getPort(ID::A)); f << ").val()"; // Slices } else if (cell->type == ID($slice)) { - dump_sigspec_rhs(cell->getPort(ID(A))); + dump_sigspec_rhs(cell->getPort(ID::A)); f << ".slice<"; - f << cell->getParam(ID(OFFSET)).as_int() + cell->getParam(ID(Y_WIDTH)).as_int() - 1; + f << cell->getParam(ID::OFFSET).as_int() + cell->getParam(ID::Y_WIDTH).as_int() - 1; f << ","; - f << cell->getParam(ID(OFFSET)).as_int(); + f << cell->getParam(ID::OFFSET).as_int(); f << ">().val()"; } else { log_assert(false); @@ -704,22 +939,22 @@ struct CxxrtlWorker { bool is_cell_elided(const RTLIL::Cell *cell) { - return is_elidable_cell(cell->type) && cell->hasPort(ID(Y)) && cell->getPort(ID(Y)).is_wire() && - elided_wires.count(cell->getPort(ID(Y)).as_wire()); + return is_elidable_cell(cell->type) && cell->hasPort(ID::Y) && cell->getPort(ID::Y).is_wire() && + elided_wires.count(cell->getPort(ID::Y).as_wire()); } - void collect_cell(const RTLIL::Cell *cell, std::vector<RTLIL::IdString> &cells) + void collect_cell_eval(const RTLIL::Cell *cell, std::vector<RTLIL::IdString> &cells) { if (!is_cell_elided(cell)) return; cells.push_back(cell->name); for (auto port : cell->connections()) - if (port.first != ID(Y)) + if (port.first != ID::Y) collect_sigspec_rhs(port.second, cells); } - void dump_cell(const RTLIL::Cell *cell) + void dump_cell_eval(const RTLIL::Cell *cell) { if (is_cell_elided(cell)) return; @@ -729,7 +964,7 @@ struct CxxrtlWorker { std::vector<RTLIL::IdString> elided_cells; if (is_elidable_cell(cell->type)) { for (auto port : cell->connections()) - if (port.first != ID(Y)) + if (port.first != ID::Y) collect_sigspec_rhs(port.second, elided_cells); } if (elided_cells.empty()) { @@ -745,26 +980,26 @@ struct CxxrtlWorker { // Elidable cells if (is_elidable_cell(cell->type)) { f << indent; - dump_sigspec_lhs(cell->getPort(ID(Y))); + dump_sigspec_lhs(cell->getPort(ID::Y)); f << " = "; dump_cell_elided(cell); f << ";\n"; // Parallel (one-hot) muxes } else if (cell->type == ID($pmux)) { - int width = cell->getParam(ID(WIDTH)).as_int(); - int s_width = cell->getParam(ID(S_WIDTH)).as_int(); + int width = cell->getParam(ID::WIDTH).as_int(); + int s_width = cell->getParam(ID::S_WIDTH).as_int(); bool first = true; for (int part = 0; part < s_width; part++) { f << (first ? indent : " else "); first = false; f << "if ("; - dump_sigspec_rhs(cell->getPort(ID(S)).extract(part)); + dump_sigspec_rhs(cell->getPort(ID::S).extract(part)); f << ") {\n"; inc_indent(); f << indent; - dump_sigspec_lhs(cell->getPort(ID(Y))); + dump_sigspec_lhs(cell->getPort(ID::Y)); f << " = "; - dump_sigspec_rhs(cell->getPort(ID(B)).extract(part * width, width)); + dump_sigspec_rhs(cell->getPort(ID::B).extract(part * width, width)); f << ";\n"; dec_indent(); f << indent << "}"; @@ -772,31 +1007,31 @@ struct CxxrtlWorker { f << " else {\n"; inc_indent(); f << indent; - dump_sigspec_lhs(cell->getPort(ID(Y))); + dump_sigspec_lhs(cell->getPort(ID::Y)); f << " = "; - dump_sigspec_rhs(cell->getPort(ID(A))); + dump_sigspec_rhs(cell->getPort(ID::A)); f << ";\n"; dec_indent(); f << indent << "}\n"; // Flip-flops } else if (is_ff_cell(cell->type)) { - if (cell->hasPort(ID(CLK)) && cell->getPort(ID(CLK)).is_wire()) { + if (cell->hasPort(ID::CLK) && cell->getPort(ID::CLK).is_wire()) { // Edge-sensitive logic - RTLIL::SigBit clk_bit = cell->getPort(ID(CLK))[0]; + RTLIL::SigBit clk_bit = cell->getPort(ID::CLK)[0]; clk_bit = sigmaps[clk_bit.wire->module](clk_bit); - f << indent << "if (" << (cell->getParam(ID(CLK_POLARITY)).as_bool() ? "posedge_" : "negedge_") + f << indent << "if (" << (cell->getParam(ID::CLK_POLARITY).as_bool() ? "posedge_" : "negedge_") << mangle(clk_bit) << ") {\n"; inc_indent(); if (cell->type == ID($dffe)) { f << indent << "if ("; - dump_sigspec_rhs(cell->getPort(ID(EN))); - f << " == value<1> {" << cell->getParam(ID(EN_POLARITY)).as_bool() << "u}) {\n"; + dump_sigspec_rhs(cell->getPort(ID::EN)); + f << " == value<1> {" << cell->getParam(ID::EN_POLARITY).as_bool() << "u}) {\n"; inc_indent(); } f << indent; - dump_sigspec_lhs(cell->getPort(ID(Q))); + dump_sigspec_lhs(cell->getPort(ID::Q)); f << " = "; - dump_sigspec_rhs(cell->getPort(ID(D))); + dump_sigspec_rhs(cell->getPort(ID::D)); f << ";\n"; if (cell->type == ID($dffe)) { dec_indent(); @@ -804,77 +1039,77 @@ struct CxxrtlWorker { } dec_indent(); f << indent << "}\n"; - } else if (cell->hasPort(ID(EN))) { + } else if (cell->hasPort(ID::EN)) { // Level-sensitive logic f << indent << "if ("; - dump_sigspec_rhs(cell->getPort(ID(EN))); - f << " == value<1> {" << cell->getParam(ID(EN_POLARITY)).as_bool() << "u}) {\n"; + dump_sigspec_rhs(cell->getPort(ID::EN)); + f << " == value<1> {" << cell->getParam(ID::EN_POLARITY).as_bool() << "u}) {\n"; inc_indent(); f << indent; - dump_sigspec_lhs(cell->getPort(ID(Q))); + dump_sigspec_lhs(cell->getPort(ID::Q)); f << " = "; - dump_sigspec_rhs(cell->getPort(ID(D))); + dump_sigspec_rhs(cell->getPort(ID::D)); f << ";\n"; dec_indent(); f << indent << "}\n"; } - if (cell->hasPort(ID(ARST))) { + if (cell->hasPort(ID::ARST)) { // Asynchronous reset (entire coarse cell at once) f << indent << "if ("; - dump_sigspec_rhs(cell->getPort(ID(ARST))); - f << " == value<1> {" << cell->getParam(ID(ARST_POLARITY)).as_bool() << "u}) {\n"; + dump_sigspec_rhs(cell->getPort(ID::ARST)); + f << " == value<1> {" << cell->getParam(ID::ARST_POLARITY).as_bool() << "u}) {\n"; inc_indent(); f << indent; - dump_sigspec_lhs(cell->getPort(ID(Q))); + dump_sigspec_lhs(cell->getPort(ID::Q)); f << " = "; - dump_const(cell->getParam(ID(ARST_VALUE))); + dump_const(cell->getParam(ID::ARST_VALUE)); f << ";\n"; dec_indent(); f << indent << "}\n"; } - if (cell->hasPort(ID(SET))) { + if (cell->hasPort(ID::SET)) { // Asynchronous set (for individual bits) f << indent; - dump_sigspec_lhs(cell->getPort(ID(Q))); + dump_sigspec_lhs(cell->getPort(ID::Q)); f << " = "; - dump_sigspec_lhs(cell->getPort(ID(Q))); + dump_sigspec_lhs(cell->getPort(ID::Q)); f << ".update("; - dump_const(RTLIL::Const(RTLIL::S1, cell->getParam(ID(WIDTH)).as_int())); + dump_const(RTLIL::Const(RTLIL::S1, cell->getParam(ID::WIDTH).as_int())); f << ", "; - dump_sigspec_rhs(cell->getPort(ID(SET))); - f << (cell->getParam(ID(SET_POLARITY)).as_bool() ? "" : ".bit_not()") << ");\n"; + dump_sigspec_rhs(cell->getPort(ID::SET)); + f << (cell->getParam(ID::SET_POLARITY).as_bool() ? "" : ".bit_not()") << ");\n"; } - if (cell->hasPort(ID(CLR))) { + if (cell->hasPort(ID::CLR)) { // Asynchronous clear (for individual bits; priority over set) f << indent; - dump_sigspec_lhs(cell->getPort(ID(Q))); + dump_sigspec_lhs(cell->getPort(ID::Q)); f << " = "; - dump_sigspec_lhs(cell->getPort(ID(Q))); + dump_sigspec_lhs(cell->getPort(ID::Q)); f << ".update("; - dump_const(RTLIL::Const(RTLIL::S0, cell->getParam(ID(WIDTH)).as_int())); + dump_const(RTLIL::Const(RTLIL::S0, cell->getParam(ID::WIDTH).as_int())); f << ", "; - dump_sigspec_rhs(cell->getPort(ID(CLR))); - f << (cell->getParam(ID(CLR_POLARITY)).as_bool() ? "" : ".bit_not()") << ");\n"; + dump_sigspec_rhs(cell->getPort(ID::CLR)); + f << (cell->getParam(ID::CLR_POLARITY).as_bool() ? "" : ".bit_not()") << ");\n"; } // Memory ports } else if (cell->type.in(ID($memrd), ID($memwr))) { - if (cell->getParam(ID(CLK_ENABLE)).as_bool()) { - RTLIL::SigBit clk_bit = cell->getPort(ID(CLK))[0]; + if (cell->getParam(ID::CLK_ENABLE).as_bool()) { + RTLIL::SigBit clk_bit = cell->getPort(ID::CLK)[0]; clk_bit = sigmaps[clk_bit.wire->module](clk_bit); - f << indent << "if (" << (cell->getParam(ID(CLK_POLARITY)).as_bool() ? "posedge_" : "negedge_") + f << indent << "if (" << (cell->getParam(ID::CLK_POLARITY).as_bool() ? "posedge_" : "negedge_") << mangle(clk_bit) << ") {\n"; inc_indent(); } - RTLIL::Memory *memory = cell->module->memories[cell->getParam(ID(MEMID)).decode_string()]; + RTLIL::Memory *memory = cell->module->memories[cell->getParam(ID::MEMID).decode_string()]; std::string valid_index_temp = fresh_temporary(); f << indent << "auto " << valid_index_temp << " = memory_index("; - dump_sigspec_rhs(cell->getPort(ID(ADDR))); + dump_sigspec_rhs(cell->getPort(ID::ADDR)); f << ", " << memory->start_offset << ", " << memory->size << ");\n"; if (cell->type == ID($memrd)) { - bool has_enable = cell->getParam(ID(CLK_ENABLE)).as_bool() && !cell->getPort(ID(EN)).is_fully_ones(); + bool has_enable = cell->getParam(ID::CLK_ENABLE).as_bool() && !cell->getPort(ID::EN).is_fully_ones(); if (has_enable) { f << indent << "if ("; - dump_sigspec_rhs(cell->getPort(ID(EN))); + dump_sigspec_rhs(cell->getPort(ID::EN)); f << ") {\n"; inc_indent(); } @@ -890,8 +1125,8 @@ struct CxxrtlWorker { inc_indent(); if (writable_memories[memory]) { std::string addr_temp = fresh_temporary(); - f << indent << "const value<" << cell->getPort(ID(ADDR)).size() << "> &" << addr_temp << " = "; - dump_sigspec_rhs(cell->getPort(ID(ADDR))); + f << indent << "const value<" << cell->getPort(ID::ADDR).size() << "> &" << addr_temp << " = "; + dump_sigspec_rhs(cell->getPort(ID::ADDR)); f << ";\n"; std::string lhs_temp = fresh_temporary(); f << indent << "value<" << memory->width << "> " << lhs_temp << " = " @@ -899,35 +1134,35 @@ struct CxxrtlWorker { std::vector<const RTLIL::Cell*> memwr_cells(transparent_for[cell].begin(), transparent_for[cell].end()); std::sort(memwr_cells.begin(), memwr_cells.end(), [](const RTLIL::Cell *a, const RTLIL::Cell *b) { - return a->getParam(ID(PRIORITY)).as_int() < b->getParam(ID(PRIORITY)).as_int(); + return a->getParam(ID::PRIORITY).as_int() < b->getParam(ID::PRIORITY).as_int(); }); for (auto memwr_cell : memwr_cells) { f << indent << "if (" << addr_temp << " == "; - dump_sigspec_rhs(memwr_cell->getPort(ID(ADDR))); + dump_sigspec_rhs(memwr_cell->getPort(ID::ADDR)); f << ") {\n"; inc_indent(); f << indent << lhs_temp << " = " << lhs_temp; f << ".update("; - dump_sigspec_rhs(memwr_cell->getPort(ID(DATA))); + dump_sigspec_rhs(memwr_cell->getPort(ID::DATA)); f << ", "; - dump_sigspec_rhs(memwr_cell->getPort(ID(EN))); + dump_sigspec_rhs(memwr_cell->getPort(ID::EN)); f << ");\n"; dec_indent(); f << indent << "}\n"; } f << indent; - dump_sigspec_lhs(cell->getPort(ID(DATA))); + dump_sigspec_lhs(cell->getPort(ID::DATA)); f << " = " << lhs_temp << ";\n"; } else { f << indent; - dump_sigspec_lhs(cell->getPort(ID(DATA))); + dump_sigspec_lhs(cell->getPort(ID::DATA)); f << " = " << mangle(memory) << "[" << valid_index_temp << ".index];\n"; } dec_indent(); f << indent << "} else {\n"; inc_indent(); f << indent; - dump_sigspec_lhs(cell->getPort(ID(DATA))); + dump_sigspec_lhs(cell->getPort(ID::DATA)); f << " = value<" << memory->width << "> {};\n"; dec_indent(); f << indent << "}\n"; @@ -944,14 +1179,14 @@ struct CxxrtlWorker { f << indent << "if (" << valid_index_temp << ".valid) {\n"; inc_indent(); f << indent << mangle(memory) << ".update(" << valid_index_temp << ".index, "; - dump_sigspec_rhs(cell->getPort(ID(DATA))); + dump_sigspec_rhs(cell->getPort(ID::DATA)); f << ", "; - dump_sigspec_rhs(cell->getPort(ID(EN))); - f << ", " << cell->getParam(ID(PRIORITY)).as_int() << ");\n"; + dump_sigspec_rhs(cell->getPort(ID::EN)); + f << ", " << cell->getParam(ID::PRIORITY).as_int() << ");\n"; dec_indent(); f << indent << "}\n"; } - if (cell->getParam(ID(CLK_ENABLE)).as_bool()) { + if (cell->getParam(ID::CLK_ENABLE).as_bool()) { dec_indent(); f << indent << "}\n"; } @@ -961,27 +1196,71 @@ struct CxxrtlWorker { // User cells } else { log_assert(cell->known()); + const char *access = is_cxxrtl_blackbox_cell(cell) ? "->" : "."; for (auto conn : cell->connections()) - if (cell->input(conn.first)) { - f << indent << mangle(cell) << "." << mangle_wire_name(conn.first) << ".next = "; + if (cell->input(conn.first) && !cell->output(conn.first)) { + f << indent << mangle(cell) << access << mangle_wire_name(conn.first) << " = "; + dump_sigspec_rhs(conn.second); + f << ";\n"; + if (getenv("CXXRTL_VOID_MY_WARRANTY")) { + // Until we have proper clock tree detection, this really awful hack that opportunistically + // propagates prev_* values for clocks can be used to estimate how much faster a design could + // be if only one clock edge was simulated by replacing: + // top.p_clk = value<1>{0u}; top.step(); + // top.p_clk = value<1>{1u}; top.step(); + // with: + // top.prev_p_clk = value<1>{0u}; top.p_clk = value<1>{1u}; top.step(); + // Don't rely on this; it will be removed without warning. + RTLIL::Module *cell_module = cell->module->design->module(cell->type); + if (cell_module != nullptr && cell_module->wire(conn.first) && conn.second.is_wire()) { + RTLIL::Wire *cell_module_wire = cell_module->wire(conn.first); + if (edge_wires[conn.second.as_wire()] && edge_wires[cell_module_wire]) { + f << indent << mangle(cell) << access << "prev_" << mangle(cell_module_wire) << " = "; + f << "prev_" << mangle(conn.second.as_wire()) << ";\n"; + } + } + } + } else if (cell->input(conn.first)) { + f << indent << mangle(cell) << access << mangle_wire_name(conn.first) << ".next = "; dump_sigspec_rhs(conn.second); f << ";\n"; } - f << indent << mangle(cell) << ".eval();\n"; - for (auto conn : cell->connections()) { - if (conn.second.is_wire()) { - RTLIL::Wire *wire = conn.second.as_wire(); - if (elided_wires.count(wire) && cell_wire_defs[cell].count(wire)) - continue; - } - if (cell->output(conn.first)) { - if (conn.second.empty()) - continue; // ignore disconnected ports - f << indent; - dump_sigspec_lhs(conn.second); - f << " = " << mangle(cell) << "." << mangle_wire_name(conn.first) << ".curr;\n"; + auto assign_from_outputs = [&](bool cell_converged) { + for (auto conn : cell->connections()) { + if (cell->output(conn.first)) { + if (conn.second.empty()) + continue; // ignore disconnected ports + if (is_cxxrtl_sync_port(cell, conn.first)) + continue; // fully sync ports are handled in CELL_SYNC nodes + f << indent; + dump_sigspec_lhs(conn.second); + f << " = " << mangle(cell) << access << mangle_wire_name(conn.first); + // Similarly to how there is no purpose to buffering cell inputs, there is also no purpose to buffering + // combinatorial cell outputs in case the cell converges within one cycle. (To convince yourself that + // this optimization is valid, consider that, since the cell converged within one cycle, it would not + // have any buffered wires if they were not output ports. Imagine inlining the cell's eval() function, + // and consider the fate of the