aboutsummaryrefslogtreecommitdiffstats
path: root/backends/cxxrtl
diff options
context:
space:
mode:
Diffstat (limited to 'backends/cxxrtl')
-rw-r--r--backends/cxxrtl/cxxrtl.h420
-rw-r--r--backends/cxxrtl/cxxrtl_backend.cc394
-rw-r--r--backends/cxxrtl/cxxrtl_capi.cc25
-rw-r--r--backends/cxxrtl/cxxrtl_capi.h59
-rw-r--r--backends/cxxrtl/cxxrtl_vcd.h60
-rw-r--r--backends/cxxrtl/cxxrtl_vcd_capi.cc4
-rw-r--r--backends/cxxrtl/cxxrtl_vcd_capi.h4
7 files changed, 656 insertions, 310 deletions
diff --git a/backends/cxxrtl/cxxrtl.h b/backends/cxxrtl/cxxrtl.h
index 30f4667c5..e3c96d422 100644
--- a/backends/cxxrtl/cxxrtl.h
+++ b/backends/cxxrtl/cxxrtl.h
@@ -17,6 +17,11 @@
*/
// This file is included by the designs generated with `write_cxxrtl`. It is not used in Yosys itself.
+//
+// The CXXRTL support library implements compile time specialized arbitrary width arithmetics, as well as provides
+// composite lvalues made out of bit slices and concatenations of lvalues. This allows the `write_cxxrtl` pass
+// to perform a straightforward translation of RTLIL structures to readable C++, relying on the C++ compiler
+// to unwrap the abstraction and generate efficient code.
#ifndef CXXRTL_H
#define CXXRTL_H
@@ -35,10 +40,19 @@
#include <backends/cxxrtl/cxxrtl_capi.h>
-// The CXXRTL support library implements compile time specialized arbitrary width arithmetics, as well as provides
-// composite lvalues made out of bit slices and concatenations of lvalues. This allows the `write_cxxrtl` pass
-// to perform a straightforward translation of RTLIL structures to readable C++, relying on the C++ compiler
-// to unwrap the abstraction and generate efficient code.
+// CXXRTL essentially uses the C++ compiler as a hygienic macro engine that feeds an instruction selector.
+// It generates a lot of specialized template functions with relatively large bodies that, when inlined
+// into the caller and (for those with loops) unrolled, often expose many new optimization opportunities.
+// Because of this, most of the CXXRTL runtime must be always inlined for best performance.
+#ifndef __has_attribute
+# define __has_attribute(x) 0
+#endif
+#if __has_attribute(always_inline)
+#define CXXRTL_ALWAYS_INLINE inline __attribute__((__always_inline__))
+#else
+#define CXXRTL_ALWAYS_INLINE inline
+#endif
+
namespace cxxrtl {
// All arbitrary-width values in CXXRTL are backed by arrays of unsigned integers called chunks. The chunk size
@@ -52,6 +66,7 @@ namespace cxxrtl {
// Therefore, using relatively wide chunks and clearing the high bits explicitly and only when we know they may be
// clobbered results in simpler generated code.
typedef uint32_t chunk_t;
+typedef uint64_t wide_chunk_t;
template<typename T>
struct chunk_traits {
@@ -85,6 +100,7 @@ struct value : public expr_base<value<Bits>> {
value<Bits> &operator=(const value<Bits> &) = default;
// A (no-op) helper that forces the cast to value<>.
+ CXXRTL_ALWAYS_INLINE
const value<Bits> &val() const {
return *this;
}
@@ -95,12 +111,42 @@ struct value : public expr_base<value<Bits>> {
return ss.str();
}
+ // Conversion operations.
+ //
+ // These functions ensure that a conversion is never out of range, and should be always used, if at all
+ // possible, instead of direct manipulation of the `data` member. For very large types, .slice() and
+ // .concat() can be used to split them into more manageable parts.
+ template<class IntegerT>
+ CXXRTL_ALWAYS_INLINE
+ IntegerT get() const {
+ static_assert(std::numeric_limits<IntegerT>::is_integer && !std::numeric_limits<IntegerT>::is_signed,
+ "get<T>() requires T to be an unsigned integral type");
+ static_assert(std::numeric_limits<IntegerT>::digits >= Bits,
+ "get<T>() requires T to be at least as wide as the value is");
+ IntegerT result = 0;
+ for (size_t n = 0; n < chunks; n++)
+ result |= IntegerT(data[n]) << (n * chunk::bits);
+ return result;
+ }
+
+ template<class IntegerT>
+ CXXRTL_ALWAYS_INLINE
+ void set(IntegerT other) {
+ static_assert(std::numeric_limits<IntegerT>::is_integer && !std::numeric_limits<IntegerT>::is_signed,
+ "set<T>() requires T to be an unsigned integral type");
+ static_assert(std::numeric_limits<IntegerT>::digits >= Bits,
+ "set<T>() requires the value to be at least as wide as T is");
+ for (size_t n = 0; n < chunks; n++)
+ data[n] = (other >> (n * chunk::bits)) & chunk::mask;
+ }
+
// Operations with compile-time parameters.
//
// These operations are used to implement slicing, concatenation, and blitting.
// The trunc, zext and sext operations add or remove most significant bits (i.e. on the left);
// the rtrunc and rzext operations add or remove least significant bits (i.e. on the right).
template<size_t NewBits>
+ CXXRTL_ALWAYS_INLINE
value<NewBits> trunc() const {
static_assert(NewBits <= Bits, "trunc() may not increase width");
value<NewBits> result;
@@ -111,6 +157,7 @@ struct value : public expr_base<value<Bits>> {
}
template<size_t NewBits>
+ CXXRTL_ALWAYS_INLINE
value<NewBits> zext() const {
static_assert(NewBits >= Bits, "zext() may not decrease width");
value<NewBits> result;
@@ -120,6 +167,7 @@ struct value : public expr_base<value<Bits>> {
}
template<size_t NewBits>
+ CXXRTL_ALWAYS_INLINE
value<NewBits> sext() const {
static_assert(NewBits >= Bits, "sext() may not decrease width");
value<NewBits> result;
@@ -135,6 +183,7 @@ struct value : public expr_base<value<Bits>> {
}
template<size_t NewBits>
+ CXXRTL_ALWAYS_INLINE
value<NewBits> rtrunc() const {
static_assert(NewBits <= Bits, "rtrunc() may not increase width");
value<NewBits> result;
@@ -154,6 +203,7 @@ struct value : public expr_base<value<Bits>> {
}
template<size_t NewBits>
+ CXXRTL_ALWAYS_INLINE
value<NewBits> rzext() const {
static_assert(NewBits >= Bits, "rzext() may not decrease width");
value<NewBits> result;
@@ -165,13 +215,14 @@ struct value : public expr_base<value<Bits>> {
carry = (shift_bits == 0) ? 0
: data[n] >> (chunk::bits - shift_bits);
}
- if (carry != 0)
- result.data[result.chunks - 1] = carry;
+ if (shift_chunks + chunks < result.chunks)
+ result.data[shift_chunks + chunks] = carry;
return result;
}
// Bit blit operation, i.e. a partial read-modify-write.
template<size_t Stop, size_t Start>
+ CXXRTL_ALWAYS_INLINE
value<Bits> blit(const value<Stop - Start + 1> &source) const {
static_assert(Stop >= Start, "blit() may not reverse bit order");
constexpr chunk::type start_mask = ~(chunk::mask << (Start % chunk::bits));
@@ -196,6 +247,7 @@ struct value : public expr_base<value<Bits>> {
// than the operand. In C++17 these can be replaced with `if constexpr`.
template<size_t NewBits, typename = void>
struct zext_cast {
+ CXXRTL_ALWAYS_INLINE
value<NewBits> operator()(const value<Bits> &val) {
return val.template zext<NewBits>();
}
@@ -203,6 +255,7 @@ struct value : public expr_base<value<Bits>> {
template<size_t NewBits>
struct zext_cast<NewBits, typename std::enable_if<(NewBits < Bits)>::type> {
+ CXXRTL_ALWAYS_INLINE
value<NewBits> operator()(const value<Bits> &val) {
return val.template trunc<NewBits>();
}
@@ -210,6 +263,7 @@ struct value : public expr_base<value<Bits>> {
template<size_t NewBits, typename = void>
struct sext_cast {
+ CXXRTL_ALWAYS_INLINE
value<NewBits> operator()(const value<Bits> &val) {
return val.template sext<NewBits>();
}
@@ -217,17 +271,20 @@ struct value : public expr_base<value<Bits>> {
template<size_t NewBits>
struct sext_cast<NewBits, typename std::enable_if<(NewBits < Bits)>::type> {
+ CXXRTL_ALWAYS_INLINE
value<NewBits> operator()(const value<Bits> &val) {
return val.template trunc<NewBits>();
}
};
template<size_t NewBits>
+ CXXRTL_ALWAYS_INLINE
value<NewBits> zcast() const {
return zext_cast<NewBits>()(*this);
}
template<size_t NewBits>
+ CXXRTL_ALWAYS_INLINE
value<NewBits> scast() const {
return sext_cast<NewBits>()(*this);
}
@@ -246,6 +303,10 @@ struct value : public expr_base<value<Bits>> {
data[offset_chunks] |= value ? 1 << offset_bits : 0;
}
+ explicit operator bool() const {
+ return !is_zero();
+ }
+
bool is_zero() const {
for (size_t n = 0; n < chunks; n++)
if (data[n] != 0)
@@ -253,10 +314,6 @@ struct value : public expr_base<value<Bits>> {
return true;
}
- explicit operator bool() const {
- return !is_zero();
- }
-
bool is_neg() const {
return data[chunks - 1] & (1 << ((Bits - 1) % chunk::bits));
}
@@ -349,10 +406,12 @@ struct value : public expr_base<value<Bits>> {
: data[chunks - 1 - n] << (chunk::bits - shift_bits);
}
if (Signed && is_neg()) {
- for (size_t n = chunks - shift_chunks; n < chunks; n++)
+ size_t top_chunk_idx = (Bits - shift_bits) / chunk::bits;
+ size_t top_chunk_bits = (Bits - shift_bits) % chunk::bits;
+ for (size_t n = top_chunk_idx + 1; n < chunks; n++)
result.data[n] = chunk::mask;
if (shift_bits != 0)
- result.data[chunks - shift_chunks] |= chunk::mask << (chunk::bits - shift_bits);
+ result.data[top_chunk_idx] |= chunk::mask << top_chunk_bits;
}
return result;
}
@@ -393,10 +452,11 @@ struct value : public expr_base<value<Bits>> {
bool carry = CarryIn;
for (size_t n = 0; n < result.chunks; n++) {
result.data[n] = data[n] + (Invert ? ~other.data[n] : other.data[n]) + carry;
+ if (result.chunks - 1 == n)
+ result.data[result.chunks - 1] &= result.msb_mask;
carry = (result.data[n] < data[n]) ||
(result.data[n] == data[n] && carry);
}
- result.data[result.chunks - 1] &= result.msb_mask;
return {result, carry};
}
@@ -425,6 +485,24 @@ struct value : public expr_base<value<Bits>> {
bool overflow = (is_neg() == !other.is_neg()) && (is_neg() != result.is_neg());
return result.is_neg() ^ overflow; // a.scmp(b) ≡ a s< b
}
+
+ template<size_t ResultBits>
+ value<ResultBits> mul(const value<Bits> &other) const {
+ value<ResultBits> result;
+ wide_chunk_t wide_result[result.chunks + 1] = {};
+ for (size_t n = 0; n < chunks; n++) {
+ for (size_t m = 0; m < chunks && n + m < result.chunks; m++) {
+ wide_result[n + m] += wide_chunk_t(data[n]) * wide_chunk_t(other.data[m]);
+ wide_result[n + m + 1] += wide_result[n + m] >> chunk::bits;
+ wide_result[n + m] &= chunk::mask;
+ }
+ }
+ for (size_t n = 0; n < result.chunks; n++) {
+ result.data[n] = wide_result[n];
+ }
+ result.data[result.chunks - 1] &= result.msb_mask;
+ return result;
+ }
};
// Expression template for a slice, usable as lvalue or rvalue, and composable with other expression templates here.
