aboutsummaryrefslogtreecommitdiffstats
path: root/techlibs/xilinx/abc9_map.v
diff options
context:
space:
mode:
Diffstat (limited to 'techlibs/xilinx/abc9_map.v')
-rw-r--r--techlibs/xilinx/abc9_map.v199
1 files changed, 182 insertions, 17 deletions
diff --git a/techlibs/xilinx/abc9_map.v b/techlibs/xilinx/abc9_map.v
index 05063f86d..ef7a1a09f 100644
--- a/techlibs/xilinx/abc9_map.v
+++ b/techlibs/xilinx/abc9_map.v
@@ -49,8 +49,57 @@ module FDRE (output reg Q, input C, CE, D, R);
) _TECHMAP_REPLACE_ (
.D(D), .Q($nextQ), .C(C), .CE(CE), .R(R)
);
- wire _TECHMAP_REPLACE_.$currQ = Q;
+ // `abc9' requires that complex flops be split into a combinatorial box
+ // feeding a simple flop ($_ABC9_FF_).
+ // Yosys will automatically analyse the simulation model (described in
+ // cells_sim.v) and detach any $_DFF_P_ or $_DFF_N_ cells present in
+ // order to extract the combinatorial control logic left behind.
+ // Specifically, a simulation model similar to the one below:
+ //
+ // ++===================================++
+ // || Sim model ||
+ // || /\/\/\/\ ||
+ // D -->>-----< > +------+ ||
+ // R -->>-----< Comb. > |$_DFF_| ||
+ // CE -->>-----< logic >-----| [NP]_|---+---->>-- Q
+ // || +--< > +------+ | ||
+ // || | \/\/\/\/ | ||
+ // || | | ||
+ // || +----------------------------+ ||
+ // || ||
+ // ++===================================++
+ //
+ // is transformed into:
+ //
+ // ++==================++
+ // || Comb box ||
+ // || ||
+ // || /\/\/\/\ ||
+ // D -->>-----< > || +------+
+ // R -->>-----< Comb. > || |$_ABC_|
+ // CE -->>-----< logic >--->>-- $nextQ --| FF_ |--+-->> Q
+ // $currQ +-->>-----< > || +------+ |
+ // | || \/\/\/\/ || |
+ // | || || |
+ // | ++==================++ |
+ // | |
+ // +----------------------------------------------+
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q(Q));
+
+ // Special signal indicating clock domain
+ // (used to partition the module so that `abc9' only performs
+ // sequential synthesis (reachability analysis) correctly on
+ // one domain at a time)
+ wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
+ // Special signal indicating control domain
+ // (which, combined with this cell type, encodes to `abc9'
+ // which flops may be merged together)
+ wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED};
+ // Special signal indicating the current value of the flip-flop
+ // In order to achieve clock-enable behaviour, the current value
+ // of the sequential output is required which Yosys will
+ // connect to the special `$currQ' wire.
+ wire _TECHMAP_REPLACE_.$currQ = Q;
endmodule
module FDRE_1 (output reg Q, input C, CE, D, R);
parameter [0:0] INIT = 1'b0;
@@ -60,8 +109,22 @@ module FDRE_1 (output reg Q, input C, CE, D, R);
) _TECHMAP_REPLACE_ (
.D(D), .Q($nextQ), .C(C), .CE(CE), .R(R)
);
- wire _TECHMAP_REPLACE_.$currQ = Q;
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q(Q));
+
+ // Special signal indicating clock domain
+ // (used to partition the module so that `abc9' only performs
+ // sequential synthesis (reachability analysis) correctly on
+ // one domain at a time)
+ wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ // Special signal indicating control domain
+ // (which, combined with this spell type, encodes to `abc9'
+ // which flops may be merged together)
+ wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */};
+ // Special signal indicating the current value of the flip-flop
+ // In order to achieve clock-enable behaviour, the current value
+ // of the sequential output is required which Yosys will
+ // connect to the special `$currQ' wire.