localized wires that used to be output ports.) + // + // Unlike cell inputs (which are never buffered), it is not possible to know apriori whether the cell + // (which may be late bound) will converge immediately. Because of this, the choice between using .curr + // (appropriate for buffered outputs) and .next (appropriate for unbuffered outputs) is made at runtime. + if (cell_converged && is_cxxrtl_comb_port(cell, conn.first)) + f << ".next;\n"; + else + f << ".curr;\n"; + } } - } + }; + f << indent << "if (" << mangle(cell) << access << "eval()) {\n"; + inc_indent(); + assign_from_outputs(/*cell_converged=*/true); + dec_indent(); + f << indent << "} else {\n"; + inc_indent(); + f << indent << "converged = false;\n"; + assign_from_outputs(/*cell_converged=*/false); + dec_indent(); + f << indent << "}\n"; } } @@ -1076,24 +1355,34 @@ struct CxxrtlWorker { log_assert(proc->root_case.attributes.empty()); dump_case_rule(&proc->root_case); for (auto sync : proc->syncs) { - RTLIL::SigBit sync_bit = sync->signal[0]; - sync_bit = sigmaps[sync_bit.wire->module](sync_bit); + RTLIL::SigBit sync_bit; + if (!sync->signal.empty()) { + sync_bit = sync->signal[0]; + sync_bit = sigmaps[sync_bit.wire->module](sync_bit); + } pool<std::string> events; switch (sync->type) { case RTLIL::STp: + log_assert(sync_bit.wire != nullptr); events.insert("posedge_" + mangle(sync_bit)); break; case RTLIL::STn: + log_assert(sync_bit.wire != nullptr); events.insert("negedge_" + mangle(sync_bit)); + break; case RTLIL::STe: + log_assert(sync_bit.wire != nullptr); events.insert("posedge_" + mangle(sync_bit)); events.insert("negedge_" + mangle(sync_bit)); break; + case RTLIL::STa: + events.insert("true"); + break; + case RTLIL::ST0: case RTLIL::ST1: - case RTLIL::STa: case RTLIL::STg: case RTLIL::STi: log_assert(false); @@ -1117,35 +1406,66 @@ struct CxxrtlWorker { } } - void dump_wire(const RTLIL::Wire *wire, bool is_local) + void dump_wire(const RTLIL::Wire *wire, bool is_local_context) { if (elided_wires.count(wire)) return; + if (localized_wires.count(wire) != is_local_context) + return; - if (is_local) { - if (!localized_wires.count(wire)) - return; - + if (is_local_context) { dump_attrs(wire); f << indent << "value<" << wire->width << "> " << mangle(wire) << ";\n"; } else { - if (localized_wires.count(wire)) - return; + std::string width; + if (wire->module->has_attribute(ID(cxxrtl.blackbox)) && wire->has_attribute(ID(cxxrtl.width))) { + width = wire->get_string_attribute(ID(cxxrtl.width)); + } else { + width = std::to_string(wire->width); + } dump_attrs(wire); - f << indent << "wire<" << wire->width << "> " << mangle(wire); - if (wire->attributes.count(ID(init))) { + f << indent << (is_input_wire(wire) ? "value" : "wire") << "<" << width << "> " << mangle(wire); + if (wire->has_attribute(ID::init)) { f << " "; - dump_const_init(wire->attributes.at(ID(init))); + dump_const_init(wire->attributes.at(ID::init)); } f << ";\n"; - if (sync_wires[wire]) { - for (auto sync_type : sync_types) { - if (sync_type.first.wire == wire) { - if (sync_type.second != RTLIL::STn) - f << indent << "bool posedge_" << mangle(sync_type.first) << " = false;\n"; - if (sync_type.second != RTLIL::STp) - f << indent << "bool negedge_" << mangle(sync_type.first) << " = false;\n"; + if (edge_wires[wire]) { + if (is_input_wire(wire)) { + f << indent << "value<" << width << "> prev_" << mangle(wire); + if (wire->has_attribute(ID::init)) { + f << " "; + dump_const_init(wire->attributes.at(ID::init)); + } + f << ";\n"; + } + for (auto edge_type : edge_types) { + if (edge_type.first.wire == wire) { + std::string prev, next; + if (is_input_wire(wire)) { + prev = "prev_" + mangle(edge_type.first.wire); + next = mangle(edge_type.first.wire); + } else { + prev = mangle(edge_type.first.wire) + ".curr"; + next = mangle(edge_type.first.wire) + ".next"; + } + prev += ".slice<" + std::to_string(edge_type.first.offset) + ">().val()"; + next += ".slice<" + std::to_string(edge_type.first.offset) + ">().val()"; + if (edge_type.second != RTLIL::STn) { + f << indent << "bool posedge_" << mangle(edge_type.first) << "() const {\n"; + inc_indent(); + f << indent << "return !" << prev << " && " << next << ";\n"; + dec_indent(); + f << indent << "}\n"; + } + if (edge_type.second != RTLIL::STp) { + f << indent << "bool negedge_" << mangle(edge_type.first) << "() const {\n"; + inc_indent(); + f << indent << "return " << prev << " && !" << next << ";\n"; + dec_indent(); + f << indent << "}\n"; + } } } } @@ -1156,18 +1476,17 @@ struct CxxrtlWorker { { vector<const RTLIL::Cell*> init_cells; for (auto cell : module->cells()) - if (cell->type == ID($meminit) && cell->getParam(ID(MEMID)).decode_string() == memory->name.str()) + if (cell->type == ID($meminit) && cell->getParam(ID::MEMID).decode_string() == memory->name.str()) init_cells.push_back(cell); std::sort(init_cells.begin(), init_cells.end(), [](const RTLIL::Cell *a, const RTLIL::Cell *b) { - int a_addr = a->getPort(ID(ADDR)).as_int(), b_addr = b->getPort(ID(ADDR)).as_int(); - int a_prio = a->getParam(ID(PRIORITY)).as_int(), b_prio = b->getParam(ID(PRIORITY)).as_int(); + int a_addr = a->getPort(ID::ADDR).as_int(), b_addr = b->getPort(ID::ADDR).as_int(); + int a_prio = a->getParam(ID::PRIORITY).as_int(), b_prio = b->getParam(ID::PRIORITY).as_int(); return a_prio > b_prio || (a_prio == b_prio && a_addr < b_addr); }); dump_attrs(memory); - f << indent << (writable_memories[memory] ? "" : "const ") - << "memory<" << memory->width << "> " << mangle(memory) + f << indent << "memory<" << memory->width << "> " << mangle(memory) << " { " << memory->size << "u"; if (init_cells.empty()) { f << " };\n"; @@ -1176,11 +1495,11 @@ struct CxxrtlWorker { inc_indent(); for (auto cell : init_cells) { dump_attrs(cell); - RTLIL::Const data = cell->getPort(ID(DATA)).as_const(); - size_t width = cell->getParam(ID(WIDTH)).as_int(); - size_t words = cell->getParam(ID(WORDS)).as_int(); + RTLIL::Const data = cell->getPort(ID::DATA).as_const(); + size_t width = cell->getParam(ID::WIDTH).as_int(); + size_t words = cell->getParam(ID::WORDS).as_int(); f << indent << "memory<" << memory->width << ">::init<" << words << "> { " - << stringf("%#x", cell->getPort(ID(ADDR)).as_int()) << ", {"; + << stringf("%#x", cell->getPort(ID::ADDR).as_int()) << ", {"; inc_indent(); for (size_t n = 0; n < words; n++) { if (n % 4 == 0) @@ -1198,140 +1517,235 @@ struct CxxrtlWorker { } } - void dump_module_intf(RTLIL::Module *module) + void dump_eval_method(RTLIL::Module *module) { - dump_attrs(module); - f << "struct " << mangle(module) << " : public module {\n"; inc_indent(); - for (auto wire : module->wires()) - dump_wire(wire, /*is_local=*/false); - f << "\n"; - bool has_memories = false; - for (auto memory : module->memories) { - dump_memory(module, memory.second); - has_memories = true; - } - if (has_memories) - f << "\n"; - bool has_cells = false; - for (auto cell : module->cells()) { - if (is_internal_cell(cell->type)) - continue; - f << indent << mangle_module_name(cell->type) << " " << mangle(cell) << ";\n"; - has_cells = true; + f << indent << "bool converged = " << (eval_converges.at(module) ? "true" : "false") << ";\n"; + if (!module->get_bool_attribute(ID(cxxrtl.blackbox))) { + for (auto wire : module->wires()) { + if (edge_wires[wire]) { + for (auto edge_type : edge_types) { + if (edge_type.first.wire == wire) { + if (edge_type.second != RTLIL::STn) { + f << indent << "bool posedge_" << mangle(edge_type.first) << " = "; + f << "this->posedge_" << mangle(edge_type.first) << "();\n"; + } + if (edge_type.second != RTLIL::STp) { + f << indent << "bool negedge_" << mangle(edge_type.first) << " = "; + f << "this->negedge_" << mangle(edge_type.first) << "();\n"; + } + } + } + } + } + for (auto wire : module->wires()) + dump_wire(wire, /*is_local_context=*/true); + for (auto node : schedule[module]) { + switch (node.type) { + case FlowGraph::Node::Type::CONNECT: + dump_connect(node.connect); + break; + case FlowGraph::Node::Type::CELL_SYNC: + dump_cell_sync(node.cell); + break; + case FlowGraph::Node::Type::CELL_EVAL: + dump_cell_eval(node.cell); + break; + case FlowGraph::Node::Type::PROCESS: + dump_process(node.process); + break; + } + } } - if (has_cells) - f << "\n"; - f << indent << "void eval() override;\n"; - f << indent << "bool commit() override;\n"; + f << indent << "return converged;\n"; dec_indent(); - f << "}; // struct " << mangle(module) << "\n"; - f << "\n"; } - void dump_module_impl(RTLIL::Module *module) + void dump_commit_method(RTLIL::Module *module) { - f << "void " << mangle(module) << "::eval() {\n"; inc_indent(); - for (auto wire : module->wires()) - dump_wire(wire, /*is_local=*/true); - for (auto node : schedule[module]) { - switch (node.type) { - case FlowGraph::Node::Type::CONNECT: - dump_connect(node.connect); - break; - case FlowGraph::Node::Type::CELL: - dump_cell(node.cell); - break; - case FlowGraph::Node::Type::PROCESS: - dump_process(node.process); - break; + f << indent << "bool changed = false;\n"; + for (auto wire : module->wires()) { + if (elided_wires.count(wire) || localized_wires.count(wire)) + continue; + if (is_input_wire(wire)) { + if (edge_wires[wire]) + f << indent << "prev_" << mangle(wire) << " = " << mangle(wire) << ";\n"; + continue; } + if (!module->get_bool_attribute(ID(cxxrtl.blackbox)) || wire->port_id != 0) + f << indent << "changed |= " << mangle(wire) << ".commit();\n"; } - for (auto sync_type : sync_types) { - if (sync_type.first.wire->module == module) { - if (sync_type.second != RTLIL::STn) - f << indent << "posedge_" << mangle(sync_type.first) << " = false;\n"; - if (sync_type.second != RTLIL::STp) - f << indent << "negedge_" << mangle(sync_type.first) << " = false;\n"; + if (!module->get_bool_attribute(ID(cxxrtl.blackbox))) { + for (auto memory : module->memories) { + if (!writable_memories[memory.second]) + continue; + f << indent << "changed |= " << mangle(memory.second) << ".commit();\n"; + } + for (auto cell : module->cells()) { + if (is_internal_cell(cell->type)) + continue; + const char *access = is_cxxrtl_blackbox_cell(cell) ? "->" : "."; + f << indent << "changed |= " << mangle(cell) << access << "commit();\n"; } } + f << indent << "return changed;\n"; dec_indent(); - f << "}\n"; - f << "\n"; + } - f << "bool " << mangle(module) << "::commit() {\n"; + void dump_metadata_map(const dict<RTLIL::IdString, RTLIL::Const> &metadata_map) + { + if (metadata_map.empty()) { + f << "metadata_map()"; + return; + } + f << "metadata_map({\n"; inc_indent(); - f << indent << "bool changed = false;\n"; - for (auto wire : module->wires()) { - if (elided_wires.count(wire) || localized_wires.count(wire)) + for (auto metadata_item : metadata_map) { + if (!metadata_item.first.begins_with("\\")) continue; - if (sync_wires[wire]) { - std::string wire_prev = mangle(wire) + "_prev"; - std::string wire_curr = mangle(wire) + ".curr"; - std::string wire_edge = mangle(wire) + "_edge"; - f << indent << "value<" << wire->width << "> " << wire_prev << " = " << wire_curr << ";\n"; - f << indent << "if (" << mangle(wire) << ".commit()) {\n"; - inc_indent(); - f << indent << "value<" << wire->width << "> " << wire_edge << " = " - << wire_prev << ".bit_xor(" << wire_curr << ");\n"; - for (auto sync_type : sync_types) { - if (sync_type.first.wire != wire) - continue; - if (sync_type.second != RTLIL::STn) { - f << indent << "if (" << wire_edge << ".slice<" << sync_type.first.offset << ">().val() && " - << wire_curr << ".slice<" << sync_type.first.offset << ">().val())\n"; - inc_indent(); - f << indent << "posedge_" << mangle(sync_type.first) << " = true;\n"; - dec_indent(); - } - if (sync_type.second != RTLIL::STp) { - f << indent << "if (" << wire_edge << ".slice<" << sync_type.first.offset << ">().val() && " - << "!" << wire_curr << ".slice<" << sync_type.first.offset << ">().val())\n"; - inc_indent(); - f << indent << "negedge_" << mangle(sync_type.first) << " = true;\n"; - dec_indent(); - } - f << indent << "changed = true;\n"; - } - dec_indent(); - f << indent << "}\n"; + f << indent << "{ " << escape_cxx_string(metadata_item.first.str().substr(1)) << ", "; + if (metadata_item.second.flags & RTLIL::CONST_FLAG_REAL) { + f << std::showpoint << std::stod(metadata_item.second.decode_string()) << std::noshowpoint; + } else if (metadata_item.second.flags & RTLIL::CONST_FLAG_STRING) { + f << escape_cxx_string(metadata_item.second.decode_string()); } else { - f << indent << "changed |= " << mangle(wire) << ".commit();\n"; + f << metadata_item.second.as_int(/*is_signed=*/metadata_item.second.flags & RTLIL::CONST_FLAG_SIGNED); + if (!(metadata_item.second.flags & RTLIL::CONST_FLAG_SIGNED)) + f << "u"; } + f << " },\n"; } - for (auto memory : module->memories) { - if (!writable_memories[memory.second]) - continue; - f << indent << "changed |= " << mangle(memory.second) << ".commit();\n"; - } - for (auto cell : module->cells()) { - if (is_internal_cell(cell->type)) - continue; - f << indent << "changed |= " << mangle(cell) << ".commit();\n"; - } - f << indent << "return changed;\n"; dec_indent(); - f << "}\n"; + f << indent << "})"; + } + + void dump_module_intf(RTLIL::Module *module) + { + dump_attrs(module); + if (module->get_bool_attribute(ID(cxxrtl.blackbox))) { + if (module->has_attribute(ID(cxxrtl.template))) + f << indent << "template" << template_params(module, /*is_decl=*/true) << "\n"; + f << indent << "struct " << mangle(module) << " : public module {\n"; + inc_indent(); + for (auto wire : module->wires()) { + if (wire->port_id != 0) + dump_wire(wire, /*is_local_context=*/false); + } + f << "\n"; + f << indent << "bool eval() override {\n"; + dump_eval_method(module); + f << indent << "}\n"; + f << "\n"; + f << indent << "bool commit() override {\n"; + dump_commit_method(module); + f << indent << "}\n"; + f << "\n"; + f << indent << "static std::unique_ptr<" << mangle(module); + f << template_params(module, /*is_decl=*/false) << "> "; + f << "create(std::string name, metadata_map parameters, metadata_map attributes);\n"; + dec_indent(); + f << indent << "}; // struct " << mangle(module) << "\n"; + f << "\n"; + if (blackbox_specializations.count(module)) { + // If templated black boxes are used, the constructor of any module which includes the black box cell + // (which calls the declared but not defined in the