@@ -439,12 +517,14 @@ struct slice_expr : public expr_base<slice_expr<T, Stop, Start>> {
slice_expr(T &expr) : expr(expr) {}
slice_expr(const slice_expr<T, Stop, Start> &) = delete;
+ CXXRTL_ALWAYS_INLINE
operator value<bits>() const {
return static_cast<const value<T::bits> &>(expr)
.template rtrunc<T::bits - Start>()
.template trunc<bits>();
}
+ CXXRTL_ALWAYS_INLINE
slice_expr<T, Stop, Start> &operator=(const value<bits> &rhs) {
// Generic partial assignment implemented using a read-modify-write operation on the sliced expression.
expr = static_cast<const value<T::bits> &>(expr)
@@ -453,6 +533,7 @@ struct slice_expr : public expr_base<slice_expr<T, Stop, Start>> {
}
// A helper that forces the cast to value<>, which allows deduction to work.
+ CXXRTL_ALWAYS_INLINE
value<bits> val() const {
return static_cast<const value<bits> &>(*this);
}
@@ -469,6 +550,7 @@ struct concat_expr : public expr_base<concat_expr<T, U>> {
concat_expr(T &ms_expr, U &ls_expr) : ms_expr(ms_expr), ls_expr(ls_expr) {}
concat_expr(const concat_expr<T, U> &) = delete;
+ CXXRTL_ALWAYS_INLINE
operator value<bits>() const {
value<bits> ms_shifted = static_cast<const value<T::bits> &>(ms_expr)
.template rzext<bits>();
@@ -477,6 +559,7 @@ struct concat_expr : public expr_base<concat_expr<T, U>> {
return ms_shifted.bit_or(ls_extended);
}
+ CXXRTL_ALWAYS_INLINE
concat_expr<T, U> &operator=(const value<bits> &rhs) {
ms_expr = rhs.template rtrunc<T::bits>();
ls_expr = rhs.template trunc<U::bits>();
@@ -484,6 +567,7 @@ struct concat_expr : public expr_base<concat_expr<T, U>> {
}
// A helper that forces the cast to value<>, which allows deduction to work.
+ CXXRTL_ALWAYS_INLINE
value<bits> val() const {
return static_cast<const value<bits> &>(*this);
}
@@ -508,21 +592,25 @@ struct concat_expr : public expr_base<concat_expr<T, U>> {
template<class T>
struct expr_base {
template<size_t Stop, size_t Start = Stop>
+ CXXRTL_ALWAYS_INLINE
slice_expr<const T, Stop, Start> slice() const {
return {*static_cast<const T *>(this)};
}
template<size_t Stop, size_t Start = Stop>
+ CXXRTL_ALWAYS_INLINE
slice_expr<T, Stop, Start> slice() {
return {*static_cast<T *>(this)};
}
template<class U>
+ CXXRTL_ALWAYS_INLINE
concat_expr<const T, typename std::remove_reference<const U>::type> concat(const U &other) const {
return {*static_cast<const T *>(this), other};
}
template<class U>
+ CXXRTL_ALWAYS_INLINE
concat_expr<T, typename std::remove_reference<U>::type> concat(U &&other) {
return {*static_cast<T *>(this), other};
}
@@ -563,6 +651,18 @@ struct wire {
wire(wire<Bits> &&) = default;
wire<Bits> &operator=(const wire<Bits> &) = delete;
+ template<class IntegerT>
+ CXXRTL_ALWAYS_INLINE
+ IntegerT get() const {
+ return curr.template get<IntegerT>();
+ }
+
+ template<class IntegerT>
+ CXXRTL_ALWAYS_INLINE
+ void set(IntegerT other) {
+ next.template set<IntegerT>(other);
+ }
+
bool commit() {
if (curr != next) {
curr = next;
@@ -608,6 +708,7 @@ struct memory {
// This utterly reprehensible construct is the most reasonable way to apply a function to every element
// of a parameter pack, if the elements all have different types and so cannot be cast to an initializer list.
auto _ = {std::move(std::begin(init.data), std::end(init.data), data.begin() + init.offset)...};
+ (void)_;
}
// An operator for direct memory reads. May be used at any time during the simulation.
@@ -676,10 +777,8 @@ struct metadata {
// In debug mode, using the wrong .as_*() function will assert.
// In release mode, using the wrong .as_*() function will safely return a default value.
- union {
- const unsigned uint_value = 0;
- const signed sint_value;
- };
+ const unsigned uint_value = 0;
+ const signed sint_value = 0;
const std::string string_value = "";
const double double_value = 0.0;
@@ -716,6 +815,9 @@ struct metadata {
typedef std::map<std::string, metadata> metadata_map;
+// Helper class to disambiguate values/wires and their aliases.
+struct debug_alias {};
+
// This structure is intended for consumption via foreign function interfaces, like Python's ctypes.
// Because of this it uses a C-style layout that is easy to parse rather than more idiomatic C++.
//
@@ -726,58 +828,125 @@ struct debug_item : ::cxxrtl_object {
VALUE = CXXRTL_VALUE,
WIRE = CXXRTL_WIRE,
MEMORY = CXXRTL_MEMORY,
+ ALIAS = CXXRTL_ALIAS,
};
debug_item(const ::cxxrtl_object &object) : cxxrtl_object(object) {}
template<size_t Bits>
- debug_item(value<Bits> &item) {
+ debug_item(value<Bits> &item, size_t lsb_offset = 0) {
static_assert(sizeof(item) == value<Bits>::chunks * sizeof(chunk_t),
"value<Bits> is not compatible with C layout");
- type = VALUE;
- width = Bits;
- depth = 1;
- curr = item.data;
- next = item.data;
+ type = VALUE;
+ width = Bits;
+ lsb_at = lsb_offset;
+ depth = 1;
+ zero_at = 0;
+ curr = item.data;
+ next = item.data;
}
template<size_t Bits>
- debug_item(const value<Bits> &item) {
+ debug_item(const value<Bits> &item, size_t lsb_offset = 0) {
static_assert(sizeof(item) == value<Bits>::chunks * sizeof(chunk_t),
"value<Bits> is not compatible with C layout");
- type = VALUE;
- width = Bits;
- depth = 1;
- curr = const_cast<uint32_t*>(item.data);
- next = nullptr;
+ type = VALUE;
+ width = Bits;
+ lsb_at = lsb_offset;
+ depth = 1;
+ zero_at = 0;
+ curr = const_cast<chunk_t*>(item.data);
+ next = nullptr;
}
template<size_t Bits>
- debug_item(wire<Bits> &item) {
+ debug_item(wire<Bits> &item, size_t lsb_offset = 0) {
static_assert(sizeof(item.curr) == value<Bits>::chunks * sizeof(chunk_t) &&
sizeof(item.next) == value<Bits>::chunks * sizeof(chunk_t),
"wire<Bits> is not compatible with C layout");
- type = WIRE;
- width = Bits;
- depth = 1;
- curr = item.curr.data;
- next = item.next.data;
+ type = WIRE;
+ width = Bits;
+ lsb_at = lsb_offset;
+ depth = 1;
+ zero_at = 0;
+ curr = item.curr.data;
+ next = item.next.data;
}
template<size_t Width>
- debug_item(memory<Width> &item) {
+ debug_item(memory<Width> &item, size_t zero_offset = 0) {
static_assert(sizeof(item.data[0]) == value<Width>::chunks * sizeof(chunk_t),
"memory<Width> is not compatible with C layout");
- type = MEMORY;
- width = Width;
- depth = item.data.size();
- curr = item.data.empty() ? nullptr : item.data[0].data;
- next = nullptr;
+ type = MEMORY;
+ width = Width;
+ lsb_at = 0;
+ depth = item.data.size();
+ zero_at = zero_offset;
+ curr = item.data.empty() ? nullptr : item.data[0].data;
+ next = nullptr;
+ }
+
+ template<size_t Bits>
+ debug_item(debug_alias, const value<Bits> &item, size_t lsb_offset = 0) {
+ static_assert(sizeof(item) == value<Bits>::chunks * sizeof(chunk_t),
+ "value<Bits> is not compatible with C layout");
+ type = ALIAS;
+ width = Bits;
+ lsb_at = lsb_offset;
+ depth = 1;
+ zero_at = 0;
+ curr = const_cast<chunk_t*>(item.data);
+ next = nullptr;
+ }
+
+ template<size_t Bits>
+ debug_item(debug_alias, const wire<Bits> &item, size_t lsb_offset = 0) {
+ static_assert(sizeof(item.curr) == value<Bits>::chunks * sizeof(chunk_t) &&
+ sizeof(item.next) == value<Bits>::chunks * sizeof(chunk_t),
+ "wire<Bits> is not compatible with C layout");
+ type = ALIAS;
+ width = Bits;
+ lsb_at = lsb_offset;
+ depth = 1;
+ zero_at = 0;
+ curr = const_cast<chunk_t*>(item.curr.data);
+ next = nullptr;
}
};
static_assert(std::is_standard_layout<debug_item>::value, "debug_item is not compatible with C layout");
-typedef std::map<std::string, debug_item> debug_items;
+struct debug_items {
+ std::map<std::string, std::vector<debug_item>> table;
+
+ void add(const std::string &name, debug_item &&item) {
+ std::vector<debug_item> &parts = table[name];
+ parts.emplace_back(item);
+ std::sort(parts.begin(), parts.end(),
+ [](const debug_item &a, const debug_item &b) {
+ return a.lsb_at < b.lsb_at;
+ });
+ }
+
+ size_t count(const std::string &name) const {
+ if (table.count(name) == 0)
+ return 0;
+ return table.at(name).size();
+ }
+
+ const std::vector<debug_item> &parts_at(const std::string &name) const {
+ return table.at(name);
+ }
+
+ const debug_item &at(const std::string &name) const {
+ const std::vector<debug_item> &parts = table.at(name);
+ assert(parts.size() == 1);
+ return parts.at(0);
+ }
+
+ const debug_item &operator [](const std::string &name) const {
+ return at(name);
+ }
+};
struct module {
module() {}
@@ -799,7 +968,9 @@ struct module {
return deltas;
}
- virtual void debug_info(debug_items &items, std::string path = "") {}
+ virtual void debug_info(debug_items &items, std::string path = "") {
+ (void)items, (void)path;
+ }
};
} // namespace cxxrtl
@@ -823,309 +994,322 @@ using namespace cxxrtl;
// std::max isn't constexpr until C++14 for no particular reason (it's an oversight), so we define our own.
