diff options
Diffstat (limited to 'passes/memory/memory_share.cc')
-rw-r--r-- | passes/memory/memory_share.cc | 744 |
1 files changed, 744 insertions, 0 deletions
diff --git a/passes/memory/memory_share.cc b/passes/memory/memory_share.cc new file mode 100644 index 000000000..3ae0cd2c7 --- /dev/null +++ b/passes/memory/memory_share.cc @@ -0,0 +1,744 @@ +/* + * yosys -- Yosys Open SYnthesis Suite + * + * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at> + * + * Permission to use, copy, modify, and/or distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + * + */ + +#include "kernel/yosys.h" +#include "kernel/satgen.h" +#include "kernel/sigtools.h" +#include "kernel/modtools.h" + +PRIVATE_NAMESPACE_BEGIN + +static bool memcells_cmp(RTLIL::Cell *a, RTLIL::Cell *b) +{ + if (a->type == "$memrd" && b->type == "$memrd") + return a->name < b->name; + if (a->type == "$memrd" || b->type == "$memrd") + return (a->type == "$memrd") < (b->type == "$memrd"); + return a->parameters.at("\\PRIORITY").as_int() < b->parameters.at("\\PRIORITY").as_int(); +} + +struct MemoryShareWorker +{ + RTLIL::Design *design; + RTLIL::Module *module; + SigMap sigmap, sigmap_xmux; + ModWalker modwalker; + CellTypes cone_ct; + + std::map<RTLIL::SigBit, std::pair<RTLIL::Cell*, int>> sig_to_mux; + std::map<std::set<std::map<RTLIL::SigBit, bool>>, RTLIL::SigBit> conditions_logic_cache; + + + // ----------------------------------------------------------------- + // Converting feedbacks to async read ports to proper enable signals + // ----------------------------------------------------------------- + + bool find_data_feedback(const std::set<RTLIL::SigBit> &async_rd_bits, RTLIL::SigBit sig, + std::map<RTLIL::SigBit, bool> &state, std::set<std::map<RTLIL::SigBit, bool>> &conditions) + { + if (async_rd_bits.count(sig)) { + conditions.insert(state); + return true; + } + + if (sig_to_mux.count(sig) == 0) + return false; + + RTLIL::Cell *cell = sig_to_mux.at(sig).first; + int bit_idx = sig_to_mux.at(sig).second; + + std::vector<RTLIL::SigBit> sig_a = sigmap(cell->getPort("\\A")); + std::vector<RTLIL::SigBit> sig_b = sigmap(cell->getPort("\\B")); + std::vector<RTLIL::SigBit> sig_s = sigmap(cell->getPort("\\S")); + std::vector<RTLIL::SigBit> sig_y = sigmap(cell->getPort("\\Y")); + log_assert(sig_y.at(bit_idx) == sig); + + for (int i = 0; i < int(sig_s.size()); i++) + if (state.count(sig_s[i]) && state.at(sig_s[i]) == true) { + if (find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), state, conditions)) { + RTLIL::SigSpec new_b = cell->getPort("\\B"); + new_b.replace(bit_idx + i*sig_y.size(), RTLIL::State::Sx); + cell->setPort("\\B", new_b); + } + return false; + } + + + for (int i = 0; i < int(sig_s.size()); i++) + { + if (state.count(sig_s[i]) && state.at(sig_s[i]) == false) + continue; + + std::map<RTLIL::SigBit, bool> new_state = state; + new_state[sig_s[i]] = true; + + if (find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), new_state, conditions)) { + RTLIL::SigSpec new_b = cell->getPort("\\B"); + new_b.replace(bit_idx + i*sig_y.size(), RTLIL::State::Sx); + cell->setPort("\\B", new_b); + } + } + + std::map<RTLIL::SigBit, bool> new_state = state; + for (int i = 