aboutsummaryrefslogtreecommitdiffstats
path: root/techlibs/common/techmap.v
diff options
context:
space:
mode:
Diffstat (limited to 'techlibs/common/techmap.v')
-rw-r--r--techlibs/common/techmap.v509
1 files changed, 509 insertions, 0 deletions
diff --git a/techlibs/common/techmap.v b/techlibs/common/techmap.v
new file mode 100644
index 000000000..b6c075b67
--- /dev/null
+++ b/techlibs/common/techmap.v
@@ -0,0 +1,509 @@
+/*
+ * yosys -- Yosys Open SYnthesis Suite
+ *
+ * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ *
+ * ---
+ *
+ * The internal logic cell technology mapper.
+ *
+ * This verilog library contains the mapping of internal cells (e.g. $not with
+ * variable bit width) to the internal logic cells (such as the single bit $_NOT_
+ * gate). Usually this logic network is then mapped to the actual technology
+ * using e.g. the "abc" pass.
+ *
+ * Note that this library does not map $mem cells. They must be mapped to logic
+ * and $dff cells using the "memory_map" pass first. (Or map it to custom cells,
+ * which is of course highly recommended for larger memories.)
+ *
+ */
+
+`define MIN(_a, _b) ((_a) < (_b) ? (_a) : (_b))
+`define MAX(_a, _b) ((_a) > (_b) ? (_a) : (_b))
+
+
+// --------------------------------------------------------
+// Use simplemap for trivial cell types
+// --------------------------------------------------------
+
+(* techmap_simplemap *)
+(* techmap_celltype = "$not $and $or $xor $xnor" *)
+module _90_simplemap_bool_ops;
+endmodule
+
+(* techmap_simplemap *)
+(* techmap_celltype = "$reduce_and $reduce_or $reduce_xor $reduce_xnor $reduce_bool" *)
+module _90_simplemap_reduce_ops;
+endmodule
+
+(* techmap_simplemap *)
+(* techmap_celltype = "$logic_not $logic_and $logic_or" *)
+module _90_simplemap_logic_ops;
+endmodule
+
+(* techmap_simplemap *)
+(* techmap_celltype = "$pos $slice $concat $mux" *)
+module _90_simplemap_various;
+endmodule
+
+(* techmap_simplemap *)
+(* techmap_celltype = "$sr $dff $adff $dffsr $dlatch" *)
+module _90_simplemap_registers;
+endmodule
+
+
+// --------------------------------------------------------
+// Shift operators
+// --------------------------------------------------------
+
+(* techmap_celltype = "$shr $shl $sshl $sshr" *)
+module _90_shift_ops_shr_shl_sshl_sshr (A, B, Y);
+ parameter A_SIGNED = 0;
+ parameter B_SIGNED = 0;
+ parameter A_WIDTH = 1;
+ parameter B_WIDTH = 1;
+ parameter Y_WIDTH = 1;
+
+ parameter _TECHMAP_CELLTYPE_ = "";
+ localparam shift_left = _TECHMAP_CELLTYPE_ == "$shl" || _TECHMAP_CELLTYPE_ == "$sshl";
+ localparam sign_extend = A_SIGNED && _TECHMAP_CELLTYPE_ == "$sshr";
