diff options
Diffstat (limited to 'techlibs/xilinx/abc9_map.v')
-rw-r--r-- | techlibs/xilinx/abc9_map.v | 199 |
1 files changed, 182 insertions, 17 deletions
diff --git a/techlibs/xilinx/abc9_map.v b/techlibs/xilinx/abc9_map.v index 05063f86d..ef7a1a09f 100644 --- a/techlibs/xilinx/abc9_map.v +++ b/techlibs/xilinx/abc9_map.v @@ -49,8 +49,57 @@ module FDRE (output reg Q, input C, CE, D, R); ) _TECHMAP_REPLACE_ ( .D(D), .Q($nextQ), .C(C), .CE(CE), .R(R) ); - wire _TECHMAP_REPLACE_.$currQ = Q; + // `abc9' requires that complex flops be split into a combinatorial box + // feeding a simple flop ($_ABC9_FF_). + // Yosys will automatically analyse the simulation model (described in + // cells_sim.v) and detach any $_DFF_P_ or $_DFF_N_ cells present in + // order to extract the combinatorial control logic left behind. + // Specifically, a simulation model similar to the one below: + // + // ++===================================++ + // || Sim model || + // || /\/\/\/\ || + // D -->>-----< > +------+ || + // R -->>-----< Comb. > |$_DFF_| || + // CE -->>-----< logic >-----| [NP]_|---+---->>-- Q + // || +--< > +------+ | || + // || | \/\/\/\/ | || + // || | | || + // || +----------------------------+ || + // || || + // ++===================================++ + // + // is transformed into: + // + // ++==================++ + // || Comb box || + // || || + // || /\/\/\/\ || + // D -->>-----< > || +------+ + // R -->>-----< Comb. > || |$_ABC_| + // CE -->>-----< logic >--->>-- $nextQ --| FF_ |--+-->> Q + // $currQ +-->>-----< > || +------+ | + // | || \/\/\/\/ || | + // | || || | + // | ++==================++ | + // | | + // +----------------------------------------------+ \$__ABC9_FF_ abc_dff (.D($nextQ), .Q(Q)); + + // Special signal indicating clock domain + // (used to partition the module so that `abc9' only performs + // sequential synthesis (reachability analysis) correctly on + // one domain at a time) + wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED}; + // Special signal indicating control domain + // (which, combined with this cell type, encodes to `abc9' + // which flops may be merged together) + wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED}; + // Special signal indicating the current value of the flip-flop + // In order to achieve clock-enable behaviour, the current value + // of the sequential output is required which Yosys will + // connect to the special `$currQ' wire. + wire _TECHMAP_REPLACE_.$currQ = Q; endmodule module FDRE_1 (output reg Q, input C, CE, D, R); parameter [0:0] INIT = 1'b0; @@ -60,8 +109,22 @@ module FDRE_1 (output reg Q, input C, CE, D, R); ) _TECHMAP_REPLACE_ ( .D(D), .Q($nextQ), .C(C), .CE(CE), .R(R) ); - wire _TECHMAP_REPLACE_.$currQ = Q; \$__ABC9_FF_ abc_dff (.D($nextQ), .Q(Q)); + + // Special signal indicating clock domain + // (used to partition the module so that `abc9' only performs + // sequential synthesis (reachability analysis) correctly on + // one domain at a time) + wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; + // Special signal indicating control domain + // (which, combined with this spell type, encodes to `abc9' + // which flops may be merged together) + wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */}; + // Special signal indicating the current value of the flip-flop + // In order to achieve clock-enable behaviour, the current value + // of the sequential output is required which Yosys will + // connect to the special `$currQ' wire. + wire _TECHMAP_REPLACE_.