+ wire _TECHMAP_REPLACE_.$currQ = Q;
endmodule
module FDCE (output reg Q, input C, CE, D, CLR);
@@ -69,18 +132,38 @@ module FDCE (output reg Q, input C, CE, D, CLR);
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_CLR_INVERTED = 1'b0;
- wire $currQ, $nextQ;
+ wire $nextQ, $currQ;
FDCE #(
.INIT(INIT),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_CLR_INVERTED(IS_CLR_INVERTED)
) _TECHMAP_REPLACE_ (
- .D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(CLR)
+ .D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(IS_CLR_INVERTED)
+ // ^^^ Note that async
+ // control is disabled
+ // and captured by
+ // $__ABC9_ASYNC below
);
- wire _TECHMAP_REPLACE_.$currQ = Q;
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q($currQ));
- \$__ABC_ASYNC abc_async (.A($currQ), .S(CLR ^ IS_CLR_INVERTED), .Y(Q));
+ // Since this is an async flop, async behaviour is also dealt with
+ // using the $_ABC9_ASYNC box by abc9_map.v
+ \$__ABC9_ASYNC abc_async (.A($currQ), .S(CLR ^ IS_CLR_INVERTED), .Y(Q));
+
+ // Special signal indicating clock domain
+ // (used to partition the module so that `abc9' only performs
+ // sequential synthesis (reachability analysis) correctly on
+ // one domain at a time)
+ wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
+ // Special signal indicating control domain
+ // (which, combined with this spell type, encodes to `abc9'
+ // which flops may be merged together)
+ wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED};
+ // Special signal indicating the current value of the flip-flop
+ // In order to achieve clock-enable behaviour, the current value
+ // of the sequential output is required which Yosys will
+ // connect to the special `$currQ' wire.
+ wire _TECHMAP_REPLACE_.$currQ = $currQ;
endmodule
module FDCE_1 (output reg Q, input C, CE, D, CLR);
parameter [0:0] INIT = 1'b0;
@@ -88,11 +171,29 @@ module FDCE_1 (output reg Q, input C, CE, D, CLR);
FDCE_1 #(
.INIT(INIT)
) _TECHMAP_REPLACE_ (
- .D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(CLR)
+ .D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(1'b0)
+ // ^^^ Note that async
+ // control is disabled
+ // and captured by
+ // $__ABC9_ASYNC below
);
- wire _TECHMAP_REPLACE_.$currQ = Q;
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q($currQ));
- \$__ABC_ASYNC abc_async (.A($currQ), .S(CLR), .Y(Q));
+ \$__ABC9_ASYNC abc_async (.A($currQ), .S(CLR), .Y(Q));
+
+ // Special signal indicating clock domain
+ // (used to partition the module so that `abc9' only performs
+ // sequential synthesis (reachability analysis) correctly on
+ // one domain at a time)
+ wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ // Special signal indicating control domain
+ // (which, combined with this spell type, encodes to `abc9'
+ // which flops may be merged together)
+ wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */};
+ // Special signal indicating the current value of the flip-flop
+ // In order to achieve clock-enable behaviour, the current value
+ // of the sequential output is required which Yosys will
+ // connect to the special `$currQ' wire.
+ wire _TECHMAP_REPLACE_.$currQ = $currQ;
endmodule
module FDPE (output reg Q, input C, CE, D, PRE);
@@ -107,11 +208,29 @@ module FDPE (output reg Q, input C, CE, D, PRE);
.IS_D_INVERTED(IS_D_INVERTED),
.IS_PRE_INVERTED(IS_PRE_INVERTED),
) _TECHMAP_REPLACE_ (
- .D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(PRE)
+ .D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(IS_PRE_INVERTED)
+ // ^^^ Note that async
+ // control is disabled
+ // and captured by
+ // $__ABC9_ASYNC below
);
- wire _TECHMAP_REPLACE_.$currQ = Q;
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q($currQ));
- \$__ABC_ASYNC abc_async (.A($currQ), .S(PRE ^ IS_PRE_INVERTED), .Y(Q));
+ \$__ABC9_ASYNC abc_async (.A($currQ), .S(PRE ^ IS_PRE_INVERTED), .Y(Q));
+
+ // Special signal indicating clock domain
+ // (used to partition the module so that `abc9' only performs
+ // sequential synthesis (reachability analysis) correctly on
+ // one domain at a time)
+ wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
+ // Special signal indicating control domain
+ // (which, combined with this spell type, encodes to `abc9'
+ // which flops may be merged together)
+ wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED};
+ // Special signal indicating the current value of the flip-flop
+ // In order to achieve clock-enable behaviour, the current value
+ // of the sequential output is required which Yosys will
+ // connect to the special `$currQ' wire.