+
+ input [A_WIDTH-1:0] A;
+ input [B_WIDTH-1:0] B;
+ output [Y_WIDTH-1:0] Y;
+
+ localparam WIDTH = `MAX(A_WIDTH, Y_WIDTH);
+ localparam BB_WIDTH = `MIN($clog2(shift_left ? Y_WIDTH : A_SIGNED ? WIDTH : A_WIDTH) + 1, B_WIDTH);
+
+ wire [1023:0] _TECHMAP_DO_00_ = "proc;;";
+ wire [1023:0] _TECHMAP_DO_01_ = "RECURSION; CONSTMAP; opt_muxtree; opt_const -mux_undef -mux_bool -fine;;;";
+
+ integer i;
+ reg [WIDTH-1:0] buffer;
+ reg overflow;
+
+ always @* begin
+ overflow = B_WIDTH > BB_WIDTH ? |B[B_WIDTH-1:BB_WIDTH] : 1'b0;
+ buffer = overflow ? {WIDTH{sign_extend ? A[A_WIDTH-1] : 1'b0}} : {{WIDTH-A_WIDTH{A_SIGNED ? A[A_WIDTH-1] : 1'b0}}, A};
+
+ for (i = 0; i < BB_WIDTH; i = i+1)
+ if (B[i]) begin
+ if (shift_left)
+ buffer = {buffer, (2**i)'b0};
+ else if (2**i < WIDTH)
+ buffer = {{2**i{sign_extend ? buffer[WIDTH-1] : 1'b0}}, buffer[WIDTH-1 : 2**i]};
+ else
+ buffer = {WIDTH{sign_extend ? buffer[WIDTH-1] : 1'b0}};
+ end
+ end
+
+ assign Y = buffer;
+endmodule
+
+(* techmap_celltype = "$shift $shiftx" *)
+module _90_shift_shiftx (A, B, Y);
+ parameter A_SIGNED = 0;
+ parameter B_SIGNED = 0;
+ parameter A_WIDTH = 1;
+ parameter B_WIDTH = 1;
+ parameter Y_WIDTH = 1;
+
+ input [A_WIDTH-1:0] A;
+ input [B_WIDTH-1:0] B;
+ output [Y_WIDTH-1:0] Y;
+
+ localparam BB_WIDTH = `MIN($clog2(`MAX(A_WIDTH, Y_WIDTH)) + (B_SIGNED ? 2 : 1), B_WIDTH);
+ localparam WIDTH = `MAX(A_WIDTH, Y_WIDTH) + (B_SIGNED ? 2**(BB_WIDTH-1) : 0);
+
+ parameter _TECHMAP_CELLTYPE_ = "";
+ localparam extbit = _TECHMAP_CELLTYPE_ == "$shift" ? 1'b0 : 1'bx;
+
+ wire [1023:0] _TECHMAP_DO_00_ = "proc;;";
+ wire [1023:0] _TECHMAP_DO_01_ = "CONSTMAP; opt_muxtree; opt_const -mux_undef -mux_bool -fine;;;";
+
+ integer i;
+ reg [WIDTH-1:0] buffer;
+ reg overflow;
+
+ always @* begin
+ overflow = 0;
+ buffer = {WIDTH{extbit}};
+ buffer[`MAX(A_WIDTH, Y_WIDTH)-1:0] = A;
+
+ if (B_WIDTH > BB_WIDTH) begin
+ if (B_SIGNED) begin
+ for (i = BB_WIDTH; i < B_WIDTH; i = i+1)
+ if (B[i] != B[BB_WIDTH-1])
+ overflow = 1;
+ end else
+ overflow = |B[B_WIDTH-1:BB_WIDTH];
+ if (overflow)
+ buffer = {WIDTH{extbit}};
+ end
+
+ for (i = BB_WIDTH-1; i >= 0; i = i-1)
+ if (B[i]) begin
+ if (B_SIGNED && i == BB_WIDTH-1)
+ buffer = {buffer, {2**i{extbit}}};
+ else if (2**i < WIDTH)
+ buffer = {{2**i{extbit}}, buffer[WIDTH-1 : 2**i]};
+ else
+ buffer = {WIDTH{extbit}};
+ end
+ end
+
+ assign Y = buffer;
+endmodule
+
+
+// --------------------------------------------------------
+// Arithmetic operators
+// --------------------------------------------------------
+
+(* techmap_celltype = "$fa" *)
+module _90_fa (A, B, C, X, Y);
