aboutsummaryrefslogtreecommitdiffstats
path: root/techlibs
diff options
context:
space:
mode:
Diffstat (limited to 'techlibs')
-rw-r--r--techlibs/xilinx/abc9_map.v562
-rw-r--r--techlibs/xilinx/abc9_model.v19
-rw-r--r--techlibs/xilinx/abc9_unmap.v9
-rw-r--r--techlibs/xilinx/abc9_xc7.box68
-rw-r--r--techlibs/xilinx/cells_sim.v100
-rw-r--r--techlibs/xilinx/synth_xilinx.cc36
6 files changed, 673 insertions, 121 deletions
diff --git a/techlibs/xilinx/abc9_map.v b/techlibs/xilinx/abc9_map.v
index 7b9427b2f..2cabe57d7 100644
--- a/techlibs/xilinx/abc9_map.v
+++ b/techlibs/xilinx/abc9_map.v
@@ -18,7 +18,449 @@
*
*/
-// ============================================================================
+// The following techmapping rules are intended to be run (with -max_iter 1)
+// before invoking the `abc9` pass in order to transform the design into
+// a format that it understands.
+//
+// For example, (complex) flip-flops are expected to be described as an
+// combinatorial box (containing all control logic such as clock enable
+// or synchronous resets) followed by a basic D-Q flop.
+// Yosys will automatically analyse the simulation model (described in
+// cells_sim.v) and detach any $_DFF_P_ or $_DFF_N_ cells present in
+// order to extract the combinatorial control logic left behind.
+// Specifically, a simulation model similar to the one below:
+//
+// ++===================================++
+// || Sim model ||
+// || /\/\/\/\ ||
+// D -->>-----< > +------+ ||
+// R -->>-----< Comb. > |$_DFF_| ||
+// CE -->>-----< logic >-----| [NP]_|---+---->>-- Q
+// || +--< > +------+ | ||
+// || | \/\/\/\/ | ||
+// || | | ||
+// || +----------------------------+ ||
+// || ||
+// ++===================================++
+//
+// is transformed into:
+//
+// ++==================++
+// || Comb box ||
+// || ||
+// || /\/\/\/\ ||
+// D -->>-----< > ||
+// R -->>-----< Comb. > || +----------+
+// CE -->>-----< logic >--->>-- $Q --|$__ABC_FF_|--+-->> Q
+// $abc9_currQ +-->>-----< > || +----------+ |
+// | || \/\/\/\/ || |
+// | || || |
+// | ++==================++ |
+// | |
+// +----------------------------------------------+
+//
+// The purpose of the following FD* rules are to wrap the flop with:
+// (a) a special $__ABC9_FF_ in front of the FD*'s output, indicating to abc9
+// the connectivity of its basic D-Q flop
+// (b) an optional $__ABC9_ASYNC_ cell in front of $__ABC_FF_'s output to
+// capture asynchronous behaviour
+// (c) a special _TECHMAP_REPLACE_.$abc9_clock wire to capture its clock
+// domain and polarity (used when partitioning the module so that `abc9' only
+// performs sequential synthesis (with reachability analysis) correctly on
+// one domain at a time) and also used to infer the optional delay target
+// from the (* abc9_clock_period = %d *) attribute attached to any wire
+// within
+// (d) a special _TECHMAP_REPLACE_.$abc9_init wire to encode the flop's initial
+// state
+// (e) a special _TECHMAP_REPLACE_.$abc9_currQ wire that will be used for feedback
+// into the (combinatorial) FD* cell to facilitate clock-enable behaviour
+//
+// In order to perform sequential synthesis, `abc9' also requires that
+// the initial value of all flops be zero.