generated code `create` function) may only be used + // if (a) the create function is defined in the same translation unit, or (b) the create function has + // a forward-declared explicit specialization. + // + // Option (b) makes it possible to have the generated code and the black box implementation in different + // translation units, which is convenient. Of course, its downside is that black boxes must predefine + // a specialization for every combination of parameters the generated code may use; but since the main + // purpose of templated black boxes is abstracting over datapath width, it is expected that there would + // be very few such combinations anyway. + for (auto specialization : blackbox_specializations[module]) { + f << indent << "template<>\n"; + f << indent << "std::unique_ptr<" << mangle(module) << specialization << "> "; + f << mangle(module) << specialization << "::"; + f << "create(std::string name, metadata_map parameters, metadata_map attributes);\n"; + f << "\n"; + } + } + } else { + f << indent << "struct " << mangle(module) << " : public module {\n"; + inc_indent(); + for (auto wire : module->wires()) + dump_wire(wire, /*is_local_context=*/false); + f << "\n"; + bool has_memories = false; + for (auto memory : module->memories) { + dump_memory(module, memory.second); + has_memories = true; + } + if (has_memories) + f << "\n"; + bool has_cells = false; + for (auto cell : module->cells()) { + if (is_internal_cell(cell->type)) + continue; + dump_attrs(cell); + RTLIL::Module *cell_module = module->design->module(cell->type); + log_assert(cell_module != nullptr); + if (cell_module->get_bool_attribute(ID(cxxrtl.blackbox))) { + f << indent << "std::unique_ptr<" << mangle(cell_module) << template_args(cell) << "> "; + f << mangle(cell) << " = " << mangle(cell_module) << template_args(cell); + f << "::create(" << escape_cxx_string(cell->name.str()) << ", "; + dump_metadata_map(cell->parameters); + f << ", "; + dump_metadata_map(cell->attributes); + f << ");\n"; + } else { + f << indent << mangle(cell_module) << " " << mangle(cell) << ";\n"; + } + has_cells = true; + } + if (has_cells) + f << "\n"; + f << indent << "bool eval() override;\n"; + f << indent << "bool commit() override;\n"; + dec_indent(); + f << indent << "}; // struct " << mangle(module) << "\n"; + f << "\n"; + } + } + + void dump_module_impl(RTLIL::Module *module) + { + if (module->get_bool_attribute(ID(cxxrtl.blackbox))) + return; + f << indent << "bool " << mangle(module) << "::eval() {\n"; + dump_eval_method(module); + f << indent << "}\n"; + f << "\n"; + f << indent << "bool " << mangle(module) << "::commit() {\n"; + dump_commit_method(module); + f << indent << "}\n"; f << "\n"; } void dump_design(RTLIL::Design *design) { + std::vector<RTLIL::Module*> modules; TopoSort<RTLIL::Module*> topo_design; for (auto module : design->modules()) { - if (module->get_blackbox_attribute() || !design->selected_module(module)) + if (!design->selected_module(module)) + continue; + if (module->get_bool_attribute(ID(cxxrtl.blackbox))) + modules.push_back(module); // cxxrtl blackboxes first + if (module->get_blackbox_attribute() || module->get_bool_attribute(ID(cxxrtl.blackbox))) continue; - topo_design.node(module); + topo_design.node(module); for (auto cell : module->cells()) { - if (is_internal_cell(cell->type)) + if (is_internal_cell(cell->type) || is_cxxrtl_blackbox_cell(cell)) continue; - log_assert(design->has(cell->type)); - topo_design.edge(design->module(cell->type), module); + RTLIL::Module *cell_module = design->module(cell->type); + log_assert(cell_module != nullptr); + topo_design.edge(cell_module, module); } } log_assert(topo_design.sort()); + modules.insert(modules.end(), topo_design.sorted.begin(), topo_design.sorted.end()); if (split_intf) { // The only thing more depraved than include guards, is mangling filenames to turn them into include guards. @@ -1347,11 +1761,8 @@ struct CxxrtlWorker { f << "\n"; f << "namespace " << design_ns << " {\n"; f << "\n"; - for (auto module : topo_design.sorted) { - if (!design->selected_module(module)) - continue; + for (auto module : modules) dump_module_intf(module); - } f << "} // namespace " << design_ns << "\n"; f << "\n"; f << "#endif\n"; @@ -1367,9 +1778,7 @@ struct CxxrtlWorker { f << "\n"; f << "namespace " << design_ns << " {\n"; f << "\n"; - for (auto module : topo_design.sorted) { - if (!design->selected_module(module)) - continue; + for (auto module : modules) { if (!split_intf) dump_module_intf(module); dump_module_impl(module); @@ -1393,24 +1802,59 @@ struct CxxrtlWorker { log_assert(type == RTLIL::STp || type == RTLIL::STn || type == RTLIL::STe); RTLIL::SigBit sigbit = signal[0]; - if (!sync_types.count(sigbit)) - sync_types[sigbit] = type; - else if (sync_types[sigbit] != type) - sync_types[sigbit] = RTLIL::STe; - sync_wires.insert(signal.as_wire()); + if (!edge_types.count(sigbit)) + edge_types[sigbit] = type; + else if (edge_types[sigbit] != type) + edge_types[sigbit] = RTLIL::STe; + edge_wires.insert(signal.as_wire()); } void analyze_design(RTLIL::Design *design) { bool has_feedback_arcs = false; + bool has_buffered_wires = false; + for (auto module : design->modules()) { if (!design->selected_module(module)) continue; - FlowGraph flow; SigMap &sigmap = sigmaps[module]; sigmap.set(module); + if (module->get_bool_attribute(ID(cxxrtl.blackbox))) { + for (auto port : module->ports) { + RTLIL::Wire *wire = module->wire(port); + if (wire->has_attribute(ID(cxxrtl.edge))) { + RTLIL::Const edge_attr = wire->attributes[ID(cxxrtl.edge)]; + if (!(edge_attr.flags & RTLIL::CONST_FLAG_STRING) || (int)edge_attr.decode_string().size() != GetSize(wire)) + log_cmd_error("Attribute `cxxrtl.edge' of port `%s.%s' is not a string with one character per bit.\n", + log_id(module), log_signal(wire)); + + std::string edges = wire->get_string_attribute(ID(cxxrtl.edge)); + for (int i = 0; i < GetSize(wire); i++) { + RTLIL::SigSpec wire_sig = wire; + switch (edges[i]) { + case '-': break; + case 'p': register_edge_signal(sigmap, wire_sig[i], RTLIL::STp); break; + case 'n': register_edge_signal(sigmap, wire_sig[i], RTLIL::STn); break; + case 'a': register_edge_signal(sigmap, wire_sig[i], RTLIL::STe); break; + default: + log_cmd_error("Attribute `cxxrtl.edge' of port `%s.%s' contains specifiers " + "other than '-', 'p', 'n', or 'a'.\n", + log_id(module), log_signal(wire)); + } + } + } + } + + // Black boxes converge by default, since their implementations are quite unlikely to require + // internal propagation of comb signals. + eval_converges[module] = true; + continue; + } + + FlowGraph flow; + for (auto conn : module->connections()) flow.add_node(conn); @@ -1418,32 +1862,44 @@ struct CxxrtlWorker { dict<std::pair<RTLIL::SigBit, const RTLIL::Memory*>, pool<const RTLIL::Cell*>> memwr_per_domain; for (auto cell : module->cells()) { + if (!cell->known()) + log_cmd_error("Unknown cell `%s'.\n", log_id(cell->type)); + + RTLIL::Module *cell_module = design->module(cell->type); + if (cell_module && + cell_module->get_blackbox_attribute() && + !cell_module->get_bool_attribute(ID(cxxrtl.blackbox))) + log_cmd_error("External blackbox cell `%s' is not marked as a CXXRTL blackbox.