+ parameter WIDTH = 1;
+
+ input [WIDTH-1:0] A, B, C;
+ output [WIDTH-1:0] X, Y;
+
+ wire [WIDTH-1:0] t1, t2, t3;
+
+ assign t1 = A ^ B, t2 = A & B, t3 = C & t1;
+ assign Y = t1 ^ C, X = t2 | t3;
+endmodule
+
+(* techmap_celltype = "$lcu" *)
+module _90_lcu (P, G, CI, CO);
+ parameter WIDTH = 2;
+
+ input [WIDTH-1:0] P, G;
+ input CI;
+
+ output [WIDTH-1:0] CO;
+
+ integer i, j;
+ reg [WIDTH-1:0] p, g;
+
+ wire [1023:0] _TECHMAP_DO_ = "proc; opt -fast";
+
+ always @* begin
+ p = P;
+ g = G;
+
+ // in almost all cases CI will be constant zero
+ g[0] = g[0] | (p[0] & CI);
+
+ // [[CITE]] Brent Kung Adder
+ // R. P. Brent and H. T. Kung, “A Regular Layout for Parallel Adders”,
+ // IEEE Transaction on Computers, Vol. C-31, No. 3, p. 260-264, March, 1982
+
+ // Main tree
+ for (i = 1; i <= $clog2(WIDTH); i = i+1) begin
+ for (j = 2**i - 1; j < WIDTH; j = j + 2**i) begin
+ g[j] = g[j] | p[j] & g[j - 2**(i-1)];
+ p[j] = p[j] & p[j - 2**(i-1)];
+ end
+ end
+
+ // Inverse tree
+ for (i = $clog2(WIDTH); i > 0; i = i-1) begin
+ for (j = 2**i + 2**(i-1) - 1; j < WIDTH; j = j + 2**i) begin
+ g[j] = g[j] | p[j] & g[j - 2**(i-1)];
+ p[j] = p[j] & p[j - 2**(i-1)];
+ end
+ end
+ end
+
+ assign CO = g;
+endmodule
+
+(* techmap_celltype = "$alu" *)
+module _90_alu (A, B, CI, BI, X, Y, CO);
+ parameter A_SIGNED = 0;
+ parameter B_SIGNED = 0;
+ parameter A_WIDTH = 1;
+ parameter B_WIDTH = 1;
+ parameter Y_WIDTH = 1;
+
+ input [A_WIDTH-1:0] A;
+ input [B_WIDTH-1:0] B;
+ output [Y_WIDTH-1:0] X, Y;
+
+ input CI, BI;
+ output [Y_WIDTH-1:0] CO;
+
+ wire [Y_WIDTH-1:0] A_buf, B_buf;
+ \$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
+ \$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
+
+ wire [Y_WIDTH-1:0] AA = A_buf;
+ wire [Y_WIDTH-1:0] BB = BI ? ~B_buf : B_buf;
+
+ \$lcu #(.WIDTH(Y_WIDTH)) lcu (.P(X), .G(AA & BB), .CI(CI), .CO(CO));
+
+ assign X = AA ^ BB;
+ assign Y = X ^ {CO, CI};
+endmodule
+
+(* techmap_maccmap *)
+(* techmap_celltype = "$macc" *)
+module _90_macc;
+endmodule
+
+(* techmap_wrap = "alumacc" *)
+(* techmap_celltype = "$lt $le $ge $gt $add $sub $neg $mul" *)
+module _90_alumacc;
+endmodule
+
+
+// --------------------------------------------------------
+// Divide and Modulo
+// --------------------------------------------------------
+
+module \$__div_mod_u (A, B, Y, R);
+ parameter WIDTH = 1;
+
+ input [WIDTH-1:0] A, B;
+ output [WIDTH-1:0] Y, R;
+
+ wire [WIDTH*WIDTH-1:0] chaindata;
+ assign R = chaindata[WIDTH*WIDTH-1:WIDTH*(WIDTH-1)];
+
+ genvar i;
+ generate begin
+ for (i = 0; i < WIDTH; i=i+1) begin:stage
+ wire [WIDTH-1:0] stage_in;