$currQ = Q; endmodule module FDCE (output reg Q, input C, CE, D, CLR); @@ -69,18 +132,38 @@ module FDCE (output reg Q, input C, CE, D, CLR); parameter [0:0] IS_C_INVERTED = 1'b0; parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_CLR_INVERTED = 1'b0; - wire $currQ, $nextQ; + wire $nextQ, $currQ; FDCE #( .INIT(INIT), .IS_C_INVERTED(IS_C_INVERTED), .IS_D_INVERTED(IS_D_INVERTED), .IS_CLR_INVERTED(IS_CLR_INVERTED) ) _TECHMAP_REPLACE_ ( - .D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(CLR) + .D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(IS_CLR_INVERTED) + // ^^^ Note that async + // control is disabled + // and captured by + // $__ABC9_ASYNC below ); - wire _TECHMAP_REPLACE_.$currQ = Q; \$__ABC9_FF_ abc_dff (.D($nextQ), .Q($currQ)); - \$__ABC_ASYNC abc_async (.A($currQ), .S(CLR ^ IS_CLR_INVERTED), .Y(Q)); + // Since this is an async flop, async behaviour is also dealt with + // using the $_ABC9_ASYNC box by abc9_map.v + \$__ABC9_ASYNC abc_async (.A($currQ), .S(CLR ^ IS_CLR_INVERTED), .Y(Q)); + + // Special signal indicating clock domain + // (used to partition the module so that `abc9' only performs + // sequential synthesis (reachability analysis) correctly on + // one domain at a time) + wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED}; + // Special signal indicating control domain + // (which, combined with this spell type, encodes to `abc9' + // which flops may be merged together) + wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED}; + // Special signal indicating the current value of the flip-flop + // In order to achieve clock-enable behaviour, the current value + // of the sequential output is required which Yosys will + // connect to the special `$currQ' wire. + wire _TECHMAP_REPLACE_.$currQ = $currQ; endmodule module FDCE_1 (output reg Q, input C, CE, D, CLR); parameter [0:0] INIT = 1'b0; @@ -88,11 +171,29 @@ module FDCE_1 (output reg Q, input C, CE, D, CLR); FDCE_1 #( .INIT(INIT) ) _TECHMAP_REPLACE_ ( - .D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(CLR) + .D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(1'b0) + // ^^^ Note that async + // control is disabled + // and captured by + // $__ABC9_ASYNC below ); - wire _TECHMAP_REPLACE_.$currQ = Q; \$__ABC9_FF_ abc_dff (.D($nextQ), .Q($currQ)); - \$__ABC_ASYNC abc_async (.A($currQ), .S(CLR), .Y(Q)); + \$__ABC9_ASYNC abc_async (.A($currQ), .S(CLR), .Y(Q)); + + // Special signal indicating clock domain + // (used to partition the module so that `abc9' only performs + // sequential synthesis (reachability analysis) correctly on + // one domain at a time) + wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; + // Special signal indicating control domain + // (which, combined with this spell type, encodes to `abc9' + // which flops may be merged together) + wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */}; + // Special signal indicating the current value of the flip-flop + // In order to achieve clock-enable behaviour, the current value + // of the sequential output is required which Yosys will + // connect to the special `$currQ' wire. + wire _TECHMAP_REPLACE_.$currQ = $currQ; endmodule module FDPE (output reg Q, input C, CE, D, PRE); @@ -107,11 +208,29 @@ module FDPE (output reg Q, input C, CE, D, PRE); .IS_D_INVERTED(IS_D_INVERTED), .IS_PRE_INVERTED(IS_PRE_INVERTED), ) _TECHMAP_REPLACE_ ( - .D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(PRE) + .D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(IS_PRE_INVERTED) + // ^^^ Note that async + // control is disabled + // and captured by + // $__ABC9_ASYNC below ); - wire _TECHMAP_REPLACE_.$currQ = Q; \$__ABC9_FF_ abc_dff (.D($nextQ), .Q($currQ)); - \$__ABC_ASYNC abc_async (.A($currQ), .S(PRE ^ IS_PRE_INVERTED), .Y(Q)); + \$__ABC9_ASYNC abc_async (.A($currQ), .S(PRE ^ IS_PRE_INVERTED), .Y(Q)); + + // Special signal indicating clock domain + // (used to partition the module so that `abc9' only performs + // sequential synthesis (reachability analysis) correctly on + // one domain at a time) + wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED}; + // Special signal indicating control domain + // (which, combined with this spell type, encodes to `abc9' + // which flops may be merged together) + wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED}; + // Special signal indicating the current value of the flip-flop + // In order to achieve clock-enable behaviour, the current value + // of the sequential output is required which Yosys will + // connect to the special `$currQ' wire. + wire _TECHMAP_REPLACE_.