template<class T>
+CXXRTL_ALWAYS_INLINE
constexpr T max(const T &a, const T &b) {
return a > b ? a : b;
}
// Logic operations
template<size_t BitsY, size_t BitsA>
-value<BitsY> not_u(const value<BitsA> &a) {
- return a.template zcast<BitsY>().bit_not();
-}
-
-template<size_t BitsY, size_t BitsA>
-value<BitsY> not_s(const value<BitsA> &a) {
- return a.template scast<BitsY>().bit_not();
-}
-
-template<size_t BitsY, size_t BitsA>
-value<BitsY> logic_not_u(const value<BitsA> &a) {
+CXXRTL_ALWAYS_INLINE
+value<BitsY> logic_not(const value<BitsA> &a) {
return value<BitsY> { a ? 0u : 1u };
}
-template<size_t BitsY, size_t BitsA>
-value<BitsY> logic_not_s(const value<BitsA> &a) {
- return value<BitsY> { a ? 0u : 1u };
+template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
+value<BitsY> logic_and(const value<BitsA> &a, const value<BitsB> &b) {
+ return value<BitsY> { (bool(a) && bool(b)) ? 1u : 0u };
}
-template<size_t BitsY, size_t BitsA>
-value<BitsY> reduce_and_u(const value<BitsA> &a) {
- return value<BitsY> { a.bit_not().is_zero() ? 1u : 0u };
+template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
+value<BitsY> logic_or(const value<BitsA> &a, const value<BitsB> &b) {
+ return value<BitsY> { (bool(a) || bool(b)) ? 1u : 0u };
}
+// Reduction operations
template<size_t BitsY, size_t BitsA>
-value<BitsY> reduce_and_s(const value<BitsA> &a) {
+CXXRTL_ALWAYS_INLINE
+value<BitsY> reduce_and(const value<BitsA> &a) {
return value<BitsY> { a.bit_not().is_zero() ? 1u : 0u };
}
template<size_t BitsY, size_t BitsA>
-value<BitsY> reduce_or_u(const value<BitsA> &a) {
- return value<BitsY> { a ? 1u : 0u };
-}
-
-template<size_t BitsY, size_t BitsA>
-value<BitsY> reduce_or_s(const value<BitsA> &a) {
+CXXRTL_ALWAYS_INLINE
+value<BitsY> reduce_or(const value<BitsA> &a) {
return value<BitsY> { a ? 1u : 0u };
}
template<size_t BitsY, size_t BitsA>
-value<BitsY> reduce_xor_u(const value<BitsA> &a) {
+CXXRTL_ALWAYS_INLINE
+value<BitsY> reduce_xor(const value<BitsA> &a) {
return value<BitsY> { (a.ctpop() % 2) ? 1u : 0u };
}
template<size_t BitsY, size_t BitsA>
-value<BitsY> reduce_xor_s(const value<BitsA> &a) {
- return value<BitsY> { (a.ctpop() % 2) ? 1u : 0u };
-}
-
-template<size_t BitsY, size_t BitsA>
-value<BitsY> reduce_xnor_u(const value<BitsA> &a) {
+CXXRTL_ALWAYS_INLINE
+value<BitsY> reduce_xnor(const value<BitsA> &a) {
return value<BitsY> { (a.ctpop() % 2) ? 0u : 1u };
}
template<size_t BitsY, size_t BitsA>
-value<BitsY> reduce_xnor_s(const value<BitsA> &a) {
- return value<BitsY> { (a.ctpop() % 2) ? 0u : 1u };
+CXXRTL_ALWAYS_INLINE
+value<BitsY> reduce_bool(const value<BitsA> &a) {
+ return value<BitsY> { a ? 1u : 0u };
}
+// Bitwise operations
template<size_t BitsY, size_t BitsA>
-value<BitsY> reduce_bool_u(const value<BitsA> &a) {
- return value<BitsY> { a ? 1u : 0u };
+CXXRTL_ALWAYS_INLINE
+value<BitsY> not_u(const value<BitsA> &a) {
+ return a.template zcast<BitsY>().bit_not();
}
template<size_t BitsY, size_t BitsA>
-value<BitsY> reduce_bool_s(const value<BitsA> &a) {
- return value<BitsY> { a ? 1u : 0u };
+CXXRTL_ALWAYS_INLINE
+value<BitsY> not_s(const value<BitsA> &a) {
+ return a.template scast<BitsY>().bit_not();
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> and_uu(const value<BitsA> &a, const value<BitsB> &b) {
return a.template zcast<BitsY>().bit_and(b.template zcast<BitsY>());
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> and_ss(const value<BitsA> &a, const value<BitsB> &b) {
return a.template scast<BitsY>().bit_and(b.template scast<BitsY>());
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> or_uu(const value<BitsA> &a, const value<BitsB> &b) {
return a.template zcast<BitsY>().bit_or(b.template zcast<BitsY>());
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> or_ss(const value<BitsA> &a, const value<BitsB> &b) {
return a.template scast<BitsY>().bit_or(b.template scast<BitsY>());
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> xor_uu(const value<BitsA> &a, const value<BitsB> &b) {
return a.template zcast<BitsY>().bit_xor(b.template zcast<BitsY>());
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> xor_ss(const value<BitsA> &a, const value<BitsB> &b) {
return a.template scast<BitsY>().bit_xor(b.template scast<BitsY>());
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> xnor_uu(const value<BitsA> &a, const value<BitsB> &b) {
return a.template zcast<BitsY>().bit_xor(b.template zcast<BitsY>()).bit_not();
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> xnor_ss(const value<BitsA> &a, const value<BitsB> &b) {
return a.template scast<BitsY>().bit_xor(b.template scast<BitsY>()).bit_not();
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
-value<BitsY> logic_and_uu(const value<BitsA> &a, const value<BitsB> &b) {
- return value<BitsY> { (bool(a) & bool(b)) ? 1u : 0u };
-}
-
-template<size_t BitsY, size_t BitsA, size_t BitsB>
-value<BitsY> logic_and_ss(const value<BitsA> &a, const value<BitsB> &b) {
- return value<BitsY> { (bool(a) & bool(b)) ? 1u : 0u };
-}
-
-template<size_t BitsY, size_t BitsA, size_t BitsB>
-value<BitsY> logic_or_uu(const value<BitsA> &a, const value<BitsB> &b) {
- return value<BitsY> { (bool(a) | bool(b)) ? 1u : 0u };
-}
-
-template<size_t BitsY, size_t BitsA, size_t BitsB>
-value<BitsY> logic_or_ss(const value<BitsA> &a, const value<BitsB> &b) {
- return value<BitsY> { (bool(a) | bool(b)) ? 1u : 0u };
-}
-
-template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> shl_uu(const value<BitsA> &a, const value<BitsB> &b) {
return a.template zcast<BitsY>().template shl(b);
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> shl_su(const value<BitsA> &a, const value<BitsB> &b) {
return a.template scast<BitsY>().template shl(b);
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> sshl_uu(const value<BitsA> &a, const value<BitsB> &b) {
return a.template zcast<BitsY>().template shl(b);
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> sshl_su(const value<BitsA> &a, const value<BitsB> &b) {
return a.template scast<BitsY>().template shl(b);
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> shr_uu(const value<BitsA> &a, const value<BitsB> &b) {
return a.template shr(b).template zcast<BitsY>();
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> shr_su(const value<BitsA> &a, const value<BitsB> &b) {
return a.template shr(b).template scast<BitsY>();
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> sshr_uu(const value<BitsA> &a, const value<BitsB> &b) {
return a.template shr(b).template zcast<BitsY>();
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> sshr_su(const value<BitsA> &a, const value<BitsB> &b) {
return a.template sshr(b).template scast<BitsY>();
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> shift_uu(const value<BitsA> &a, const value<BitsB> &b) {
return shr_uu<BitsY>(a, b);
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> shift_su(const value<BitsA> &a, const value<BitsB> &b) {
return shr_su<BitsY>(a, b);
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> shift_us(const value<BitsA> &a, const value<BitsB> &b) {
return b.is_neg() ? shl_uu<BitsY>(a, b.template sext<BitsB + 1>().neg()) : shr_uu<BitsY>(a, b);
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> shift_ss(const value<BitsA> &a, const value<BitsB> &b) {
return b.is_neg() ? shl_su<BitsY>(a, b.template sext<BitsB + 1>().neg()) : shr_su<BitsY>(a, b);
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> shiftx_uu(const value<BitsA> &a, const value<BitsB> &b) {
return shift_uu<BitsY>(a, b);
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> shiftx_su(const value<BitsA> &a, const value<BitsB> &b) {
return shift_su<BitsY>(a, b);
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> shiftx_us(const value<BitsA> &a, const value<BitsB> &b) {
return shift_us<BitsY>(a, b);
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> shiftx_ss(const value<BitsA> &a, const value<BitsB> &b) {
return shift_ss<BitsY>(a, b);
}
// Comparison operations
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> eq_uu(const value<BitsA> &a, const value<BitsB> &b) {
constexpr size_t BitsExt = max(BitsA, BitsB);
return value<BitsY>{ a.template zext<BitsExt>() == b.template zext<BitsExt>() ? 1u : 0u };
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> eq_ss(const value<BitsA> &a, const value<BitsB> &b) {
constexpr size_t BitsExt = max(BitsA, BitsB);
return value<BitsY>{ a.template sext<BitsExt>() == b.template sext<BitsExt>() ? 1u : 0u };
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> ne_uu(const value<BitsA> &a, const value<BitsB> &b) {
constexpr size_t BitsExt = max(BitsA, BitsB);
return value<BitsY>{ a.template zext<BitsExt>() != b.template zext<BitsExt>() ? 1u : 0u };
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> ne_ss(const value<BitsA> &a, const value<BitsB> &b) {
constexpr size_t BitsExt = max(BitsA, BitsB);
return value<BitsY>{ a.template sext<BitsExt>() != b.template sext<BitsExt>() ? 1u : 0u };
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> eqx_uu(const value<BitsA> &a, const value<BitsB> &b) {
return eq_uu<BitsY>(a, b);
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> eqx_ss(const value<BitsA> &a, const value<BitsB> &b) {
return eq_ss<BitsY>(a, b);
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> nex_uu(const value<BitsA> &a, const value<BitsB> &b) {
return ne_uu<BitsY>(a, b);