0; i < int(sig_s.size()); i++) + new_state[sig_s[i]] = false; + + if (find_data_feedback(async_rd_bits, sig_a.at(bit_idx), new_state, conditions)) { + RTLIL::SigSpec new_a = cell->getPort("\\A"); + new_a.replace(bit_idx, RTLIL::State::Sx); + cell->setPort("\\A", new_a); + } + + return false; + } + + RTLIL::SigBit conditions_to_logic(std::set<std::map<RTLIL::SigBit, bool>> &conditions, int &created_conditions) + { + if (conditions_logic_cache.count(conditions)) + return conditions_logic_cache.at(conditions); + + RTLIL::SigSpec terms; + for (auto &cond : conditions) { + RTLIL::SigSpec sig1, sig2; + for (auto &it : cond) { + sig1.append_bit(it.first); + sig2.append_bit(it.second ? RTLIL::State::S1 : RTLIL::State::S0); + } + terms.append(module->Ne(NEW_ID, sig1, sig2)); + created_conditions++; + } + + if (terms.size() > 1) + terms = module->ReduceAnd(NEW_ID, terms); + + return conditions_logic_cache[conditions] = terms; + } + + void translate_rd_feedback_to_en(std::string memid, std::vector<RTLIL::Cell*> &rd_ports, std::vector<RTLIL::Cell*> &wr_ports) + { + std::map<RTLIL::SigSpec, std::vector<std::set<RTLIL::SigBit>>> async_rd_bits; + std::map<RTLIL::SigBit, std::set<RTLIL::SigBit>> muxtree_upstream_map; + std::set<RTLIL::SigBit> non_feedback_nets; + + for (auto wire_it : module->wires_) + if (wire_it.second->port_output) { + std::vector<RTLIL::SigBit> bits = RTLIL::SigSpec(wire_it.second); + non_feedback_nets.insert(bits.begin(), bits.end()); + } + + for (auto cell_it : module->cells_) + { + RTLIL::Cell *cell = cell_it.second; + bool ignore_data_port = false; + + if (cell->type == "$mux" || cell->type == "$pmux") + { + std::vector<RTLIL::SigBit> sig_a = sigmap(cell->getPort("\\A")); + std::vector<RTLIL::SigBit> sig_b = sigmap(cell->getPort("\\B")); + std::vector<RTLIL::SigBit> sig_s = sigmap(cell->getPort("\\S")); + std::vector<RTLIL::SigBit> sig_y = sigmap(cell->getPort("\\Y")); + + non_feedback_nets.insert(sig_s.begin(), sig_s.end()); + + for (int i = 0; i < int(sig_y.size()); i++) { + muxtree_upstream_map[sig_y[i]].insert(sig_a[i]); + for (int j = 0; j < int(sig_s.size()); j++) + muxtree_upstream_map[sig_y[i]].insert(sig_b[i + j*sig_y.size()]); + } + + continue; + } + + if ((cell->type == "$memwr" || cell->type == "$memrd") && + cell->parameters.at("\\MEMID").decode_string() == memid) + ignore_data_port = true; + + for (auto conn : cell_it.second->connections()) + { + if (ignore_data_port && conn.first == "\\DATA") + continue; + std::vector<RTLIL::SigBit> bits = sigmap(conn.second); + non_feedback_nets.insert(bits.begin(), bits.end()); + } + } + + std::set<RTLIL::SigBit> expand_non_feedback_nets = non_feedback_nets; + while (!expand_non_feedback_nets.empty()) + { + std::set<RTLIL::SigBit> new_expand_non_feedback_nets; + + for (auto &bit : expand_non_feedback_nets) + if (muxtree_upstream_map.count(bit)) + for (auto &new_bit : muxtree_upstream_map.at(bit)) + if (!non_feedback_nets.count(new_bit)) { + non_feedback_nets.insert(new_bit); + new_expand_non_feedback_nets.insert(new_bit); + } + + expand_non_feedback_nets.swap(new_expand_non_feedback_nets); + } + + for (auto cell : rd_ports) + { + if (cell->parameters.at("\\CLK_ENABLE").as_bool()) + continue; + + RTLIL::SigSpec