\n", log_id(cell->type)); + + if (cell_module && + cell_module->get_bool_attribute(ID(cxxrtl.blackbox)) && + cell_module->get_bool_attribute(ID(cxxrtl.template))) + blackbox_specializations[cell_module].insert(template_args(cell)); + FlowGraph::Node *node = flow.add_node(cell); // Various DFF cells are treated like posedge/negedge processes, see above for details. if (cell->type.in(ID($dff), ID($dffe), ID($adff), ID($dffsr))) { - if (cell->getPort(ID(CLK)).is_wire()) - register_edge_signal(sigmap, cell->getPort(ID(CLK)), - cell->parameters[ID(CLK_POLARITY)].as_bool() ? RTLIL::STp : RTLIL::STn); - // The $adff and $dffsr cells are level-sensitive, not edge-sensitive (in spite of the fact that they - // are inferred from an edge-sensitive Verilog process) and do not correspond to an edge-type sync rule. + if (cell->getPort(ID::CLK).is_wire()) + register_edge_signal(sigmap, cell->getPort(ID::CLK), + cell->parameters[ID::CLK_POLARITY].as_bool() ? RTLIL::STp : RTLIL::STn); } // Similar for memory port cells. if (cell->type.in(ID($memrd), ID($memwr))) { - if (cell->getParam(ID(CLK_ENABLE)).as_bool()) { - if (cell->getPort(ID(CLK)).is_wire()) - register_edge_signal(sigmap, cell->getPort(ID(CLK)), - cell->parameters[ID(CLK_POLARITY)].as_bool() ? RTLIL::STp : RTLIL::STn); + if (cell->getParam(ID::CLK_ENABLE).as_bool()) { + if (cell->getPort(ID::CLK).is_wire()) + register_edge_signal(sigmap, cell->getPort(ID::CLK), + cell->parameters[ID::CLK_POLARITY].as_bool() ? RTLIL::STp : RTLIL::STn); } memrw_cell_nodes[cell] = node; } // Optimize access to read-only memories. if (cell->type == ID($memwr)) - writable_memories.insert(module->memories[cell->getParam(ID(MEMID)).decode_string()]); + writable_memories.insert(module->memories[cell->getParam(ID::MEMID).decode_string()]); // Collect groups of memory write ports in the same domain. - if (cell->type == ID($memwr) && cell->getParam(ID(CLK_ENABLE)).as_bool() && cell->getPort(ID(CLK)).is_wire()) { - RTLIL::SigBit clk_bit = sigmap(cell->getPort(ID(CLK)))[0]; - const RTLIL::Memory *memory = module->memories[cell->getParam(ID(MEMID)).decode_string()]; + if (cell->type == ID($memwr) && cell->getParam(ID::CLK_ENABLE).as_bool() && cell->getPort(ID::CLK).is_wire()) { + RTLIL::SigBit clk_bit = sigmap(cell->getPort(ID::CLK))[0]; + const RTLIL::Memory *memory = module->memories[cell->getParam(ID::MEMID).decode_string()]; memwr_per_domain[{clk_bit, memory}].insert(cell); } // Handling of packed memories is delegated to the `memory_unpack` pass, so we can rely on the presence @@ -1453,17 +1909,17 @@ struct CxxrtlWorker { } for (auto cell : module->cells()) { // Collect groups of memory write ports read by every transparent read port. - if (cell->type == ID($memrd) && cell->getParam(ID(CLK_ENABLE)).as_bool() && cell->getPort(ID(CLK)).is_wire() && - cell->getParam(ID(TRANSPARENT)).as_bool()) { - RTLIL::SigBit clk_bit = sigmap(cell->getPort(ID(CLK)))[0]; - const RTLIL::Memory *memory = module->memories[cell->getParam(ID(MEMID)).decode_string()]; + if (cell->type == ID($memrd) && cell->getParam(ID::CLK_ENABLE).as_bool() && cell->getPort(ID::CLK).is_wire() && + cell->getParam(ID::TRANSPARENT).as_bool()) { + RTLIL::SigBit clk_bit = sigmap(cell->getPort(ID::CLK))[0]; + const RTLIL::Memory *memory = module->memories[cell->getParam(ID::MEMID).decode_string()]; for (auto memwr_cell : memwr_per_domain[{clk_bit, memory}]) { transparent_for[cell].insert(memwr_cell); // Our implementation of transparent $memrd cells reads \EN, \ADDR and \DATA from every $memwr cell // in the same domain, which isn't directly visible in the netlist. Add these uses explicitly. - flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID(EN))); - flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID(ADDR))); - flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID(DATA))); + flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID::EN)); + flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID::ADDR)); + flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID::DATA)); } } } @@ -1499,26 +1955,18 @@ struct CxxrtlWorker { for (auto wire : module->wires()) { if (!flow.is_elidable(wire)) continue; if (wire->port_id != 0) continue; - if (wire->get_bool_attribute(ID(keep))) continue; + if (wire->get_bool_attribute(ID::keep)) continue; if (wire->name.begins_with("$") && !elide_internal) continue; if (wire->name.begins_with("\\") && !elide_public) continue; - if (sync_wires[wire]) continue; - log_assert(flow.wire_defs[wire].size() == 1); - elided_wires[wire] = **flow.wire_defs[wire].begin(); + if (edge_wires[wire]) continue; + log_assert(flow.wire_comb_defs[wire].size() == 1); + elided_wires[wire] = **flow.wire_comb_defs[wire].begin(); } - // Elided wires that are outputs of internal cells are always connected to a well known port (Y). - // For user cells, there could be multiple of them, and we need a way to look up the port name - // knowing only the wire. - for (auto cell : module->cells()) - for (auto conn : cell->connections()) - if (conn.second.is_wire() && elided_wires.count(conn.second.as_wire())) - cell_wire_defs[cell][conn.second.as_wire()] = conn.first; - dict<FlowGraph::Node*, pool<const RTLIL::Wire*>, hash_ptr_ops> node_defs; - for (auto wire_def : flow.wire_defs) - for (auto node : wire_def.second) - node_defs[node].insert(wire_def.first); + for (auto wire_comb_def : flow.wire_comb_defs) + for (auto node : wire_comb_def.second) + node_defs[node].insert(wire_comb_def.first); Scheduler<FlowGraph::Node> scheduler; dict<FlowGraph::Node*, Scheduler<FlowGraph::Node>::Vertex*, hash_ptr_ops> node_map; @@ -1557,26 +2005,57 @@ struct CxxrtlWorker { if (!feedback_wires.empty()) { has_feedback_arcs = true; - log("Module `%s` contains feedback arcs through wires:\n", module->name.c_str()); - for (auto wire : feedback_wires) { - log(" %s\n", wire->name.c_str()); - } + log("Module `%s' contains feedback arcs through wires:\n", log_id(module)); + for (auto wire : feedback_wires) + log(" %s\n", log_id(wire)); } for (auto wire : module->wires()) { if (feedback_wires[wire]) continue; if (wire->port_id != 0) continue; - if (wire->get_bool_attribute(ID(keep))) continue; + if (wire->get_bool_attribute(ID::keep)) continue; if (wire->name.begins_with("$") && !localize_internal) continue; if (wire->name.begins_with("\\") && !localize_public) continue; - if (sync_wires[wire]) continue; - // Outputs of FF/$memrd cells and LHS of sync actions do not end up in defs. - if (flow.wire_defs[wire].size() != 1) continue; + if (edge_wires[wire]) continue; + if (flow.wire_sync_defs.count(wire) > 0) continue; localized_wires.insert(wire); } + + // For maximum performance, the state of the simulation (which is the same as the set of its double buffered + // wires, since using a singly buffered wire for any kind of state introduces a race condition) should contain + // no wires attached to combinatorial outputs. Feedback wires, by definition, make that impossible. However, + // it is possible that a design with no feedback arcs would end up with doubly buffered wires in such cases + // as a wire with multiple drivers where one of them is combinatorial and the other is synchronous. Such designs + // also require more than one delta cycle to converge. + pool<const RTLIL::Wire*> buffered_wires; + for (auto wire : module->wires()) { + if (flow.wire_comb_defs[wire].size() > 0 && !elided_wires.count(wire) && !localized_wires[wire]) { + if (!feedback_wires[wire]) + buffered_wires.insert(wire); + } + } + if (!buffered_wires.empty()) { + has_buffered_wires = true; + log("Module `%s' contains buffered combinatorial wires:\n", log_id(module)); + for (auto wire : buffered_wires) + log(" %s\n", log_id(wire)); + } + + eval_converges[module] = feedback_wires.empty() && buffered_wires.empty(); } - if (has_feedback_arcs) { - log("Feedback arcs require delta cycles during evaluation.