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> nex_ss(const value<BitsA> &a, const value<BitsB> &b) {
return ne_ss<BitsY>(a, b);
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> gt_uu(const value<BitsA> &a, const value<BitsB> &b) {
constexpr size_t BitsExt = max(BitsA, BitsB);
return value<BitsY> { b.template zext<BitsExt>().ucmp(a.template zext<BitsExt>()) ? 1u : 0u };
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> gt_ss(const value<BitsA> &a, const value<BitsB> &b) {
constexpr size_t BitsExt = max(BitsA, BitsB);
return value<BitsY> { b.template sext<BitsExt>().scmp(a.template sext<BitsExt>()) ? 1u : 0u };
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> ge_uu(const value<BitsA> &a, const value<BitsB> &b) {
constexpr size_t BitsExt = max(BitsA, BitsB);
return value<BitsY> { !a.template zext<BitsExt>().ucmp(b.template zext<BitsExt>()) ? 1u : 0u };
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> ge_ss(const value<BitsA> &a, const value<BitsB> &b) {
constexpr size_t BitsExt = max(BitsA, BitsB);
return value<BitsY> { !a.template sext<BitsExt>().scmp(b.template sext<BitsExt>()) ? 1u : 0u };
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> lt_uu(const value<BitsA> &a, const value<BitsB> &b) {
constexpr size_t BitsExt = max(BitsA, BitsB);
return value<BitsY> { a.template zext<BitsExt>().ucmp(b.template zext<BitsExt>()) ? 1u : 0u };
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> lt_ss(const value<BitsA> &a, const value<BitsB> &b) {
constexpr size_t BitsExt = max(BitsA, BitsB);
return value<BitsY> { a.template sext<BitsExt>().scmp(b.template sext<BitsExt>()) ? 1u : 0u };
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> le_uu(const value<BitsA> &a, const value<BitsB> &b) {
constexpr size_t BitsExt = max(BitsA, BitsB);
return value<BitsY> { !b.template zext<BitsExt>().ucmp(a.template zext<BitsExt>()) ? 1u : 0u };
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> le_ss(const value<BitsA> &a, const value<BitsB> &b) {
constexpr size_t BitsExt = max(BitsA, BitsB);
return value<BitsY> { !b.template sext<BitsExt>().scmp(a.template sext<BitsExt>()) ? 1u : 0u };
@@ -1133,71 +1317,68 @@ value<BitsY> le_ss(const value<BitsA> &a, const value<BitsB> &b) {
// Arithmetic operations
template<size_t BitsY, size_t BitsA>
+CXXRTL_ALWAYS_INLINE
value<BitsY> pos_u(const value<BitsA> &a) {
return a.template zcast<BitsY>();
}
template<size_t BitsY, size_t BitsA>
+CXXRTL_ALWAYS_INLINE
value<BitsY> pos_s(const value<BitsA> &a) {
return a.template scast<BitsY>();
}
template<size_t BitsY, size_t BitsA>
+CXXRTL_ALWAYS_INLINE
value<BitsY> neg_u(const value<BitsA> &a) {
return a.template zcast<BitsY>().neg();
}
template<size_t BitsY, size_t BitsA>
+CXXRTL_ALWAYS_INLINE
value<BitsY> neg_s(const value<BitsA> &a) {
return a.template scast<BitsY>().neg();
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> add_uu(const value<BitsA> &a, const value<BitsB> &b) {
return a.template zcast<BitsY>().add(b.template zcast<BitsY>());
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> add_ss(const value<BitsA> &a, const value<BitsB> &b) {
return a.template scast<BitsY>().add(b.template scast<BitsY>());
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> sub_uu(const value<BitsA> &a, const value<BitsB> &b) {
return a.template zcast<BitsY>().sub(b.template zcast<BitsY>());
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> sub_ss(const value<BitsA> &a, const value<BitsB> &b) {
return a.template scast<BitsY>().sub(b.template scast<BitsY>());
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> mul_uu(const value<BitsA> &a, const value<BitsB> &b) {
- value<BitsY> product;
- value<BitsY> multiplicand = a.template zcast<BitsY>();
- const value<BitsB> &multiplier = b;
- uint32_t multiplicand_shift = 0;
- for (size_t step = 0; step < BitsB; step++) {
- if (multiplier.bit(step)) {
- multiplicand = multiplicand.shl(value<32> { multiplicand_shift });
- product = product.add(multiplicand);
- multiplicand_shift = 0;
- }
- multiplicand_shift++;
- }
- return product;
+ constexpr size_t BitsM = BitsA >= BitsB ? BitsA : BitsB;
+ return a.template zcast<BitsM>().template mul<BitsY>(b.template zcast<BitsM>());
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> mul_ss(const value<BitsA> &a, const value<BitsB> &b) {
- value<BitsB + 1> ub = b.template sext<BitsB + 1>();
- if (ub.is_neg()) ub = ub.neg();
- value<BitsY> y = mul_uu<BitsY>(a.template scast<BitsY>(), ub);
- return b.is_neg() ? y.neg() : y;
+ return a.template scast<BitsY>().template mul<BitsY>(b.template scast<BitsY>());
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
std::pair<value<BitsY>, value<BitsY>> divmod_uu(const value<BitsA> &a, const value<BitsB> &b) {
constexpr size_t Bits = max(BitsY, max(BitsA, BitsB));
value<Bits> quotient;
@@ -1219,6 +1400,7 @@ std::pair<value<BitsY>, value<BitsY>> divmod_uu(const value<BitsA> &a, const val
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
std::pair<value<BitsY>, value<BitsY>> divmod_ss(const value<BitsA> &a, const value<BitsB> &b) {
value<BitsA + 1> ua = a.template sext<BitsA + 1>();
value<BitsB + 1> ub = b.template sext<BitsB + 1>();
@@ -1232,21 +1414,25 @@ std::pair<value<BitsY>, value<BitsY>> divmod_ss(const value<BitsA> &a, const val
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> div_uu(const value<BitsA> &a, const value<BitsB> &b) {
return divmod_uu<BitsY>(a, b).first;
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> div_ss(const value<BitsA> &a, const value<BitsB> &b) {
return divmod_ss<BitsY>(a, b).first;
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> mod_uu(const value<BitsA> &a, const value<BitsB> &b) {
return divmod_uu<BitsY>(a, b).second;
}
template<size_t BitsY, size_t BitsA, size_t BitsB>
+CXXRTL_ALWAYS_INLINE
value<BitsY> mod_ss(const value<BitsA> &a, const value<BitsB> &b) {
return divmod_ss<BitsY>(a, b).second;
}
diff --git a/backends/cxxrtl/cxxrtl_backend.cc b/backends/cxxrtl/cxxrtl_backend.cc
index b3aec2110..6d3c2f4f9 100644
--- a/backends/cxxrtl/cxxrtl_backend.cc
+++ b/backends/cxxrtl/cxxrtl_backend.cc
@@ -171,11 +171,6 @@ struct Scheduler {
}
};
-bool is_input_wire(const RTLIL::Wire *wire)
-{
- return wire->port_input && !wire->port_output;
-}
-
bool is_unary_cell(RTLIL::IdString type)
{
return type.in(
@@ -192,22 +187,29 @@ bool is_binary_cell(RTLIL::IdString type)
ID($add), ID($sub), ID($mul), ID($div), ID($mod));
}
+bool is_extending_cell(RTLIL::IdString type)
+{
+ return !type.in(
+ ID($logic_not), ID($logic_and), ID($logic_or),
+ ID($reduce_and), ID($reduce_or), ID($reduce_xor), ID($reduce_xnor), ID($reduce_bool));
+}
+
bool is_elidable_cell(RTLIL::IdString type)
{
return is_unary_cell(type) || is_binary_cell(type) || type.in(
- ID($mux), ID($concat), ID($slice));
+ ID($mux), ID($concat), ID($slice), ID($pmux));
}
bool is_sync_ff_cell(RTLIL::IdString type)
{
return type.in(
- ID($dff), ID($dffe));
+ ID($dff), ID($dffe), ID($sdff), ID($sdffe), ID($sdffce));
}
bool is_ff_cell(RTLIL::IdString type)
{
return is_sync_ff_cell(type) || type.in(
- ID($adff), ID($dffsr), ID($dlatch), ID($dlatchsr), ID($sr));
+ ID($adff), ID($adffe), ID($dffsr), ID($dffsre), ID($dlatch), ID($adlatch), ID($dlatchsr), ID($sr));
}
bool is_internal_cell(RTLIL::IdString type)
@@ -467,14 +469,16 @@ std::vector<std::string> split_by(const std::string &str, const std::string &sep
std::vector<std::string> result;
size_t prev = 0;
while (true) {
- size_t curr = str.find_first_of(sep, prev + 1);
- if (curr > str.size())
- curr = str.size();
- if (curr > prev + 1)
- result.push_back(str.substr(prev, curr - prev));
- if (curr == str.size())
+ size_t curr = str.find_first_of(sep, prev);
+ if (curr == std::string::npos) {
+ std::string part = str.substr(prev);
+ if (!part.empty()) result.push_back(part);
break;
- prev = curr;
+ } else {
+ std::string part = str.substr(prev, curr - prev);
+ if (!part.empty()) result.push_back(part);
+ prev = curr + 1;
+ }
}
return result;
}
@@ -508,7 +512,7 @@ std::string get_hdl_name(T *object)
if (object->has_attribute(ID::hdlname))
return object->get_string_attribute(ID::hdlname);
else
- return object->name.str();
+ return object->name.str().substr(1);
}
struct CxxrtlWorker {
@@ -518,12 +522,15 @@ struct CxxrtlWorker {
std::ostream *impl_f = nullptr;
std::ostream *intf_f = nullptr;
- bool elide_internal = false;
- bool elide_public = false;
+ bool run_flatten = false;
+ bool run_proc = false;
+
+ bool unbuffer_internal = false;
+ bool unbuffer_public = false;
bool localize_internal = false;
bool localize_public = false;
- bool run_proc_flatten = false;
- bool max_opt_level = false;
+ bool elide_internal = false;
+ bool elide_public = false;
bool debug_info = false;
@@ -538,6 +545,7 @@ struct CxxrtlWorker {
dict<const RTLIL::Cell*, pool<const RTLIL::Cell*>> transparent_for;
dict<const RTLIL::Wire*, FlowGraph::Node> elided_wires;
dict<const RTLIL::Module*, std::vector<FlowGraph::Node>> schedule;
+ pool<const RTLIL::Wire*> unbuffered_wires;
pool<const RTLIL::Wire*> localized_wires;
dict<const RTLIL::Wire*, const RTLIL::Wire*> debug_alias_wires;
dict<const RTLIL::Wire*, RTLIL::Const> debug_const_wires;
@@ -777,7 +785,8 @@ struct CxxrtlWorker {
dump_const(chunk.data, chunk.width, chunk.offset);
return false;
} else {
- if (!is_lhs && elided_wires.count(chunk.wire)) {
+ if (elided_wires.count(chunk.wire)) {
+ log_assert(!is_lhs);
const FlowGraph::Node &node = elided_wires[chunk.wire];
switch (node.type) {
case FlowGraph::Node::Type::CONNECT:
@@ -790,7 +799,7 @@ struct CxxrtlWorker {
default:
log_assert(false);
}
- } else if (localized_wires[chunk.wire] || is_input_wire(chunk.wire)) {
+ } else if (unbuffered_wires[chunk.wire]) {
f << mangle(chunk.wire);
} else {
f << mangle(chunk.wire) << (is_lhs ? ".next" : ".curr");
@@ -907,17 +916,19 @@ struct CxxrtlWorker {
{
// Unary cells
if (is_unary_cell(cell->type)) {
- f << cell->type.substr(1) << '_' <<
- (cell->getParam(ID::A_SIGNED).as_bool() ? 's' : 'u') <<
- "<" << cell->getParam(ID::Y_WIDTH).as_int() << ">(";
+ f << cell->type.substr(1);
+ if (is_extending_cell(cell->type))
+ f << '_' << (cell->getParam(ID::A_SIGNED).as_bool() ? 's' : 'u');
+ f << "<" << cell->getParam(ID::Y_WIDTH).as_int() << ">(";
dump_sigspec_rhs(cell->getPort(ID::A));
f << ")";
// Binary cells
} else if (is_binary_cell(cell->type)) {
- f << cell->type.substr(1) << '_' <<
- (cell->getParam(ID::A_SIGNED).as_bool() ? 's' : 'u') <<
- (cell->getParam(ID::B_SIGNED).as_bool() ? 's' : 'u') <<
- "<" << cell->getParam(ID::Y_WIDTH).as_int() << ">(";
+ f << cell->type.substr(1);
+ if (is_extending_cell(cell->type))
+ f << '_' << (cell->getParam(ID::A_SIGNED).as_bool() ? 's' : 'u') <<
+ (cell->getParam(ID::B_SIGNED).as_bool() ? 's' : 'u');
+ f << "<" << cell->getParam(ID::Y_WIDTH).as_int() << ">(";
dump_sigspec_rhs(cell->getPort(ID::A));
f << ", ";
dump_sigspec_rhs(cell->getPort(ID::B));
@@ -931,6 +942,21 @@ struct CxxrtlWorker {
f << " : ";
dump_sigspec_rhs(cell->getPort(ID::A));
f << ")";
+ // Parallel (one-hot) muxes
+ } else if (cell->type == ID($pmux)) {
+ int width = cell->getParam(ID::WIDTH).as_int();
+ int s_width = cell->getParam(ID::S_WIDTH).as_int();
+ for (int part = 0; part < s_width; part++) {
+ f << "(";
+ dump_sigspec_rhs(cell->getPort(ID::S).extract(part));
+ f << " ? ";
+ dump_sigspec_rhs(cell->getPort(ID::B).extract(part * width, width));
+ f << " : ";
+ }
+ dump_sigspec_rhs(cell->getPort(ID::A));
+ for (int part = 0; part < s_width; part++) {
+ f << ")";
+ }
// Concats
} else if (cell->type == ID($concat)) {
dump_sigspec_rhs(cell->getPort(ID::B));
@@ -997,35 +1023,6 @@ struct CxxrtlWorker {
f << " = ";
dump_cell_elided(cell);
f << ";\n";
- // Parallel (one-hot) muxes
- } else if (cell->type == ID($pmux)) {
- int width = cell->getParam(ID::WIDTH).as_int();
- int s_width = cell->getParam(ID::S_WIDTH).as_int();
- bool first = true;
- for (int part = 0; part < s_width; part++) {
- f << (first ? indent : " else ");
- first = false;
- f << "if (";
- dump_sigspec_rhs(cell->getPort(ID::S).extract(part));
- f << ") {\n";
- inc_indent();
- f << indent;
- dump_sigspec_lhs(cell->getPort(ID::Y));
- f << " = ";
- dump_sigspec_rhs(cell->getPort(ID::B).extract(part * width, width));
- f << ";\n";
- dec_indent();
- f << indent << "}";
- }
- f << " else {\n";
- inc_indent();
- f << indent;
- dump_sigspec_lhs(cell->getPort(ID::Y));
- f << " = ";
- dump_sigspec_rhs(cell->getPort(ID::A));
- f << ";\n";
- dec_indent();
- f << indent << "}\n";
// Flip-flops
} else if (is_ff_cell(cell->type)) {
if (cell->hasPort(ID::CLK) && cell->getPort(ID::CLK).is_wire()) {
@@ -1035,7 +1032,7 @@ struct CxxrtlWorker {
f << indent << "if (" << (cell->getParam(ID::CLK_POLARITY).as_bool() ? "posedge_" : "negedge_")
<< mangle(clk_bit) << ") {\n";
inc_indent();
- if (cell->type == ID($dffe)) {
+ if (cell->hasPort(ID::EN)) {
f << indent << "if (";
dump_sigspec_rhs(cell->getPort(ID::EN));
f << " == value<1> {" << cell->getParam(ID::EN_POLARITY).as_bool() << "u}) {\n";
@@ -1046,7 +1043,24 @@ struct CxxrtlWorker {
f << " = ";
dump_sigspec_rhs(cell->getPort(ID::D));
f << ";\n";
- if (cell->type == ID($dffe)) {
+ if (cell->hasPort(ID::EN) && cell->type != ID($sdffce)) {
+ dec_indent();
+ f << indent << "}\n";
+ }
+ if (cell->hasPort(ID::SRST)) {
+ f << indent << "if (";
+ dump_sigspec_rhs(cell->getPort(ID::SRST));
+ f << " == value<1> {" << cell->getParam(ID::SRST_POLARITY).as_bool() << "u}) {\n";
+ inc_indent();
+ f << indent;
+ dump_sigspec_lhs(cell->getPort(ID::Q));
+ f << " = ";
+ dump_const(cell->getParam(ID::SRST_VALUE));
+ f << ";\n";
+ dec_indent();
+ f << indent << "}\n";
+ }
+ if (cell->hasPort(ID::EN) && cell->type == ID($sdffce)) {
dec_indent();
f << indent << "}\n";
}
@@ -1137,31 +1151,33 @@ struct CxxrtlWorker {
f << indent << "if(" << valid_index_temp << ".valid) {\n";
inc_indent();
if (writable_memories[memory]) {
- std::string addr_temp = fresh_temporary();
- f << indent << "const value<" << cell->getPort(ID::ADDR).size() << "> &" << addr_temp << " = ";
- dump_sigspec_rhs(cell->getPort(ID::ADDR));
- f << ";\n";
std::string lhs_temp = fresh_temporary();
f << indent << "value<" << memory->width << "> " << lhs_temp << " = "
<< mangle(memory) << "[" << valid_index_temp << ".index];\n";
std::vector<const RTLIL::Cell*> memwr_cells(transparent_for[cell].begin(), transparent_for[cell].end());
- std::sort(memwr_cells.begin(), memwr_cells.end(),
- [](const RTLIL::Cell *a, const RTLIL::Cell *b) {
- return a->getParam(ID::PRIORITY).as_int() < b->getParam(ID::PRIORITY).as_int();
- });
- for (auto memwr_cell : memwr_cells) {
- f << indent << "if (" << addr_temp << " == ";
- dump_sigspec_rhs(memwr_cell->getPort(ID::ADDR));
- f << ") {\n";
- inc_indent();
- f << indent << lhs_temp << " = " << lhs_temp;
- f << ".update(";
- dump_sigspec_rhs(memwr_cell->getPort(ID::DATA));
- f << ", ";
- dump_sigspec_rhs(memwr_cell->getPort(ID::EN));
- f << ");\n";
- dec_indent();
- f << indent << "}\n";
+ if (!memwr_cells.empty()) {
+ std::string addr_temp = fresh_temporary();
+ f << indent << "const value<" << cell->getPort(ID::ADDR).size() << "> &" << addr_temp << " = ";
+ dump_sigspec_rhs(cell->getPort(ID::ADDR));
+ f << ";\n";
+ std::sort(memwr_cells.begin(), memwr_cells.end(),
+ [](const RTLIL::Cell *a, const RTLIL::Cell *b) {
+ return a->getParam(ID::PRIORITY).as_int() < b->getParam(ID::PRIORITY).as_int();
+ });
+ for (auto memwr_cell : memwr_cells) {
+ f << indent << "if (" << addr_temp << " == ";
+ dump_sigspec_rhs(memwr_cell->getPort(ID::ADDR));
+ f << ") {\n";
+ inc_indent();
+ f << indent << lhs_temp << " = " << lhs_temp;
+ f << ".update(";
+ dump_sigspec_rhs(memwr_cell->getPort(ID::DATA));
+ f << ", ";
+ dump_sigspec_rhs(memwr_cell->getPort(ID::EN));
+ f << ");\n";
+ dec_indent();
+ f << indent << "}\n";
+ }
}
f << indent;
dump_sigspec_lhs(cell->getPort(ID::DATA));
@@ -1423,13 +1439,12 @@ struct CxxrtlWorker {
{
if (elided_wires.count(wire))
return;
- if (localized_wires.count(wire) != is_local_context)
- return;
- if (is_local_context) {
+ if (localized_wires[wire] && is_local_context) {
dump_attrs(wire);
f << indent << "value<" << wire->width << "> " << mangle(wire) << ";\n";
- } else {
+ }
+ if (!localized_wires[wire] && !is_local_context) {
std::string width;
if (wire->module->has_attribute(ID(cxxrtl_blackbox)) && wire->has_attribute(ID(cxxrtl_width))) {
width = wire->get_string_attribute(ID(cxxrtl_width));
@@ -1438,14 +1453,21 @@ struct CxxrtlWorker {
}
dump_attrs(wire);
- f << indent << (is_input_wire(wire) ? "value" : "wire") << "<" << width << "> " << mangle(wire);
+ f << indent;
+ if (wire->port_input && wire->port_output)
+ f << "/*inout*/ ";
+ else if (wire->port_input)
+ f << "/*input*/ ";
+ else if (wire->port_output)
+ f << "/*output*/ ";
+ f << (unbuffered_wires[wire] ? "value" : "wire") << "<" << width << "> " << mangle(wire);
if (wire->has_attribute(ID::init)) {
f << " ";
dump_const_init(wire->attributes.at(ID::init));
}
f << ";\n";
if (edge_wires[wire]) {
- if (is_input_wire(wire)) {
+ if (unbuffered_wires[wire]) {
f << indent << "value<" << width << "> prev_" << mangle(wire);
if (wire->has_attribute(ID::init)) {
f << " ";
@@ -1456,7 +1478,7 @@ struct CxxrtlWorker {
for (auto edge_type : edge_types) {
if (edge_type.first.wire == wire) {
std::string prev, next;
- if (is_input_wire(wire)) {
+ if (unbuffered_wires[wire]) {
prev = "prev_" + mangle(edge_type.first.wire);
next = mangle(edge_type.first.wire);
} else {
@@ -1579,9 +1601,9 @@ struct CxxrtlWorker {
inc_indent();
f << indent << "bool changed = false;\n";
for (auto wire : module->wires()) {
- if (elided_wires.count(wire) || localized_wires.count(wire))
+ if (elided_wires.count(wire))
continue;
- if (is_input_wire(wire)) {
+ if (unbuffered_wires[wire]) {
if (edge_wires[wire])
f << indent << "prev_" << mangle(wire) << " = " << mangle(wire) << ";\n";
continue;
@@ -1608,6 +1630,7 @@ struct CxxrtlWorker {
void dump_debug_info_method(RTLIL::Module *module)
{
+ size_t count_public_wires = 0;
size_t count_const_wires = 0;
size_t count_alias_wires = 0;
size_t count_member_wires = 0;
@@ -1617,48 +1640,58 @@ struct CxxrtlWorker {
for (auto wire : module->wires()) {
if (wire->name[0] != '\\')
continue;
+ if (module->get_bool_attribute(ID(cxxrtl_blackbox)) && (wire->port_id == 0))
+ continue;
+ count_public_wires++;
if (debug_const_wires.count(wire)) {
// Wire tied to a constant
f << indent << "static const value<" << wire->width << "> const_" << mangle(wire) << " = ";
dump_const(debug_const_wires[wire]);
f << ";\n";
- f << indent << "items.emplace(path + " << escape_cxx_string(get_hdl_name(wire));
- f << ", debug_item(const_" << mangle(wire) << "));\n";
+ f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(wire));
+ f << ", debug_item(const_" << mangle(wire) << ", ";
+ f << wire->start_offset << "));\n";
count_const_wires++;
} else if (debug_alias_wires.count(wire)) {
// Alias of a member wire