sig_addr = sigmap(cell->getPort("\\ADDR")); + std::vector<RTLIL::SigBit> sig_data = sigmap(cell->getPort("\\DATA")); + + for (int i = 0; i < int(sig_data.size()); i++) + if (non_feedback_nets.count(sig_data[i])) + goto not_pure_feedback_port; + + async_rd_bits[sig_addr].resize(std::max(async_rd_bits.size(), sig_data.size())); + for (int i = 0; i < int(sig_data.size()); i++) + async_rd_bits[sig_addr][i].insert(sig_data[i]); + + not_pure_feedback_port:; + } + + if (async_rd_bits.empty()) + return; + + log("Populating enable bits on write ports of memory %s.%s with aync read feedback:\n", log_id(module), log_id(memid)); + + for (auto cell : wr_ports) + { + RTLIL::SigSpec sig_addr = sigmap_xmux(cell->getPort("\\ADDR")); + if (!async_rd_bits.count(sig_addr)) + continue; + + log(" Analyzing write port %s.\n", log_id(cell)); + + std::vector<RTLIL::SigBit> cell_data = cell->getPort("\\DATA"); + std::vector<RTLIL::SigBit> cell_en = cell->getPort("\\EN"); + + int created_conditions = 0; + for (int i = 0; i < int(cell_data.size()); i++) + if (cell_en[i] != RTLIL::SigBit(RTLIL::State::S0)) + { + std::map<RTLIL::SigBit, bool> state; + std::set<std::map<RTLIL::SigBit, bool>> conditions; + + if (cell_en[i].wire != NULL) { + state[cell_en[i]] = false; + conditions.insert(state); + } + + find_data_feedback(async_rd_bits.at(sig_addr).at(i), cell_data[i], state, conditions); + cell_en[i] = conditions_to_logic(conditions, created_conditions); + } + + if (created_conditions) { + log(" Added enable logic for %d different cases.\n", created_conditions); + cell->setPort("\\EN", cell_en); + } + } + } + + + // ------------------------------------------------------ + // Consolidate write ports that write to the same address + // ------------------------------------------------------ + + RTLIL::SigSpec mask_en_naive(RTLIL::SigSpec do_mask, RTLIL::SigSpec bits, RTLIL::SigSpec mask_bits) + { + // this is the naive version of the function that does not care about grouping the EN bits. + + RTLIL::SigSpec inv_mask_bits = module->Not(NEW_ID, mask_bits); + RTLIL::SigSpec inv_mask_bits_filtered = module->Mux(NEW_ID, RTLIL::SigSpec(RTLIL::State::S1, bits.size()), inv_mask_bits, do_mask); + RTLIL::SigSpec result = module->And(NEW_ID, inv_mask_bits_filtered, bits); + return result; + } + + RTLIL::SigSpec mask_en_grouped(RTLIL::SigSpec do_mask, RTLIL::SigSpec bits, RTLIL::SigSpec mask_bits) + { + // this version of the function preserves the bit grouping in the EN bits. + + std::vector<RTLIL::SigBit> v_bits = bits; + std::vector<RTLIL::SigBit> v_mask_bits = mask_bits; + + std::map<std::pair<RTLIL::SigBit, RTLIL::SigBit>, std::pair<int, std::vector<int>>> groups; + RTLIL::SigSpec grouped_bits, grouped_mask_bits; + + for (int i = 0; i < bits.size(); i++) { + std::pair<RTLIL::SigBit, RTLIL::SigBit> key(v_bits[i], v_mask_bits[i]); + if (groups.count(key) == 0) { + groups[key].first = grouped_bits.size(); + grouped_bits.append_bit(v_bits[i]); + grouped_mask_bits.append_bit(v_mask_bits[i]); + } + groups[key].second.push_back(i); + } + + std::vector<RTLIL::SigBit> grouped_result = mask_en_naive(do_mask, grouped_bits, grouped_mask_bits); + RTLIL::SigSpec