$currQ = $currQ; endmodule module FDPE_1 (output reg Q, input C, CE, D, PRE); parameter [0:0] INIT = 1'b0; @@ -119,11 +238,29 @@ module FDPE_1 (output reg Q, input C, CE, D, PRE); FDPE_1 #( .INIT(INIT) ) _TECHMAP_REPLACE_ ( - .D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(PRE) + .D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(1'b0) + // ^^^ Note that async + // control is disabled + // and captured by + // $__ABC9_ASYNC below ); - wire _TECHMAP_REPLACE_.$currQ = Q; \$__ABC9_FF_ abc_dff (.D($nextQ), .Q($currQ)); - \$__ABC_ASYNC abc_async (.A($currQ), .S(PRE), .Y(Q)); + \$__ABC9_ASYNC abc_async (.A($currQ), .S(PRE), .Y(Q)); + + // Special signal indicating clock domain + // (used to partition the module so that `abc9' only performs + // sequential synthesis (reachability analysis) correctly on + // one domain at a time) + wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; + // Special signal indicating control domain + // (which, combined with this spell type, encodes to `abc9' + // which flops may be merged together) + wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */}; + // Special signal indicating the current value of the flip-flop + // In order to achieve clock-enable behaviour, the current value + // of the sequential output is required which Yosys will + // connect to the special `$currQ' wire. + wire _TECHMAP_REPLACE_.$currQ = $currQ; endmodule module FDSE (output reg Q, input C, CE, D, S); @@ -140,8 +277,22 @@ module FDSE (output reg Q, input C, CE, D, S); ) _TECHMAP_REPLACE_ ( .D(D), .Q($nextQ), .C(C), .CE(CE), .S(S) ); - wire _TECHMAP_REPLACE_.$currQ = Q; \$__ABC9_FF_ abc_dff (.D($nextQ), .Q(Q)); + + // Special signal indicating clock domain + // (used to partition the module so that `abc9' only performs + // sequential synthesis (reachability analysis) correctly on + // one domain at a time) + wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED}; + // Special signal indicating control domain + // (which, combined with this spell type, encodes to `abc9' + // which flops may be merged together) + wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED}; + // Special signal indicating the current value of the flip-flop + // In order to achieve clock-enable behaviour, the current value + // of the sequential output is required which Yosys will + // connect to the special `$currQ' wire. + wire _TECHMAP_REPLACE_.$currQ = Q; endmodule module FDSE_1 (output reg Q, input C, CE, D, S); parameter [0:0] INIT = 1'b0; @@ -151,8 +302,22 @@ module FDSE_1 (output reg Q, input C, CE, D, S); ) _TECHMAP_REPLACE_ ( .D(D), .Q($nextQ), .C(C), .CE(CE), .S(S) ); - wire _TECHMAP_REPLACE_.$currQ = Q; \$__ABC9_FF_ abc_dff (.D($nextQ), .Q(Q)); + + // Special signal indicating clock domain + // (used to partition the module so that `abc9' only performs + // sequential synthesis (reachability analysis) correctly on + // one domain at a time) + wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; + // Special signal indicating control domain + // (which, combined with this spell type, encodes to `abc9' + // which flops may be merged together) + wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */}; + // Special signal indicating the current value of the flip-flop + // In order to achieve clock-enable behaviour, the current value + // of the sequential output is required which Yosys will + // connect to the special `$currQ' wire. + wire _TECHMAP_REPLACE_.$currQ = Q; endmodule module RAM32X1D ( |