+
+ if (i == 0) begin:cp
+ assign stage_in = A;
+ end else begin:cp
+ assign stage_in = chaindata[i*WIDTH-1:(i-1)*WIDTH];
+ end
+
+ assign Y[WIDTH-(i+1)] = stage_in >= {B, {WIDTH-(i+1){1'b0}}};
+ assign chaindata[(i+1)*WIDTH-1:i*WIDTH] = Y[WIDTH-(i+1)] ? stage_in - {B, {WIDTH-(i+1){1'b0}}} : stage_in;
+ end
+ end endgenerate
+endmodule
+
+module \$__div_mod (A, B, Y, R);
+ parameter A_SIGNED = 0;
+ parameter B_SIGNED = 0;
+ parameter A_WIDTH = 1;
+ parameter B_WIDTH = 1;
+ parameter Y_WIDTH = 1;
+
+ localparam WIDTH =
+ A_WIDTH >= B_WIDTH && A_WIDTH >= Y_WIDTH ? A_WIDTH :
+ B_WIDTH >= A_WIDTH && B_WIDTH >= Y_WIDTH ? B_WIDTH : Y_WIDTH;
+
+ input [A_WIDTH-1:0] A;
+ input [B_WIDTH-1:0] B;
+ output [Y_WIDTH-1:0] Y, R;
+
+ wire [WIDTH-1:0] A_buf, B_buf;
+ \$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
+ \$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
+
+ wire [WIDTH-1:0] A_buf_u, B_buf_u, Y_u, R_u;
+ assign A_buf_u = A_SIGNED && A_buf[WIDTH-1] ? -A_buf : A_buf;
+ assign B_buf_u = B_SIGNED && B_buf[WIDTH-1] ? -B_buf : B_buf;
+
+ \$__div_mod_u #(
+ .WIDTH(WIDTH)
+ ) div_mod_u (
+ .A(A_buf_u),
+ .B(B_buf_u),
+ .Y(Y_u),
+ .R(R_u)
+ );
+
+ assign Y = A_SIGNED && B_SIGNED && (A_buf[WIDTH-1] != B_buf[WIDTH-1]) ? -Y_u : Y_u;
+ assign R = A_SIGNED && B_SIGNED && A_buf[WIDTH-1] ? -R_u : R_u;
+endmodule
+
+(* techmap_celltype = "$div" *)
+module _90_div (A, B, Y);
+ parameter A_SIGNED = 0;
+ parameter B_SIGNED = 0;
+ parameter A_WIDTH = 1;
+ parameter B_WIDTH = 1;
+ parameter Y_WIDTH = 1;
+
+ input [A_WIDTH-1:0] A;
+ input [B_WIDTH-1:0] B;
+ output [Y_WIDTH-1:0] Y;
+
+ \$__div_mod #(
+ .A_SIGNED(A_SIGNED),
+ .B_SIGNED(B_SIGNED),
+ .A_WIDTH(A_WIDTH),
+ .B_WIDTH(B_WIDTH),
+ .Y_WIDTH(Y_WIDTH)
+ ) div_mod (
+ .A(A),
+ .B(B),
+ .Y(Y)
+ );
+endmodule
+
+(* techmap_celltype = "$mod" *)
+module _90_mod (A, B, Y);
+ parameter A_SIGNED = 0;
+ parameter B_SIGNED = 0;
+ parameter A_WIDTH = 1;
+ parameter B_WIDTH = 1;
+ parameter Y_WIDTH = 1;
+
+ input [A_WIDTH-1:0] A;
+ input [B_WIDTH-1:0] B;
+ output [Y_WIDTH-1:0] Y;
+
+ \$__div_mod #(
+ .A_SIGNED(A_SIGNED),
+ .B_SIGNED(B_SIGNED),
+ .A_WIDTH(A_WIDTH),
+ .B_WIDTH(B_WIDTH),
+ .Y_WIDTH(Y_WIDTH)
+ ) div_mod (
+ .A(A),
+ .B(B),
+ .R(Y)
+ );
+endmodule
+
+
+// --------------------------------------------------------
+// Power
+// --------------------------------------------------------
+
+(* techmap_celltype = "$pow" *)
+module _90_pow (A, B, Y);
+ parameter A_SIGNED = 0;
+ parameter B_SIGNED = 0;
+ parameter A_WIDTH = 1;
+ parameter B_WIDTH = 1;
+ parameter Y_WIDTH = 1;
+
+ input [A_WIDTH-1:0] A;
+ input [B_WIDTH-1:0] B;