result; + + for (int i = 0; i < bits.size(); i++) { + std::pair<RTLIL::SigBit, RTLIL::SigBit> key(v_bits[i], v_mask_bits[i]); + result.append_bit(grouped_result.at(groups.at(key).first)); + } + + return result; + } + + void merge_en_data(RTLIL::SigSpec &merged_en, RTLIL::SigSpec &merged_data, RTLIL::SigSpec next_en, RTLIL::SigSpec next_data) + { + std::vector<RTLIL::SigBit> v_old_en = merged_en; + std::vector<RTLIL::SigBit> v_next_en = next_en; + + // The new merged_en signal is just the old merged_en signal and next_en OR'ed together. + // But of course we need to preserve the bit grouping.. + + std::map<std::pair<RTLIL::SigBit, RTLIL::SigBit>, int> groups; + std::vector<RTLIL::SigBit> grouped_old_en, grouped_next_en; + RTLIL::SigSpec new_merged_en; + + for (int i = 0; i < int(v_old_en.size()); i++) { + std::pair<RTLIL::SigBit, RTLIL::SigBit> key(v_old_en[i], v_next_en[i]); + if (groups.count(key) == 0) { + groups[key] = grouped_old_en.size(); + grouped_old_en.push_back(key.first); + grouped_next_en.push_back(key.second); + } + } + + std::vector<RTLIL::SigBit> grouped_new_en = module->Or(NEW_ID, grouped_old_en, grouped_next_en); + + for (int i = 0; i < int(v_old_en.size()); i++) { + std::pair<RTLIL::SigBit, RTLIL::SigBit> key(v_old_en[i], v_next_en[i]); + new_merged_en.append_bit(grouped_new_en.at(groups.at(key))); + } + + // Create the new merged_data signal. + + RTLIL::SigSpec new_merged_data(RTLIL::State::Sx, merged_data.size()); + + RTLIL::SigSpec old_data_set = module->And(NEW_ID, merged_en, merged_data); + RTLIL::SigSpec old_data_unset = module->And(NEW_ID, merged_en, module->Not(NEW_ID, merged_data)); + + RTLIL::SigSpec new_data_set = module->And(NEW_ID, next_en, next_data); + RTLIL::SigSpec new_data_unset = module->And(NEW_ID, next_en, module->Not(NEW_ID, next_data)); + + new_merged_data = module->Or(NEW_ID, new_merged_data, old_data_set); + new_merged_data = module->And(NEW_ID, new_merged_data, module->Not(NEW_ID, old_data_unset)); + + new_merged_data = module->Or(NEW_ID, new_merged_data, new_data_set); + new_merged_data = module->And(NEW_ID, new_merged_data, module->Not(NEW_ID, new_data_unset)); + + // Update merged_* signals + + merged_en = new_merged_en; + merged_data = new_merged_data; + } + + void consolidate_wr_by_addr(std::string memid, std::vector<RTLIL::Cell*> &wr_ports) + { + if (wr_ports.size() <= 1) + return; + + log("Consolidating write ports of memory %s.%s by address:\n", log_id(module), log_id(memid)); + + std::map<RTLIL::SigSpec, int> last_port_by_addr; + std::vector<std::vector<bool>> active_bits_on_port; + + bool cache_clk_enable = false; + bool cache_clk_polarity = false; + RTLIL::SigSpec cache_clk; + + for (int i = 0; i < int(wr_ports.size()); i++) + { + RTLIL::Cell *cell = wr_ports.at(i); + RTLIL::SigSpec addr = sigmap_xmux(cell->getPort("\\ADDR")); + + if (cell->parameters.at("\\CLK_ENABLE").as_bool() != cache_clk_enable || + (cache_clk_enable && (sigmap(cell->getPort("\\CLK")) != cache_clk || + cell->parameters.at("\\CLK_POLARITY").as_bool() != cache_clk_polarity))) + { + cache_clk_enable = cell->parameters.at("\\CLK_ENABLE").as_bool(); + cache_clk_polarity = cell->parameters.at("\\CLK_POLARITY").as_bool(); + cache_clk = sigmap(cell->getPort("\\CLK")); + last_port_by_addr.clear(); + + if (cache_clk_enable) + log(" New clock domain: %s %s\n", cache_clk_polarity ? "posedge" : "negedge", log_signal(cache_clk)); + else + log(" New clock domain: unclocked\n"); + } + + log(" Port %d (%s) has addr %s.