\n"); + if (has_feedback_arcs || has_buffered_wires) { + // Although both non-feedback buffered combinatorial wires and apparent feedback wires may be eliminated + // by optimizing the design, if after `opt_clean -purge` there are any feedback wires remaining, it is very + // likely that these feedback wires are indicative of a true logic loop, so they get emphasized in the message. + const char *why_pessimistic = nullptr; + if (has_feedback_arcs) + why_pessimistic = "feedback wires"; + else if (has_buffered_wires) + why_pessimistic = "buffered combinatorial wires"; + log("\n"); + log_warning("Design contains %s, which require delta cycles during evaluation.\n", why_pessimistic); + if (!max_opt_level) + log("Increasing the optimization level may eliminate %s from the design.\n", why_pessimistic); } } @@ -1585,12 +2064,12 @@ struct CxxrtlWorker { has_sync_init = has_packed_mem = false; for (auto module : design->modules()) { - if (module->get_blackbox_attribute()) + if (module->get_blackbox_attribute() && !module->has_attribute(ID(cxxrtl.blackbox))) continue; if (!design->selected_whole_module(module)) if (design->selected_module(module)) - log_cmd_error("Can't handle partially selected module `%s`!\n", id2cstr(module->name)); + log_cmd_error("Can't handle partially selected module `%s'!\n", id2cstr(module->name)); if (!design->selected_module(module)) continue; @@ -1608,8 +2087,12 @@ struct CxxrtlWorker { void prepare_design(RTLIL::Design *design) { bool has_sync_init, has_packed_mem; + log_push(); check_design(design, has_sync_init, has_packed_mem); - if (has_sync_init) { + if (run_proc_flatten) { + Pass::call(design, "proc"); + Pass::call(design, "flatten"); + } else if (has_sync_init) { // We're only interested in proc_init, but it depends on proc_prune and proc_clean, so call those // in case they weren't already. (This allows `yosys foo.v -o foo.cc` to work.) Pass::call(design, "proc_prune"); @@ -1622,18 +2105,15 @@ struct CxxrtlWorker { if (has_sync_init || has_packed_mem) check_design(design, has_sync_init, has_packed_mem); log_assert(!(has_sync_init || has_packed_mem)); - - if (run_splitnets) { - Pass::call(design, "splitnets -driver"); + if (run_opt_clean_purge) Pass::call(design, "opt_clean -purge"); - } - log("\n"); + log_pop(); analyze_design(design); } }; struct CxxrtlBackend : public Backend { - static const int DEFAULT_OPT_LEVEL = 5; + static const int DEFAULT_OPT_LEVEL = 6; CxxrtlBackend() : Backend("cxxrtl", "convert design to C++ RTL simulation") { } void help() YS_OVERRIDE @@ -1642,21 +2122,156 @@ struct CxxrtlBackend : public Backend { log("\n"); log(" write_cxxrtl [options] [filename]\n"); log("\n"); - log("Write C++ code for simulating the design. The generated code requires a driver;\n"); - log("the following simple driver is provided as an example:\n"); + log("Write C++ code that simulates the design. The generated code requires a driver\n"); + log("that instantiates the design, toggles its clock, and interacts with its ports.\n"); + log("\n"); + log("The following driver may be used as an example for a design with a single clock\n"); + log("driving rising edge triggered flip-flops:\n"); log("\n"); log(" #include \"top.cc\"\n"); log("\n"); log(" int main() {\n"); log(" cxxrtl_design::p_top top;\n"); + log(" top.step();\n"); log(" while (1) {\n"); - log(" top.p_clk.next = value<1> {1u};\n"); + log(" /* user logic */\n"); + log(" top.p_clk = value<1> {0u};\n"); log(" top.step();\n"); - log(" top.p_clk.next = value<1> {0u};\n"); + log(" top.p_clk = value<1> {1u};\n"); log(" top.step();\n"); log(" }\n"); log(" }\n"); log("\n"); + log("Note that CXXRTL simulations, just like the hardware they are simulating, are\n"); + log("subject to race conditions. If, in the example above, the user logic would run\n"); + log("simultaneously with the rising edge of the clock, the design would malfunction.\n"); + log("\n"); + log("This backend supports replacing parts of the design with black boxes implemented\n"); + log("in C++. If a module marked as a CXXRTL black box, its implementation is ignored,\n"); + log("and the generated code consists only of an interface and a factory function.\n"); + log("The driver must implement the factory function that creates an implementation of\n"); + log("the black box, taking into account the parameters it is instantiated with.\n"); + log("\n"); + log("For example, the following Verilog code defines a CXXRTL black box interface for\n"); + log("a synchronous debug sink:\n"); + log("\n"); + log(" (* cxxrtl.blackbox *)\n"); + log(" module debug(...);\n"); + log(" (* cxxrtl.edge = \"p\" *) input clk;\n"); + log(" input en;\n"); + log(" input [7:0] i_data;\n"); + log(" (* cxxrtl.sync *) output [7:0] o_data;\n"); + log(" endmodule\n"); + log("\n"); + log("For this HDL interface, this backend will generate the following C++ interface:\n"); + log("\n"); + log(" struct bb_p_debug : public module {\n"); + log(" value<1> p_clk;\n"); + log(" bool posedge_p_clk() const { /* ... */ }\n"); + log(" value<1> p_en;\n"); + log(" value<8> p_i_data;\n"); + log(" wire<8> p_o_data;\n"); + log("\n"); + log(" bool eval() override;\n"); + log(" bool commit() override;\n"); + log("\n"); + log(" static std::unique_ptr<bb_p_debug>\n"); + log(" create(std::string name, metadata_map parameters, metadata_map attributes);\n"); + log(" };\n"); + log("\n"); + log("The `create' function must be implemented by the driver. For example, it could\n"); + log("always provide an implementation logging the values to standard error stream:\n"); + log("\n"); + log(" namespace cxxrtl_design {\n"); + log("\n"); + log(" struct stderr_debug : public bb_p_debug {\n"); + log(" bool eval() override {\n"); + log(" if (posedge_p_clk() && p_en)\n"); + log(" fprintf(stderr, \"debug: %%02x\\n\", p_i_data.data[0]);\n"); + log(" p_o_data.next = p_i_data;\n"); + log(" return bb_p_debug::eval();\n"); + log(" }\n"); + log(" };\n"); + log("\n"); + log(" std::unique_ptr<bb_p_debug>\n"); + log(" bb_p_debug::create(std::string name, cxxrtl::metadata_map parameters,\n"); + log(" cxxrtl::metadata_map attributes) {\n"); + log(" return std::make_unique<stderr_debug>();\n"); + log(" }\n"); + log("\n"); + log(" }\n"); + log("\n"); + log("For complex applications of black boxes, it is possible to parameterize their\n"); + log("port widths. For example, the following Verilog code defines a CXXRTL black box\n"); + log("interface for a configurable width debug sink:\n"); + log("\n"); + log(" (* cxxrtl.blackbox, cxxrtl.template = \"WIDTH\" *)\n"); + log(" module debug(...);\n"); + log(" parameter WIDTH = 8;\n"); + log(" (* cxxrtl.edge = \"p\" *) input clk;\n"); + log(" input en;\n"); + log(" (* cxxrtl.width = \"WIDTH\" *) input [WIDTH - 1:0] i_data;\n"); + log(" (* cxxrtl.width = \"WIDTH\" *) output [WIDTH - 1:0] o_data;\n"); + log(" endmodule\n"); + log("\n"); + log("For this parametric HDL interface, this backend will generate the following C++\n"); + log("interface (only the differences are shown):\n"); + log("\n"); + log(" template<size_t WIDTH>\n"); + log(" struct bb_p_debug : public module {\n"); + log(" // ...