+ output [Y_WIDTH-1:0] Y;
+
+ wire _TECHMAP_FAIL_ = 1;
+endmodule
+
+
+// --------------------------------------------------------
+// Equal and Not-Equal
+// --------------------------------------------------------
+
+(* techmap_celltype = "$eq $eqx" *)
+module _90_eq_eqx (A, B, Y);
+ parameter A_SIGNED = 0;
+ parameter B_SIGNED = 0;
+ parameter A_WIDTH = 1;
+ parameter B_WIDTH = 1;
+ parameter Y_WIDTH = 1;
+
+ localparam WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
+
+ input [A_WIDTH-1:0] A;
+ input [B_WIDTH-1:0] B;
+ output [Y_WIDTH-1:0] Y;
+
+ wire carry, carry_sign;
+ wire [WIDTH-1:0] A_buf, B_buf;
+ \$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
+ \$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
+
+ assign Y = ~|(A_buf ^ B_buf);
+endmodule
+
+(* techmap_celltype = "$ne $nex" *)
+module _90_ne_nex (A, B, Y);
+ parameter A_SIGNED = 0;
+ parameter B_SIGNED = 0;
+ parameter A_WIDTH = 1;
+ parameter B_WIDTH = 1;
+ parameter Y_WIDTH = 1;
+
+ localparam WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
+
+ input [A_WIDTH-1:0] A;
+ input [B_WIDTH-1:0] B;
+ output [Y_WIDTH-1:0] Y;
+
+ wire carry, carry_sign;
+ wire [WIDTH-1:0] A_buf, B_buf;
+ \$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
+ \$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
+
+ assign Y = |(A_buf ^ B_buf);
+endmodule
+
+
+// --------------------------------------------------------
+// Parallel Multiplexers
+// --------------------------------------------------------
+
+(* techmap_celltype = "$pmux" *)
+module _90_pmux (A, B, S, Y);
+ parameter WIDTH = 1;
+ parameter S_WIDTH = 1;
+
+ input [WIDTH-1:0] A;
+ input [WIDTH*S_WIDTH-1:0] B;
+ input [S_WIDTH-1:0] S;
+ output [WIDTH-1:0] Y;
+
+ wire [WIDTH-1:0] Y_B;
+
+ genvar i, j;
+ generate
+ wire [WIDTH*S_WIDTH-1:0] B_AND_S;
+ for (i = 0; i < S_WIDTH; i = i + 1) begin:B_AND
+ assign B_AND_S[WIDTH*(i+1)-1:WIDTH*i] = B[WIDTH*(i+1)-1:WIDTH*i] & {WIDTH{S[i]}};
+ end:B_AND
+ for (i = 0; i < WIDTH; i = i + 1) begin:B_OR
+ wire [S_WIDTH-1:0] B_AND_BITS;
+ for (j = 0; j < S_WIDTH; j = j + 1) begin:B_AND_BITS_COLLECT
+ assign B_AND_BITS[j] = B_AND_S[WIDTH*j+i];
+ end:B_AND_BITS_COLLECT
+ assign Y_B[i] = |B_AND_BITS;
+ end:B_OR
+ endgenerate
+
+ assign Y = |S ? Y_B : A;
+endmodule
+
+
+// --------------------------------------------------------
+// LUTs
+// --------------------------------------------------------
+
+`ifndef NOLUT
+(* techmap_celltype = "$lut" *)
+module _90_lut (A, Y);
+ parameter WIDTH = 1;
+ parameter LUT = 0;
+
+ input [WIDTH-1:0] A;
+ output Y;
+
+ assign Y = LUT[A];
+endmodule
+`endif
+