\n", i, log_id(cell), log_signal(addr)); + + log(" Active bits: "); + std::vector<RTLIL::SigBit> en_bits = sigmap(cell->getPort("\\EN")); + active_bits_on_port.push_back(std::vector<bool>(en_bits.size())); + for (int k = int(en_bits.size())-1; k >= 0; k--) { + active_bits_on_port[i][k] = en_bits[k].wire != NULL || en_bits[k].data != RTLIL::State::S0; + log("%c", active_bits_on_port[i][k] ? '1' : '0'); + } + log("\n"); + + if (last_port_by_addr.count(addr)) + { + int last_i = last_port_by_addr.at(addr); + log(" Merging port %d into this one.\n", last_i); + + bool found_overlapping_bits = false; + for (int k = 0; k < int(en_bits.size()); k++) { + if (active_bits_on_port[i][k] && active_bits_on_port[last_i][k]) + found_overlapping_bits = true; + active_bits_on_port[i][k] = active_bits_on_port[i][k] || active_bits_on_port[last_i][k]; + } + + // Force this ports addr input to addr directly (skip don't care muxes) + + cell->setPort("\\ADDR", addr); + + // If any of the ports between `last_i' and `i' write to the same address, this + // will have priority over whatever `last_i` wrote. So we need to revisit those + // ports and mask the EN bits accordingly. + + RTLIL::SigSpec merged_en = sigmap(wr_ports[last_i]->getPort("\\EN")); + + for (int j = last_i+1; j < i; j++) + { + if (wr_ports[j] == NULL) + continue; + + for (int k = 0; k < int(en_bits.size()); k++) + if (active_bits_on_port[i][k] && active_bits_on_port[j][k]) + goto found_overlapping_bits_i_j; + + if (0) { + found_overlapping_bits_i_j: + log(" Creating collosion-detect logic for port %d.\n", j); + RTLIL::SigSpec is_same_addr = module->addWire(NEW_ID); + module->addEq(NEW_ID, addr, wr_ports[j]->getPort("\\ADDR"), is_same_addr); + merged_en = mask_en_grouped(is_same_addr, merged_en, sigmap(wr_ports[j]->getPort("\\EN"))); + } + } + + // Then we need to merge the (masked) EN and the DATA signals. + + RTLIL::SigSpec merged_data = wr_ports[last_i]->getPort("\\DATA"); + if (found_overlapping_bits) { + log(" Creating logic for merging DATA and EN ports.\n"); + merge_en_data(merged_en, merged_data, sigmap(cell->getPort("\\EN")), sigmap(cell->getPort("\\DATA"))); + } else { + RTLIL::SigSpec cell_en = sigmap(cell->getPort("\\EN")); + RTLIL::SigSpec cell_data = sigmap(cell->getPort("\\DATA")); + for (int k = 0; k < int(en_bits.size()); k++) + if (!active_bits_on_port[last_i][k]) { + merged_en.replace(k, cell_en.extract(k, 1)); + merged_data.replace(k, cell_data.extract(k, 1)); + } + } + + // Connect the new EN and DATA signals and remove the old write port. + + cell->setPort("\\EN", merged_en); + cell->setPort("\\DATA", merged_data); + + module->remove(wr_ports[last_i]); + wr_ports[last_i] = NULL; + + log(" Active bits: "); + std::vector<RTLIL::SigBit> en_bits = sigmap(cell->getPort("\\EN")); + active_bits_on_port.push_back(std::vector<bool>(en_bits.size())); + for (int k = int(en_bits.size())-1; k >= 