+
+module FDRE (output Q, input C, CE, D, R);
+ parameter [0:0] INIT = 1'b0;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_R_INVERTED = 1'b0;
+`ifdef DFF_MODE
+ wire QQ, $Q;
+ generate if (INIT == 1'b1) begin
+ assign Q = ~QQ;
+ FDSE #(
+ .INIT(1'b0),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_S_INVERTED(IS_R_INVERTED)
+ ) _TECHMAP_REPLACE_ (
+ .D(~D), .Q($Q), .C(C), .CE(CE), .S(R)
+ );
+ end
+ else begin
+ assign Q = QQ;
+ FDRE #(
+ .INIT(1'b0),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_R_INVERTED(IS_R_INVERTED)
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q($Q), .C(C), .CE(CE), .R(R)
+ );
+ end
+ endgenerate
+ $__ABC9_FF_ abc_dff (.D($Q), .Q(QQ));
+
+ // Special signals
+ wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0;
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = QQ;
+`else
+ (* abc9_keep *)
+ FDRE #(
+ .INIT(INIT),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_R_INVERTED(IS_R_INVERTED)
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q(Q), .C(C), .CE(CE), .R(R)
+ );
+`endif
+endmodule
+module FDRE_1 (output Q, input C, CE, D, R);
+ parameter [0:0] INIT = 1'b0;
+`ifdef DFF_MODE
+ wire QQ, $Q;
+ generate if (INIT == 1'b1) begin
+ assign Q = ~QQ;
+ FDSE_1 #(
+ .INIT(1'b0)
+ ) _TECHMAP_REPLACE_ (
+ .D(~D), .Q($Q), .C(C), .CE(CE), .S(R)
+ );
+ end
+ else begin
+ assign Q = QQ;
+ FDRE_1 #(
+ .INIT(1'b0)
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q($Q), .C(C), .CE(CE), .R(R)
+ );
+ end
+ endgenerate
+ $__ABC9_FF_ abc_dff (.D($Q), .Q(QQ));
+
+ // Special signals
+ wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0;
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = QQ;
+`else
+ (* abc9_keep *)
+ FDRE_1 #(
+ .INIT(INIT)
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q(Q), .C(C), .CE(CE), .R(R)
+ );
+`endif
+endmodule
+
+module FDCE (output Q, input C, CE, D, CLR);
+ parameter [0:0] INIT = 1'b0;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_CLR_INVERTED = 1'b0;
+`ifdef DFF_MODE
+ wire QQ, $Q, $abc9_currQ;
+ generate if (INIT == 1'b1) begin
+ assign Q = ~QQ;
+ FDPE #(
+ .INIT(1'b0),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_PRE_INVERTED(IS_CLR_INVERTED)
+ ) _TECHMAP_REPLACE_ (
+ .D(~D), .Q($Q), .C(C), .CE(CE), .PRE(CLR)
+ // ^^^ Note that async
+ // control is not directly
+ // supported by abc9 but its
+ // behaviour is captured by
+ // $__ABC9_ASYNC1 below
+ );
+ // Since this is an async flop, async behaviour is dealt with here
+ $__ABC9_ASYNC0 abc_async (.A($abc9_currQ), .S(CLR ^ IS_CLR_INVERTED), .Y(QQ));
+ end
+ else begin
+ assign Q = QQ;
+ FDCE #(
+ .INIT(1'b0),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_CLR_INVERTED(IS_CLR_INVERTED)
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q($Q), .C(C), .CE(CE), .CLR(CLR)
+ // ^^^ Note that async
+ // control is not directly
+ // supported by abc9 but its
+ // behaviour is captured by
+ // $__ABC9_ASYNC0 below
+ );
+ // Since this is an async flop, async behaviour is dealt with here
+ $__ABC9_ASYNC1 abc_async (.A($abc9_currQ), .S(CLR ^ IS_CLR_INVERTED), .Y(QQ));
+ end endgenerate
+ $__ABC9_FF_ abc_dff (.D($Q), .Q($abc9_currQ));
+
+ // Special signals
+ wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0;
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = $abc9_currQ;
+`else
+ (* abc9_keep *)
+ FDCE #(
+ .INIT(INIT),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_CLR_INVERTED(IS_CLR_INVERTED)
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q(Q), .C(C), .CE(CE), .CLR(CLR)
+ );
+`endif
+endmodule
+module FDCE_1 (output Q, input C, CE, D, CLR);