+ wire _TECHMAP_REPLACE_.$currQ = $currQ;
endmodule
module FDPE_1 (output reg Q, input C, CE, D, PRE);
parameter [0:0] INIT = 1'b0;
@@ -119,11 +238,29 @@ module FDPE_1 (output reg Q, input C, CE, D, PRE);
FDPE_1 #(
.INIT(INIT)
) _TECHMAP_REPLACE_ (
- .D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(PRE)
+ .D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(1'b0)
+ // ^^^ Note that async
+ // control is disabled
+ // and captured by
+ // $__ABC9_ASYNC below
);
- wire _TECHMAP_REPLACE_.$currQ = Q;
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q($currQ));
- \$__ABC_ASYNC abc_async (.A($currQ), .S(PRE), .Y(Q));
+ \$__ABC9_ASYNC abc_async (.A($currQ), .S(PRE), .Y(Q));
+
+ // Special signal indicating clock domain
+ // (used to partition the module so that `abc9' only performs
+ // sequential synthesis (reachability analysis) correctly on
+ // one domain at a time)
+ wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ // Special signal indicating control domain
+ // (which, combined with this spell type, encodes to `abc9'
+ // which flops may be merged together)
+ wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */};
+ // Special signal indicating the current value of the flip-flop
+ // In order to achieve clock-enable behaviour, the current value
+ // of the sequential output is required which Yosys will
+ // connect to the special `$currQ' wire.
+ wire _TECHMAP_REPLACE_.$currQ = $currQ;
endmodule
module FDSE (output reg Q, input C, CE, D, S);
@@ -140,8 +277,22 @@ module FDSE (output reg Q, input C, CE, D, S);
) _TECHMAP_REPLACE_ (
.D(D), .Q($nextQ), .C(C), .CE(CE), .S(S)
);
- wire _TECHMAP_REPLACE_.$currQ = Q;
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q(Q));
+
+ // Special signal indicating clock domain
+ // (used to partition the module so that `abc9' only performs
+ // sequential synthesis (reachability analysis) correctly on
+ // one domain at a time)
+ wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
+ // Special signal indicating control domain
+ // (which, combined with this spell type, encodes to `abc9'
+ // which flops may be merged together)
+ wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED};
+ // Special signal indicating the current value of the flip-flop
+ // In order to achieve clock-enable behaviour, the current value
+ // of the sequential output is required which Yosys will
+ // connect to the special `$currQ' wire.
+ wire _TECHMAP_REPLACE_.$currQ = Q;
endmodule
module FDSE_1 (output reg Q, input C, CE, D, S);
parameter [0:0] INIT = 1'b0;
@@ -151,8 +302,22 @@ module FDSE_1 (output reg Q, input C, CE, D, S);
) _TECHMAP_REPLACE_ (
.D(D), .Q($nextQ), .C(C), .CE(CE), .S(S)
);
- wire _TECHMAP_REPLACE_.$currQ = Q;
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q(Q));
+
+ // Special signal indicating clock domain
+ // (used to partition the module so that `abc9' only performs
+ // sequential synthesis (reachability analysis) correctly on
+ // one domain at a time)
+ wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ // Special signal indicating control domain
+ // (which, combined with this spell type, encodes to `abc9'
+ // which flops may be merged together)
+ wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */};
+ // Special signal indicating the current value of the flip-flop
+ // In order to achieve clock-enable behaviour, the current value
+ // of the sequential output is required which Yosys will
+ // connect to the special `$currQ' wire.
+ wire _TECHMAP_REPLACE_.$currQ = Q;
endmodule
module RAM32X1D (