0; k--) + log("%c", active_bits_on_port[i][k] ? '1' : '0'); + log("\n"); + } + + last_port_by_addr[addr] = i; + } + + // Clean up `wr_ports': remove all NULL entries + + std::vector<RTLIL::Cell*> wr_ports_with_nulls; + wr_ports_with_nulls.swap(wr_ports); + + for (auto cell : wr_ports_with_nulls) + if (cell != NULL) + wr_ports.push_back(cell); + } + + + // -------------------------------------------------------- + // Consolidate write ports using sat-based resource sharing + // -------------------------------------------------------- + + void consolidate_wr_using_sat(std::string memid, std::vector<RTLIL::Cell*> &wr_ports) + { + if (wr_ports.size() <= 1) + return; + + ezDefaultSAT ez; + SatGen satgen(&ez, &modwalker.sigmap); + + // find list of considered ports and port pairs + + std::set<int> considered_ports; + std::set<int> considered_port_pairs; + + for (int i = 0; i < int(wr_ports.size()); i++) { + std::vector<RTLIL::SigBit> bits = modwalker.sigmap(wr_ports[i]->getPort("\\EN")); + for (auto bit : bits) + if (bit == RTLIL::State::S1) + goto port_is_always_active; + if (modwalker.has_drivers(bits)) + considered_ports.insert(i); + port_is_always_active:; + } + + log("Consolidating write ports of memory %s.%s using sat-based resource sharing:\n", log_id(module), log_id(memid)); + + bool cache_clk_enable = false; + bool cache_clk_polarity = false; + RTLIL::SigSpec cache_clk; + + for (int i = 0; i < int(wr_ports.size()); i++) + { + RTLIL::Cell *cell = wr_ports.at(i); + + if (cell->parameters.at("\\CLK_ENABLE").as_bool() != cache_clk_enable || + (cache_clk_enable && (sigmap(cell->getPort("\\CLK")) != cache_clk || + cell->parameters.at("\\CLK_POLARITY").as_bool() != cache_clk_polarity))) + { + cache_clk_enable = cell->parameters.at("\\CLK_ENABLE").as_bool(); + cache_clk_polarity = cell->parameters.at("\\CLK_POLARITY").as_bool(); + cache_clk = sigmap(cell->getPort("\\CLK")); + } + else if (i > 0 && considered_ports.count(i-1) && considered_ports.count(i)) + considered_port_pairs.insert(i); + + if (cache_clk_enable) + log(" Port %d (%s) on %s %s: %s\n", i, log_id(cell), + cache_clk_polarity ? "posedge" : "negedge", log_signal(cache_clk), + considered_ports.count(i) ? "considered" : "not considered"); + else + log(" Port %d (%s) unclocked: %s\n", i, log_id(cell), + considered_ports.count(i) ? "considered" : "not considered"); + } + + if (considered_port_pairs.size() < 1) { + log(" No two subsequent ports in same clock domain considered -> nothing to consolidate.\n"); + return; + } + + // create SAT representation of common input cone of all considered EN signals + + std::set<RTLIL::Cell*> sat_cells; + std::set<RTLIL::SigBit> bits_queue; + std::map<int, int> port_to_sat_variable; + + for (int i = 0; i < int(wr_ports.size()); i++) + if (considered_port_pairs.count(i) || considered_port_pairs.count(i+1)) + { + RTLIL::SigSpec sig = modwalker.sigmap(wr_ports[i]->getPort("\\EN")); + port_to_sat_variable[i] = ez.expression(ez.OpOr, satgen.importSigSpec(sig)); + + std::vector<RTLIL::SigBit> bits = sig; + bits_queue.insert(bits.begin(), bits.end()); + } + + while (!bits_queue.empty()) + { + std::set<ModWalker::PortBit> portbits; + modwalker.get_drivers(portbits, bits_queue); + bits_queue.clear(); + + for (auto &pbit : portbits) + if (sat_cells.count(pbit.cell) == 0 && cone_ct.cell_known(pbit.cell->type)) { + std::set<RTLIL::SigBit> &cell_inputs = modwalker.cell_inputs[pbit.cell]; + bits_queue.insert(cell_inputs.begin(), cell_inputs.end()); + sat_cells.insert(pbit.cell); + } + } + + log(" Common input cone for all EN signals: %d cells.