diff options
Diffstat (limited to 'techlibs/intel_alm/common/dff_sim.v')
-rw-r--r-- | techlibs/intel_alm/common/dff_sim.v | 44 |
1 files changed, 44 insertions, 0 deletions
diff --git a/techlibs/intel_alm/common/dff_sim.v b/techlibs/intel_alm/common/dff_sim.v index 07865905f..32444dd46 100644 --- a/techlibs/intel_alm/common/dff_sim.v +++ b/techlibs/intel_alm/common/dff_sim.v @@ -1,3 +1,47 @@ +// The four D flip-flops (DFFs) in a Cyclone V/10GX Adaptive Logic Module (ALM) +// act as one-bit memory cells that can be placed very flexibly (wherever there's +// an ALM); each flop is represented by a MISTRAL_FF cell. +// +// The flops in these chips are rather flexible in some ways, but in practice +// quite crippled by FPGA standards. +// +// What the flops can do +// --------------------- +// The core flop acts as a single-bit memory that initialises to zero at chip +// reset. It takes in data on the rising edge of CLK if ENA is high, +// and outputs it to Q. The ENA (clock enable) pin can therefore be used to +// capture the input only if a condition is true. +// +// The data itself is zero if SCLR (synchronous clear) is high, else it comes +// from SDATA (synchronous data) if SLOAD (synchronous load) is high, or DATAIN +// if SLOAD is low. +// +// If ACLR (asynchronous clear) is low then Q is forced to zero, regardless of +// the synchronous inputs or CLK edge. This is most often used for an FPGA-wide +// power-on reset. +// +// An asynchronous set that sets Q to one can be emulated by inverting the input +// and output of the flop, resulting in ACLR forcing Q to zero, which then gets +// inverted to produce one. Likewise, logic can operate on the falling edge of +// CLK if CLK is inverted before being passed as an input. +// +// What the flops *can't* do +// ------------------------- +// The trickiest part of the above capabilities is the lack of configurable +// initialisation state. For example, it isn't possible to implement a flop with +// asynchronous clear that initialises to one, because the hardware initialises +// to zero. Likewise, you can't emulate a flop with asynchronous set that +// initialises to zero, because the inverters mean the flop initialises to one. +// +// If the input design requires one of these cells (which appears to be rare +// in practice) then synth_intel_alm will fail to synthesize the design where +// other Yosys synthesis scripts might succeed. +// +// This stands in notable contrast to e.g. Xilinx flip-flops, which have +// configurable initialisation state and native synchronous/asynchronous +// set/clear (although not at the same time), which means they can generally +// implement a much wider variety of logic. + // DATAIN: synchronous data input // CLK: clock input (positive edge) // ACLR: asynchronous clear (negative-true) |