\n"); + log(" value<WIDTH> p_i_data;\n"); + log(" wire<WIDTH> p_o_data;\n"); + log(" // ...\n"); + log(" static std::unique_ptr<bb_p_debug<WIDTH>>\n"); + log(" create(std::string name, metadata_map parameters, metadata_map attributes);\n"); + log(" };\n"); + log("\n"); + log("The `create' function must be implemented by the driver, specialized for every\n"); + log("possible combination of template parameters. (Specialization is necessary to\n"); + log("enable separate compilation of generated code and black box implementations.)\n"); + log("\n"); + log(" template<size_t SIZE>\n"); + log(" struct stderr_debug : public bb_p_debug<SIZE> {\n"); + log(" // ...\n"); + log(" };\n"); + log("\n"); + log(" template<>\n"); + log(" std::unique_ptr<bb_p_debug<8>>\n"); + log(" bb_p_debug<8>::create(std::string name, cxxrtl::metadata_map parameters,\n"); + log(" cxxrtl::metadata_map attributes) {\n"); + log(" return std::make_unique<stderr_debug<8>>();\n"); + log(" }\n"); + log("\n"); + log("The following attributes are recognized by this backend:\n"); + log("\n"); + log(" cxxrtl.blackbox\n"); + log(" only valid on modules. if specified, the module contents are ignored,\n"); + log(" and the generated code includes only the module interface and a factory\n"); + log(" function, which will be called to instantiate the module.\n"); + log("\n"); + log(" cxxrtl.edge\n"); + log(" only valid on inputs of black boxes. must be one of \"p\", \"n\", \"a\".\n"); + log(" if specified on signal `clk`, the generated code includes edge detectors\n"); + log(" `posedge_p_clk()` (if \"p\"), `negedge_p_clk()` (if \"n\"), or both (if\n"); + log(" \"a\"), simplifying implementation of clocked black boxes.\n"); + log("\n"); + log(" cxxrtl.template\n"); + log(" only valid on black boxes. must contain a space separated sequence of\n"); + log(" identifiers that have a corresponding black box parameters. for each\n"); + log(" of them, the generated code includes a `size_t` template parameter.\n"); + log("\n"); + log(" cxxrtl.width\n"); + log(" only valid on ports of black boxes. must be a constant expression, which\n"); + log(" is directly inserted into generated code.\n"); + log("\n"); + log(" cxxrtl.comb, cxxrtl.sync\n"); + log(" only valid on outputs of black boxes. if specified, indicates that every\n"); + log(" bit of the output port is driven, correspondingly, by combinatorial or\n"); + log(" synchronous logic. this knowledge is used for scheduling optimizations.\n"); + log(" if neither is specified, the output will be pessimistically treated as\n"); + log(" driven by both combinatorial and synchronous logic.\n"); + log("\n"); log("The following options are supported by this backend:\n"); log("\n"); log(" -header\n"); @@ -1690,7 +2305,10 @@ struct CxxrtlBackend : public Backend { log(" like -O3, and localize public wires not marked (*keep*) if possible.\n"); log("\n"); log(" -O5\n"); - log(" like -O4, and run `splitnets -driver; opt_clean -purge` first.\n"); + log(" like -O4, and run `opt_clean -purge` first.\n"); + log("\n"); + log(" -O6\n"); + log(" like -O5, and run `proc; flatten` first.\n"); log("\n"); } void execute(std::ostream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE @@ -1724,8 +2342,11 @@ struct CxxrtlBackend : public Backend { extra_args(f, filename, args, argidx); switch (opt_level) { + case 6: + worker.max_opt_level = true; + worker.run_proc_flatten = true; case 5: - worker.run_splitnets = true; + worker.run_opt_clean_purge = true; case 4: worker.localize_public = true; case 3: diff --git a/backends/cxxrtl/cxxrtl.h b/backends/cxxrtl/cxxrtl.h index 593c31c28..b79bbbc72 100644 --- a/backends/cxxrtl/cxxrtl.h +++ b/backends/cxxrtl/cxxrtl.h @@ -28,7 +28,9 @@ #include <type_traits> #include <tuple> #include <vector> +#include <map> #include <algorithm> +#include <memory> #include <sstream> // The cxxrtl support library implements compile time specialized arbitrary width arithmetics, as well as provides @@ -604,12 +606,15 @@ struct memory { auto _ = {std::move(std::begin(init.data), std::end(init.data), data.begin() + init.offset)...}; } - value<Width> &operator [](size_t index) { + // An operator for direct memory reads. May be used at any time during the simulation. + const value<Width> &operator [](size_t index) const { assert(index < data.size()); return data[index]; } - const value<Width> &operator [](size_t index) const { + // An operator for direct memory writes. May only be used before the simulation is started. If used + // after the simulation is started, the design may malfunction. + value<Width> &operator [](size_t index) { assert(index < data.size()); return data[index]; } @@ -654,6 +659,57 @@ struct memory { } }; +struct metadata { + const enum { + MISSING = 0, + UINT = 1, + SINT = 2, + STRING = 3, + DOUBLE = 4, + } value_type; + + // In debug mode, using the wrong .as_*() function will assert. + // In release mode, using the wrong .as_*() function will safely return a default value. + union { + const unsigned uint_value = 0; + const signed sint_value; + }; + const std::string string_value = ""; + const double double_value = 0.0; + + metadata() : value_type(MISSING) {} + metadata(unsigned value) : value_type(UINT), uint_value(value) {} + metadata(signed value) : value_type(SINT), sint_value(value) {} + metadata(const std::string &value) : value_type(STRING), string_value(value) {} + metadata(const char *value) : value_type(STRING), string_value(value) {} + metadata(double value) : value_type(DOUBLE), double_value(value) {} + + metadata(const metadata &) = default; + metadata &operator=(const metadata &) = delete; + + unsigned as_uint() const { + assert(value_type == UINT); + return uint_value; + } + + signed as_sint() const { + assert(value_type == SINT); + return sint_value; + } + + const std::string &as_string() const { + assert(value_type == STRING); + return string_value; + } + + double as_double() const { + assert(value_type == DOUBLE); + return double_value; + } +}; + +typedef std::map<std::string, metadata> metadata_map; + struct module { module() {} virtual ~module() {} @@ -661,15 +717,16 @@ struct module { module(const module &) = delete; module &operator=(const module &) = delete; - virtual void eval() = 0; + virtual bool eval() = 0; virtual bool commit() = 0; size_t step() { size_t deltas = 0; + bool converged = false; do { - eval(); + converged = eval(); deltas++; - } while (commit()); + } while (commit() && !converged); return deltas; } }; |