\n", int(sat_cells.size())); + + for (auto cell : sat_cells) + satgen.importCell(cell); + + log(" Size of unconstrained SAT problem: %d variables, %d clauses\n", ez.numCnfVariables(), ez.numCnfClauses()); + + // merge subsequent ports if possible + + for (int i = 0; i < int(wr_ports.size()); i++) + { + if (!considered_port_pairs.count(i)) + continue; + + if (ez.solve(port_to_sat_variable.at(i-1), port_to_sat_variable.at(i))) { + log(" According to SAT solver sharing of port %d with port %d is not possible.\n", i-1, i); + continue; + } + + log(" Merging port %d into port %d.\n", i-1, i); + port_to_sat_variable.at(i) = ez.OR(port_to_sat_variable.at(i-1), port_to_sat_variable.at(i)); + + RTLIL::SigSpec last_addr = wr_ports[i-1]->getPort("\\ADDR"); + RTLIL::SigSpec last_data = wr_ports[i-1]->getPort("\\DATA"); + std::vector<RTLIL::SigBit> last_en = modwalker.sigmap(wr_ports[i-1]->getPort("\\EN")); + + RTLIL::SigSpec this_addr = wr_ports[i]->getPort("\\ADDR"); + RTLIL::SigSpec this_data = wr_ports[i]->getPort("\\DATA"); + std::vector<RTLIL::SigBit> this_en = modwalker.sigmap(wr_ports[i]->getPort("\\EN")); + + RTLIL::SigBit this_en_active = module->ReduceOr(NEW_ID, this_en); + + wr_ports[i]->setPort("\\ADDR", module->Mux(NEW_ID, last_addr, this_addr, this_en_active)); + wr_ports[i]->setPort("\\DATA", module->Mux(NEW_ID, last_data, this_data, this_en_active)); + + std::map<std::pair<RTLIL::SigBit, RTLIL::SigBit>, int> groups_en; + RTLIL::SigSpec grouped_last_en, grouped_this_en, en; + RTLIL::Wire *grouped_en = module->addWire(NEW_ID, 0); + + for (int j = 0; j < int(this_en.size()); j++) { + std::pair<RTLIL::SigBit, RTLIL::SigBit> key(last_en[j], this_en[j]); + if (!groups_en.count(key)) { + grouped_last_en.append_bit(last_en[j]); + grouped_this_en.append_bit(this_en[j]); + groups_en[key] = grouped_en->width; + grouped_en->width++; + } + en.append(RTLIL::SigSpec(grouped_en, groups_en[key])); + } + + module->addMux(NEW_ID, grouped_last_en, grouped_this_en, this_en_active, grouped_en); + wr_ports[i]->setPort("\\EN", en); + + module->remove(wr_ports[i-1]); + wr_ports[i-1] = NULL; + } + + // Clean up `wr_ports': remove all NULL entries + + std::vector<RTLIL::Cell*> wr_ports_with_nulls; + wr_ports_with_nulls.swap(wr_ports); + + for (auto cell : wr_ports_with_nulls) + if (cell != NULL) + wr_ports.push_back(cell); + } + + + // ------------- + // Setup and run + // ------------- + + MemoryShareWorker(RTLIL::Design *design, RTLIL::Module *module) : + design(design), module(module), sigmap(module) + { + std::map<std::string, std::pair<std::vector<RTLIL::Cell*>, std::vector<RTLIL::Cell*>>> memindex; + + sigmap_xmux = sigmap; + for (auto &it : module->cells_) + { + RTLIL::Cell *cell = it.second; + + if (cell->type == "$memrd") + memindex[cell->parameters.at("\\MEMID").decode_string()].first.push_back(cell); + + if (cell->type == "$memwr") + memindex[cell->parameters.at("\\MEMID").decode_string()].second.push_back(cell); + + if (cell->type == "$mux") + { + RTLIL::SigSpec sig_a = sigmap_xmux(cell->getPort("\\A")); + RTLIL::SigSpec sig_b = sigmap_xmux(cell->getPort("\\B")); + + if (sig_a.is_fully_undef()) + sigmap_xmux.add(cell->getPort("\\Y"), sig_b); + else if (sig_b.is_fully_undef()) + sigmap_xmux.add(cell->getPort("\\Y"), sig_a); + } + + if (cell->type == "$mux" || cell->type == "$pmux") + { + std::vector<RTLIL::SigBit> sig_y = sigmap(cell->getPort("\\Y")); + for (int i = 0; i < int(sig_y.size()); i++) + sig_to_mux[sig_y[i]] = std::pair<RTLIL::Cell*, int>(cell, i); + } + } + + for (auto &it : memindex) { + std::sort(it.second.first.begin(), it.second.first.end(), memcells_cmp); + std::sort(it.second.second.begin(), it.second.second.end(), memcells_cmp); + translate_rd_feedback_to_en(it.first, it.second.first, it.second.second); + consolidate_wr_by_addr(it.first, it.second.second); + } + + cone_ct.setup_internals(); + cone_ct.cell_types.erase("$mul"); + cone_ct.cell_types.erase("$mod"); + cone_ct.cell_types.erase("$div"); + cone_ct.cell_types.erase("$pow"); + cone_ct.cell_types.erase("$shl"); + cone_ct.cell_types.erase("$shr"); + cone_ct.cell_types.erase("$sshl"); + cone_ct.cell_types.erase("$sshr"); + cone_ct.cell_types.erase("$shift"); + cone_ct.cell_types.erase("$shiftx"); + + modwalker.setup(design, module, &cone_ct); + + for (auto &it : memindex) + consolidate_wr_using_sat(it.first, it.second.second); + } +}; + +struct MemorySharePass : public Pass { + MemorySharePass() : Pass("memory_share", "consolidate memory ports") { } + virtual void help() + { + // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| + log("\n"); + log(" memory_share [selection]\n"); + log("\n"); + log("This pass merges share-able memory ports into single memory ports.\n"); + log("\n"); + log("The following methods are used to consolidate the number of memory ports:\n"); + log("\n"); + log(" - When write ports are connected to async read ports accessing the same\n"); + log(" address, then this feedback path is converted to a write port with\n"); + log(" byte/part enable signals.\n"); + log("\n"); + log(" - When multiple write ports access the same address then this is converted\n"); + log(" to a single write port with a more complex data and/or enable logic path.\n"); + log("\n"); + log(" - When multiple write ports are never accessed at the same time (a SAT\n"); + log(" solver is used to determine this), then the ports are merged into a single\n"); + log(" write port.\n"); + log("\n"); + log("Note that in addition to the algorithms implemented in this pass, the $memrd\n"); + log("and $memwr cells are also subject to generic resource sharing passes (and other\n"); + log("optimizations) such as opt_share.\n"); + log("\n"); + } + virtual void execute(std::vector<std::string> args, RTLIL::Design *design) { + log_header("Executing MEMORY_SHARE pass (consolidating $memrc/$memwr cells).\n"); + extra_args(args, 1, design); + for (auto module : design->selected_modules()) + MemoryShareWorker(design, module); + } +} MemorySharePass; + +PRIVATE_NAMESPACE_END + |