- f << indent << "items.emplace(path + " << escape_cxx_string(get_hdl_name(wire));
- f << ", debug_item(" << mangle(debug_alias_wires[wire]) << "));\n";
+ f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(wire));
+ f << ", debug_item(debug_alias(), " << mangle(debug_alias_wires[wire]) << ", ";
+ f << wire->start_offset << "));\n";
count_alias_wires++;
} else if (!localized_wires.count(wire)) {
// Member wire
- f << indent << "items.emplace(path + " << escape_cxx_string(get_hdl_name(wire));
- f << ", debug_item(" << mangle(wire) << "));\n";
+ f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(wire));
+ f << ", debug_item(" << mangle(wire) << ", ";
+ f << wire->start_offset << "));\n";
count_member_wires++;
} else {
count_skipped_wires++;
}
}
- for (auto &memory_it : module->memories) {
- if (memory_it.first[0] != '\\')
- continue;
- f << indent << "items.emplace(path + " << escape_cxx_string(get_hdl_name(memory_it.second));
- f << ", debug_item(" << mangle(memory_it.second) << "));\n";
- }
- for (auto cell : module->cells()) {
- if (is_internal_cell(cell->type))
- continue;
- const char *access = is_cxxrtl_blackbox_cell(cell) ? "->" : ".";
- f << indent << mangle(cell) << access << "debug_info(items, ";
- f << "path + " << escape_cxx_string(get_hdl_name(cell) + ' ') << ");\n";
+ if (!module->get_bool_attribute(ID(cxxrtl_blackbox))) {
+ for (auto &memory_it : module->memories) {
+ if (memory_it.first[0] != '\\')
+ continue;
+ f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(memory_it.second));
+ f << ", debug_item(" << mangle(memory_it.second) << ", ";
+ f << memory_it.second->start_offset << "));\n";
+ }
+ for (auto cell : module->cells()) {
+ if (is_internal_cell(cell->type))
+ continue;
+ const char *access = is_cxxrtl_blackbox_cell(cell) ? "->" : ".";
+ f << indent << mangle(cell) << access << "debug_info(items, ";
+ f << "path + " << escape_cxx_string(get_hdl_name(cell) + ' ') << ");\n";
+ }
}
dec_indent();
- log_debug("Debug information statistics for module %s:\n", log_id(module));
- log_debug(" Const wires: %zu\n", count_const_wires);
- log_debug(" Alias wires: %zu\n", count_alias_wires);
- log_debug(" Member wires: %zu\n", count_member_wires);
- log_debug(" Other wires: %zu (no debug information)\n", count_skipped_wires);
+ log_debug("Debug information statistics for module `%s':\n", log_id(module));
+ log_debug(" Public wires: %zu, of which:\n", count_public_wires);
+ log_debug(" Const wires: %zu\n", count_const_wires);
+ log_debug(" Alias wires: %zu\n", count_alias_wires);
+ log_debug(" Member wires: %zu\n", count_member_wires);
+ log_debug(" Other wires: %zu (no debug information)\n", count_skipped_wires);
}
void dump_metadata_map(const dict<RTLIL::IdString, RTLIL::Const> &metadata_map)
@@ -1829,7 +1862,8 @@ struct CxxrtlWorker {
topo_design.edge(cell_module, module);
}
}
- log_assert(topo_design.sort());
+ bool no_loops = topo_design.sort();
+ log_assert(no_loops);
modules.insert(modules.end(), topo_design.sorted.begin(), topo_design.sorted.end());
if (split_intf) {
@@ -1901,10 +1935,12 @@ struct CxxrtlWorker {
f << "} // namespace " << design_ns << "\n";
f << "\n";
if (top_module != nullptr && debug_info) {
+ f << "extern \"C\"\n";
f << "cxxrtl_toplevel " << design_ns << "_create() {\n";
inc_indent();
+ std::string top_type = design_ns + "::" + mangle(top_module);
f << indent << "return new _cxxrtl_toplevel { ";
- f << "std::make_unique<" << design_ns << "::" << mangle(top_module) << ">()";
+ f << "std::unique_ptr<" << top_type << ">(new " + top_type + ")";
f << " };\n";
dec_indent();
f << "}\n";
@@ -1938,7 +1974,7 @@ struct CxxrtlWorker {
void analyze_design(RTLIL::Design *design)
{
bool has_feedback_arcs = false;
- bool has_buffered_wires = false;
+ bool has_buffered_comb_wires = false;
for (auto module : design->modules()) {
if (!design->selected_module(module))
@@ -1950,6 +1986,8 @@ struct CxxrtlWorker {
if (module->get_bool_attribute(ID(cxxrtl_blackbox))) {
for (auto port : module->ports) {
RTLIL::Wire *wire = module->wire(port);
+ if (wire->port_input && !wire->port_output)
+ unbuffered_wires.insert(wire);
if (wire->has_attribute(ID(cxxrtl_edge))) {
RTLIL::Const edge_attr = wire->attributes[ID(cxxrtl_edge)];
if (!(edge_attr.flags & RTLIL::CONST_FLAG_STRING) || (int)edge_attr.decode_string().size() != GetSize(wire))
@@ -2005,7 +2043,7 @@ struct CxxrtlWorker {
FlowGraph::Node *node = flow.add_node(cell);
// Various DFF cells are treated like posedge/negedge processes, see above for details.
- if (cell->type.in(ID($dff), ID($dffe), ID($adff), ID($dffsr))) {
+ if (cell->type.in(ID($dff), ID($dffe), ID($adff), ID($adffe), ID($dffsr), ID($dffsre), ID($sdff), ID($sdffe), ID($sdffce))) {
if (cell->getPort(ID::CLK).is_wire())
register_edge_signal(sigmap, cell->getPort(ID::CLK),
cell->parameters[ID::CLK_POLARITY].as_bool() ? RTLIL::STp : RTLIL::STn);
@@ -2134,17 +2172,20 @@ struct CxxrtlWorker {
log("Module `%s' contains feedback arcs through wires:\n", log_id(module));
for (auto wire : feedback_wires)
log(" %s\n", log_id(wire));
- log("\n");
}
for (auto wire : module->wires()) {
if (feedback_wires[wire]) continue;
- if (wire->port_id != 0) continue;
+ if (wire->port_output && !module->get_bool_attribute(ID::top)) continue;
+ if (wire->name.begins_with("$") && !unbuffer_internal) continue;
+ if (wire->name.begins_with("\\") && !unbuffer_public) continue;
+ if (flow.wire_sync_defs.count(wire) > 0) continue;
+ unbuffered_wires.insert(wire);
+ if (edge_wires[wire]) continue;
if (wire->get_bool_attribute(ID::keep)) continue;
+ if (wire->port_input || wire->port_output) continue;
if (wire->name.begins_with("$") && !localize_internal) continue;
if (wire->name.begins_with("\\") && !localize_public) continue;
- if (edge_wires[wire]) continue;
- if (flow.wire_sync_defs.count(wire) > 0) continue;
localized_wires.insert(wire);
}
@@ -2154,22 +2195,19 @@ struct CxxrtlWorker {
// it is possible that a design with no feedback arcs would end up with doubly buffered wires in such cases
// as a wire with multiple drivers where one of them is combinatorial and the other is synchronous. Such designs
// also require more than one delta cycle to converge.
- pool<const RTLIL::Wire*> buffered_wires;
+ pool<const RTLIL::Wire*> buffered_comb_wires;
for (auto wire : module->wires()) {
- if (flow.wire_comb_defs[wire].size() > 0 && !elided_wires.count(wire) && !localized_wires[wire]) {
- if (!feedback_wires[wire])
- buffered_wires.insert(wire);
- }
+ if (flow.wire_comb_defs[wire].size() > 0 && !unbuffered_wires[wire] && !feedback_wires[wire])
+ buffered_comb_wires.insert(wire);
}
- if (!buffered_wires.empty()) {
- has_buffered_wires = true;
+ if (!buffered_comb_wires.empty()) {
+ has_buffered_comb_wires = true;
log("Module `%s' contains buffered combinatorial wires:\n", log_id(module));
- for (auto wire : buffered_wires)
+ for (auto wire : buffered_comb_wires)
log(" %s\n", log_id(wire));
- log("\n");
}
- eval_converges[module] = feedback_wires.empty() && buffered_wires.empty();
+ eval_converges[module] = feedback_wires.empty() && buffered_comb_wires.empty();
if (debug_info) {
// Find wires that alias other wires or are tied to a constant; debug information can be enriched with these
@@ -2180,7 +2218,7 @@ struct CxxrtlWorker {
for (auto wire : module->wires()) {
if (wire->name[0] != '\\')
continue;
- if (!localized_wires[wire])
+ if (!unbuffered_wires[wire])
continue;
const RTLIL::Wire *wire_it = wire;
while (1) {
@@ -2193,7 +2231,7 @@ struct CxxrtlWorker {
RTLIL::SigSpec rhs_sig = node->connect.second;
if (rhs_sig.is_wire()) {
RTLIL::Wire *rhs_wire = rhs_sig.as_wire();
- if (localized_wires[rhs_wire]) {
+ if (unbuffered_wires[rhs_wire]) {
wire_it = rhs_wire; // maybe an alias
} else {
debug_alias_wires[wire] = rhs_wire; // is an alias
@@ -2209,18 +2247,20 @@ struct CxxrtlWorker {
}
}
}
- if (has_feedback_arcs || has_buffered_wires) {
+ if (has_feedback_arcs || has_buffered_comb_wires) {
// Although both non-feedback buffered combinatorial wires and apparent feedback wires may be eliminated
// by optimizing the design, if after `proc; flatten` there are any feedback wires remaining, it is very
// likely that these feedback wires are indicative of a true logic loop, so they get emphasized in the message.
const char *why_pessimistic = nullptr;
if (has_feedback_arcs)
why_pessimistic = "feedback wires";
- else if (has_buffered_wires)
+ else if (has_buffered_comb_wires)
why_pessimistic = "buffered combinatorial wires";
log_warning("Design contains %s, which require delta cycles during evaluation.\n", why_pessimistic);
- if (!max_opt_level)
- log("Increasing the optimization level may eliminate %s from the design.\n", why_pessimistic);
+ if (!run_flatten)
+ log("Flattening may eliminate %s from the design.\n", why_pessimistic);
+ if (!run_proc)
+ log("Converting processes to netlists may eliminate %s from the design.\n", why_pessimistic);
}
}
@@ -2255,10 +2295,13 @@ struct CxxrtlWorker {
bool has_sync_init, has_packed_mem;
log_push();
check_design(design, has_sync_init, has_packed_mem);
- if (run_proc_flatten) {
- Pass::call(design, "proc");
+ if (run_flatten) {
Pass::call(design, "flatten");
did_anything = true;
+ }
+ if (run_proc) {
+ Pass::call(design, "proc");
+ did_anything = true;
} else if (has_sync_init) {
// We're only interested in proc_init, but it depends on proc_prune and proc_clean, so call those
// in case they weren't already. (This allows `yosys foo.v -o foo.cc` to work.)
@@ -2283,11 +2326,12 @@ struct CxxrtlWorker {
};
struct CxxrtlBackend : public Backend {
- static const int DEFAULT_OPT_LEVEL = 5;
+ static const int DEFAULT_OPT_LEVEL = 6;
+ static const int OPT_LEVEL_DEBUG = 4;
static const int DEFAULT_DEBUG_LEVEL = 1;
CxxrtlBackend() : Backend("cxxrtl", "convert design to C++ RTL simulation") { }
- void help() YS_OVERRIDE
+ void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
@@ -2306,9 +2350,9 @@ struct CxxrtlBackend : public Backend {
log(" top.step();\n");
log(" while (1) {\n");
log(" /* user logic */\n");
- log(" top.p_clk = value<1> {0u};\n");
+ log(" top.p_clk.set(false);\n");
log(" top.step();\n");
- log(" top.p_clk = value<1> {1u};\n");
+ log(" top.p_clk.set(true);\n");
log(" top.step();\n");
log(" }\n");
log(" }\n");
@@ -2455,6 +2499,17 @@ struct CxxrtlBackend : public Backend {
log(" place the generated code into namespace <ns-name>. if not specified,\n");
log(" \"cxxrtl_design\" is used.\n");
log("\n");
+ log(" -noflatten\n");
+ log(" don't flatten the design. fully flattened designs can evaluate within\n");
+ log(" one delta cycle if they have no combinatorial feedback.\n");
+ log(" note that the debug interface and waveform dumps use full hierarchical\n");
+ log(" names for all wires even in flattened designs.\n");
+ log("\n");
+ log(" -noproc\n");
+ log(" don't convert processes to netlists. in most designs, converting\n");
+ log(" processes significantly improves evaluation performance at the cost of\n");
+ log(" slight increase in compilation time.\n");
+ log("\n");
log(" -O <level>\n");
log(" set the optimization level. the default is -O%d. higher optimization\n", DEFAULT_OPT_LEVEL);
log(" levels dramatically decrease compile and run time, and highest level\n");
@@ -2464,19 +2519,26 @@ struct CxxrtlBackend : public Backend {
log(" no optimization.\n");
log("\n");
log(" -O1\n");
- log(" elide internal wires if possible.\n");
+ log(" localize internal wires if possible.\n");
log("\n");
log(" -O2\n");
- log(" like -O1, and localize internal wires if possible.\n");
+ log(" like -O1, and unbuffer internal wires if possible.\n");
log("\n");
log(" -O3\n");
- log(" like -O2, and elide public wires not marked (*keep*) if possible.\n");
+ log(" like -O2, and elide internal wires if possible.\n");
log("\n");
log(" -O4\n");
- log(" like -O3, and localize public wires not marked (*keep*) if possible.\n");
+ log(" like -O3, and unbuffer public wires not marked (*keep*) if possible.\n");
log("\n");
log(" -O5\n");
- log(" like -O4, and run `proc; flatten` first.\n");
+ log(" like -O4, and localize public wires not marked (*keep*) if possible.\n");
+ log("\n");
+ log(" -O6\n");
+ log(" like -O5, and elide public wires not marked (*keep*) if possible.\n");
+ log("\n");
+ log(" -Og\n");
+ log(" highest optimization level that provides debug information for all\n");
+ log(" public wires. currently, alias for -O%d.\n", OPT_LEVEL_DEBUG);
log("\n");
log(" -g <level>\n");
log(" set the debug level. the default is -g%d. higher debug levels provide\n", DEFAULT_DEBUG_LEVEL);
@@ -2491,8 +2553,10 @@ struct CxxrtlBackend : public Backend {
log("\n");
}
- void execute(std::ostream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
+ void execute(std::ostream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) override
{
+ bool noflatten = false;
+ bool noproc = false;
int opt_level = DEFAULT_OPT_LEVEL;
int debug_level = DEFAULT_DEBUG_LEVEL;
CxxrtlWorker worker;
@@ -2502,6 +2566,23 @@ struct CxxrtlBackend : public Backend {
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++)
{
+ if (args[argidx] == "-noflatten") {
+ noflatten = true;
+ continue;
+ }
+ if (args[argidx] == "-noproc") {
+ noproc = true;
+ continue;
+ }
+ if (args[argidx] == "-Og") {
+ opt_level = OPT_LEVEL_DEBUG;
+ continue;
+ }
+ if (args[argidx] == "-O" && argidx+1 < args.size() && args[argidx+1] == "g") {
+ argidx++;
+ opt_level = OPT_LEVEL_DEBUG;
+ continue;
+ }
if (args[argidx] == "-O" && argidx+1 < args.size()) {
opt_level = std::stoi(args[++argidx]);
continue;
@@ -2530,30 +2611,33 @@ struct CxxrtlBackend : public Backend {
}
extra_args(f, filename, args, argidx);
+ worker.run_flatten = !noflatten;
+ worker.run_proc = !noproc;
switch (opt_level) {
// the highest level here must match DEFAULT_OPT_LEVEL
+ case 6:
+ worker.elide_public = true;
+ YS_FALLTHROUGH
case 5:
- worker.max_opt_level = true;
- worker.run_proc_flatten = true;
+ worker.localize_public = true;
YS_FALLTHROUGH
case 4:
- worker.localize_public = true;
+ worker.unbuffer_public = true;
YS_FALLTHROUGH
case 3:
- worker.elide_public = true;
+ worker.elide_internal = true;
YS_FALLTHROUGH
case 2:
worker.localize_internal = true;
YS_FALLTHROUGH
case 1:
- worker.elide_internal = true;
+ worker.unbuffer_internal = true;
YS_FALLTHROUGH
case 0:
break;
default:
log_cmd_error("Invalid optimization level %d.\n", opt_level);
}
-
switch (debug_level) {
// the highest level here must match DEFAULT_DEBUG_LEVEL
case 1:
diff --git a/backends/cxxrtl/cxxrtl_capi.cc b/backends/cxxrtl/cxxrtl_capi.cc
index 489d72da5..b77e4c491 100644
--- a/backends/cxxrtl/cxxrtl_capi.cc
+++ b/backends/cxxrtl/cxxrtl_capi.cc
@@ -43,18 +43,29 @@ void cxxrtl_destroy(cxxrtl_handle handle) {
delete handle;
}
+int cxxrtl_eval(cxxrtl_handle handle) {
+ return handle->module->eval();
+}
+
+int cxxrtl_commit(cxxrtl_handle handle) {
+ return handle->module->commit();
+}
+
size_t cxxrtl_step(cxxrtl_handle handle) {
return handle->module->step();
}
-cxxrtl_object *cxxrtl_get(cxxrtl_handle handle, const char *name) {
- if (handle->objects.count(name) > 0)
- return static_cast<cxxrtl_object*>(&handle->objects.at(name));
- return nullptr;
+struct cxxrtl_object *cxxrtl_get_parts(cxxrtl_handle handle, const char *name, size_t *parts) {
+ auto it = handle->objects.table.find(name);
+ if (it == handle->objects.table.end())
+ return nullptr;
+ *parts = it->second.size();
+ return static_cast<cxxrtl_object*>(&it->second[0]);
}
void cxxrtl_enum(cxxrtl_handle handle, void *data,
- void (*callback)(void *data, const char *name, cxxrtl_object *object)) {
- for (auto &it : handle->objects)
- callback(data, it.first.c_str(), static_cast<cxxrtl_object*>(&it.second));
+ void (*callback)(void *data, const char *name,
+ cxxrtl_object *object, size_t parts)) {
+ for (auto &it : handle->objects.table)
+ callback(data, it.first.c_str(), static_cast<cxxrtl_object*>(&it.second[0]), it.second.size());
}
diff --git a/backends/cxxrtl/cxxrtl_capi.h b/backends/cxxrtl/cxxrtl_capi.h
index 46aa662b2..1f1942803 100644
--- a/backends/cxxrtl/cxxrtl_capi.h
+++ b/backends/cxxrtl/cxxrtl_capi.h
@@ -26,6 +26,7 @@
#include <stddef.h>
#include <stdint.h>
+#include <assert.h>
#ifdef __cplusplus
extern "C" {
@@ -54,6 +55,18 @@ cxxrtl_handle cxxrtl_create(cxxrtl_toplevel design);
// Release all resources used by a design and its handle.
void cxxrtl_destroy(cxxrtl_handle handle);
+// Evaluate the design, propagating changes on inputs to the `next` value of internal state and
+// output wires.
+//
+// Returns 1 if the design is known to immediately converge, 0 otherwise.
+int cxxrtl_eval(cxxrtl_handle handle);
+
+// Commit the design, replacing the `curr` value of internal state and output wires with the `next`
+// value.
+//
+// Return 1 if any of the `curr` values were updated, 0 otherwise.
+int cxxrtl_commit(cxxrtl_handle handle);
+
// Simulate the design to a fixed point.
//
// Returns the number of delta cycles.
@@ -89,7 +102,14 @@ enum cxxrtl_type {
// always NULL.
CXXRTL_MEMORY = 2,
- // More object types will be added in the future, but the existing ones will never change.
+ // Aliases correspond to netlist nodes driven by another node such that their value is always
+ // exactly equal, or driven by a constant value.
+ //
+ // Aliases can be inspected via the `curr` pointer. They cannot be modified, and the `next`
+ // pointer is always NULL.
+ CXXRTL_ALIAS = 3,
+
+ // More object types may be added in the future, but the existing ones will never change.
};
// Description of a simulated object.
@@ -106,9 +126,15 @@ struct cxxrtl_object {
// Width of the object in bits.
size_t width;
+ // Index of the least significant bit.
+ size_t lsb_at;
+
// Depth of the object. Only meaningful for memories; for other objects, always 1.
size_t depth;
+ // Index of the first word. Only meaningful for memories; for other objects, always 0;
+ size_t zero_at;
+
// Bits stored in the object, as 32-bit chunks, least significant bits first.
//
// The width is rounded up to a multiple of 32; the padding bits are always set to 0 by
@@ -123,7 +149,7 @@ struct cxxrtl_object {
uint32_t *curr;
uint32_t *next;
- // More description fields will be added in the future, but the existing ones will never change.
+ // More description fields may be added in the future, but the existing ones will never change.
};
// Retrieve description of a simulated object.
@@ -133,17 +159,36 @@ struct cxxrtl_object {
// the top-level module instantiates a module `foo`, which in turn contains a wire `bar`, the full
// hierarchical name is `\foo \bar`.
//
-// Returns the object if it was found, NULL otherwise. The returned value is valid until the design
-// is destroyed.
-struct cxxrtl_object *cxxrtl_get(cxxrtl_handle handle, const char *name);
+// The storage of a single abstract object may be split (usually with the `splitnets` pass) into
+// many physical parts, all of which correspond to the same hierarchical name. To handle such cases,
+// this function returns an array and writes its length to `parts`. The array is sorted by `lsb_at`.
+//
+// Returns the object parts if it was found, NULL otherwise. The returned parts are valid until
+// the design is destroyed.
+struct cxxrtl_object *cxxrtl_get_parts(cxxrtl_handle handle, const char *name, size_t *parts);
+
+// Retrieve description of a single part simulated object.
+//
+// This function is a shortcut for the most common use of `cxxrtl_get_parts`. It asserts that,
+// if the object exists, it consists of a single part. If assertions are disabled, it returns NULL
+// for multi-part objects.
+inline struct cxxrtl_object *cxxrtl_get(cxxrtl_handle handle, const char *name) {
+ size_t parts = 0;
+ struct cxxrtl_object *object = cxxrtl_get_parts(handle, name, &parts);
+ assert(object == NULL || parts == 1);
+ if (object == NULL || parts == 1)
+ return object;
+ return NULL;
+}
// Enumerate simulated objects.
//
// For every object in the simulation, `callback` is called with the provided `data`, the full
-// hierarchical name of the object (see `cxxrtl_get` for details), and the object description.
+// hierarchical name of the object (see `cxxrtl_get` for details), and the object parts.
// The provided `name` and `object` values are valid until the design is destroyed.
void cxxrtl_enum(cxxrtl_handle handle, void *data,
- void (*callback)(void *data, const char *name, struct cxxrtl_object *object));
+ void (*callback)(void *data, const char *name,
+ struct cxxrtl_object *object, size_t parts));
#ifdef __cplusplus
}
diff --git a/backends/cxxrtl/cxxrtl_vcd.h b/backends/cxxrtl/cxxrtl_vcd.h
index 5f5f612b5..dbeabbaf2 100644
--- a/backends/cxxrtl/cxxrtl_vcd.h
+++ b/backends/cxxrtl/cxxrtl_vcd.h
@@ -66,11 +66,19 @@ class vcd_writer {
} while (ident != 0);
}
- void emit_var(const variable &var, const std::string &type, const std::string &name) {
+ void emit_var(const variable &var, const std::string &type, const std::string &name,
+ size_t lsb_at, bool multipart) {
assert(!streaming);
buffer += "$var " + type + " " + std::to_string(var.width) + " ";
emit_ident(var.ident);
- buffer += " " + name + " $end\n";
+ buffer += " " + name;
+ if (multipart || name.back() == ']' || lsb_at != 0) {
+ if (var.width == 1)
+ buffer += " [" + std::to_string(lsb_at) + "]";
+ else
+ buffer += " [" + std::to_string(lsb_at + var.width - 1) + ":" + std::to_string(lsb_at) + "]";
+ }
+ buffer += " $end\n";
}
void emit_enddefinitions() {
@@ -104,13 +112,13 @@ class vcd_writer {
buffer += '\n';
}
- const variable &register_variable(size_t width, chunk_t *curr, bool immutable = false) {
+ const variable &register_variable(size_t width, chunk_t *curr, bool constant = false) {
if (aliases.count(curr)) {
return variables[aliases[curr]];
} else {
const size_t chunks = (width + (sizeof(chunk_t) * 8 - 1)) / (sizeof(chunk_t) * 8);
aliases[curr] = variables.size();
- if (immutable) {
+ if (constant) {
variables.emplace_back(variable { variables.size(), width, curr, (size_t)-1 });
} else {
variables.emplace_back(variable { variables.size(), width, curr, cache.size() });
@@ -122,7 +130,7 @@ class vcd_writer {
bool test_variable(const variable &var) {
if (var.prev_off == (size_t)-1)
- return false; // immutable
+ return false; // constant
const size_t chunks = (var.width + (sizeof(chunk_t) * 8 - 1)) / (sizeof(chunk_t) * 8);
if (std::equal(&var.curr[0], &var.curr[chunks], &cache[var.prev_off])) {
return false;
@@ -136,14 +144,14 @@ class vcd_writer {
std::vector<std::string> hierarchy;
size_t prev = 0;
while (true) {
- size_t curr = hier_name.find_first_of(' ', prev + 1);
- if (curr > hier_name.size())
- curr = hier_name.size();
- if (curr > prev + 1)
- hierarchy.push_back(hier_name.substr(prev, curr - prev));
- if (curr == hier_name.size())
+ size_t curr = hier_name.find_first_of(' ', prev);
+ if (curr == std::string::npos) {
+ hierarchy.push_back(hier_name.substr(prev));
break;
- prev = curr + 1;
+ } else {
+ hierarchy.push_back(hier_name.substr(prev, curr - prev));
+ prev = curr + 1;
+ }
}
return hierarchy;
}
@@ -155,7 +163,7 @@ public:
emit_timescale(number, unit);
}
- void add(const std::string &hier_name, const debug_item &item) {
+ void add(const std::string &hier_name, const debug_item &item, bool multipart = false) {
std::vector<std::string> scope = split_hierarchy(hier_name);
std::string name = scope.back();
scope.pop_back();
@@ -164,20 +172,31 @@ public:
switch (item.type) {
// Not the best naming but oh well...
case debug_item::VALUE:
- emit_var(register_variable(item.width, item.curr, /*immutable=*/item.next == nullptr), "wire", name);
+ emit_var(register_variable(item.width, item.curr, /*constant=*/item.next == nullptr),
+ "wire", name, item.lsb_at, multipart);
break;
case debug_item::WIRE:
- emit_var(register_variable(item.width, item.curr), "reg", name);
+ emit_var(register_variable(item.width, item.curr),
+ "reg", name, item.lsb_at, multipart);
break;
case debug_item::MEMORY: {
const size_t stride = (item.width + (sizeof(chunk_t) * 8 - 1)) / (sizeof(chunk_t) * 8);
for (size_t index = 0; index < item.depth; index++) {
chunk_t *nth_curr = &item.curr[stride * index];
std::string nth_name = name + '[' + std::to_string(index) + ']';
- emit_var(register_variable(item.width, nth_curr), "reg", nth_name);
+ emit_var(register_variable(item.width, nth_curr),
+ "reg", nth_name, item.lsb_at, multipart);
}
break;
}
+ case debug_item::ALIAS:
+ // Like VALUE, but, even though `item.next == nullptr` always holds, the underlying value
+ // can actually change, and must be tracked. In most cases the VCD identifier will be
+ // unified with the aliased reg, but we should handle the case where only the alias is
+ // added to the VCD writer, too.
+ emit_var(register_variable(item.width, item.curr),
+ "wire", name, item.lsb_at, multipart);
+ break;
}
}
@@ -185,9 +204,10 @@ public:
void add(const debug_items &items, const Filter &filter) {
// `debug_items` is a map, so the items are already sorted in an order optimal for emitting
// VCD scope sections.
- for (auto &it : items)
- if (filter(it.first, it.second))
- add(it.first, it.second);
+ for (auto &it : items.table)
+ for (auto &part : it.second)
+ if (filter(it.first, part))
+ add(it.first, part, it.second.size() > 1);
}
void add(const debug_items &items) {
@@ -198,7 +218,7 @@ public:
void add_without_memories(const debug_items &items) {
this->template add(items, [](const std::string &, const debug_item &item) {
- return item.type == debug_item::VALUE || item.type == debug_item::WIRE;
+ return item.type != debug_item::MEMORY;
});
}
diff --git a/backends/cxxrtl/cxxrtl_vcd_capi.cc b/backends/cxxrtl/cxxrtl_vcd_capi.cc
index 46e4f1c45..52a9198b8 100644
--- a/backends/cxxrtl/cxxrtl_vcd_capi.cc
+++ b/backends/cxxrtl/cxxrtl_vcd_capi.cc
@@ -44,7 +44,7 @@ void cxxrtl_vcd_add(cxxrtl_vcd vcd, const char *name, cxxrtl_object *object) {
// Note the copy. We don't know whether `object` came from a design (in which case it is
// an instance of `debug_item`), or from user code (in which case it is an instance of
// `cxxrtl_object`), so casting the pointer wouldn't be safe.
- vcd->writer.add(name, debug_item(*object));
+ vcd->writer.add(name, cxxrtl::debug_item(*object));
}
void cxxrtl_vcd_add_from(cxxrtl_vcd vcd, cxxrtl_handle handle) {
@@ -55,7 +55,7 @@ void cxxrtl_vcd_add_from_if(cxxrtl_vcd vcd, cxxrtl_handle handle, void *data,
int (*filter)(void *data, const char *name,
const cxxrtl_object *object)) {
vcd->writer.add(cxxrtl_debug_items_from_handle(handle),
- [=](const std::string &name, const debug_item &item) {
+ [=](const std::string &name, const cxxrtl::debug_item &item) {
return filter(data, name.c_str(), static_cast<const cxxrtl_object*>(&item));
});
}
diff --git a/backends/cxxrtl/cxxrtl_vcd_capi.h b/backends/cxxrtl/cxxrtl_vcd_capi.h
index 6a7fb9f47..d55afe223 100644
--- a/backends/cxxrtl/cxxrtl_vcd_capi.h
+++ b/backends/cxxrtl/cxxrtl_vcd_capi.h
@@ -75,8 +75,8 @@ void cxxrtl_vcd_add_from(cxxrtl_vcd vcd, cxxrtl_handle handle);
//
// Objects can only be scheduled before the first call to `cxxrtl_vcd_sample`.
void cxxrtl_vcd_add_from_if(cxxrtl_vcd vcd, cxxrtl_handle handle, void *data,
- int (*filter)(void *data, const char *name,
- const struct cxxrtl_object *object));
+ int (*filter)(void *data, const char *name,
+ const struct cxxrtl_object *object));
// Schedule all CXXRTL objects in a simulation except for memories.
//