+ parameter [0:0] INIT = 1'b0;
+`ifdef DFF_MODE
+ wire QQ, $Q, $abc9_currQ;
+ generate if (INIT == 1'b1) begin
+ assign Q = ~QQ;
+ FDPE_1 #(
+ .INIT(1'b0)
+ ) _TECHMAP_REPLACE_ (
+ .D(~D), .Q($Q), .C(C), .CE(CE), .PRE(CLR)
+ // ^^^ Note that async
+ // control is not directly
+ // supported by abc9 but its
+ // behaviour is captured by
+ // $__ABC9_ASYNC1 below
+ );
+ $__ABC9_ASYNC1 abc_async (.A($abc9_currQ), .S(CLR), .Y(QQ));
+ end
+ else begin
+ assign Q = QQ;
+ FDCE_1 #(
+ .INIT(1'b0)
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q($Q), .C(C), .CE(CE), .CLR(CLR)
+ // ^^^ Note that async
+ // control is not directly
+ // supported by abc9 but its
+ // behaviour is captured by
+ // $__ABC9_ASYNC0 below
+ );
+ $__ABC9_ASYNC0 abc_async (.A($abc9_currQ), .S(CLR), .Y(QQ));
+ end endgenerate
+ $__ABC9_FF_ abc_dff (.D($Q), .Q($abc9_currQ));
+
+ // Special signals
+ wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0;
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = $abc9_currQ;
+`else
+ (* abc9_keep *)
+ FDCE_1 #(
+ .INIT(INIT)
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q(Q), .C(C), .CE(CE), .CLR(CLR)
+ );
+`endif
+endmodule
+
+module FDPE (output Q, input C, CE, D, PRE);
+ parameter [0:0] INIT = 1'b1;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_PRE_INVERTED = 1'b0;
+`ifdef DFF_MODE
+ wire QQ, $Q, $abc9_currQ;
+ generate if (INIT == 1'b1) begin
+ assign Q = ~QQ;
+ FDCE #(
+ .INIT(1'b0),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_CLR_INVERTED(IS_PRE_INVERTED),
+ ) _TECHMAP_REPLACE_ (
+ .D(~D), .Q($Q), .C(C), .CE(CE), .CLR(PRE)
+ // ^^^ Note that async
+ // control is not directly
+ // supported by abc9 but its
+ // behaviour is captured by
+ // $__ABC9_ASYNC0 below
+ );
+ $__ABC9_ASYNC0 abc_async (.A($abc9_currQ), .S(PRE ^ IS_PRE_INVERTED), .Y(QQ));
+ end
+ else begin
+ assign Q = QQ;
+ FDPE #(
+ .INIT(1'b0),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_PRE_INVERTED(IS_PRE_INVERTED),
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q($Q), .C(C), .CE(CE), .PRE(PRE)
+ // ^^^ Note that async
+ // control is not directly
+ // supported by abc9 but its
+ // behaviour is captured by
+ // $__ABC9_ASYNC1 below
+ );
+ $__ABC9_ASYNC1 abc_async (.A($abc9_currQ), .S(PRE ^ IS_PRE_INVERTED), .Y(QQ));
+ end endgenerate
+ $__ABC9_FF_ abc_dff (.D($Q), .Q($abc9_currQ));
+
+ // Special signals
+ wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0;
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = $abc9_currQ;
+`else
+ (* abc9_keep *)
+ FDPE #(
+ .INIT(INIT),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_PRE_INVERTED(IS_PRE_INVERTED),
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q(Q), .C(C), .CE(CE), .PRE(PRE)
+ );
+`endif
+endmodule
+module FDPE_1 (output Q, input C, CE, D, PRE);
+ parameter [0:0] INIT = 1'b1;
+`ifdef DFF_MODE
+ wire QQ, $Q, $abc9_currQ;
+ generate if (INIT == 1'b1) begin
+ assign Q = ~QQ;
+ FDCE_1 #(
+ .INIT(1'b0)
+ ) _TECHMAP_REPLACE_ (
+ .D(~D), .Q($Q), .C(C), .CE(CE), .CLR(PRE)
+ // ^^^ Note that async
+ // control is not directly
+ // supported by abc9 but its
+ // behaviour is captured by
+ // $__ABC9_ASYNC0 below
+ );
+ $__ABC9_ASYNC0 abc_async (.A($abc9_currQ), .S(PRE), .Y(QQ));
+ end
+ else begin
+ assign Q = QQ;
+ FDPE_1 #(
+ .INIT(1'b0)
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q($Q), .C(C), .CE(CE), .PRE(PRE)
+ // ^^^ Note that async
+ // control is not directly
+ // supported by abc9 but its
+ // behaviour is captured by
+ // $__ABC9_ASYNC1 below
+ );
+ $__ABC9_ASYNC1 abc_async (.A($abc9_currQ), .S(PRE), .Y(QQ));
+ end endgenerate
+ $__ABC9_FF_ abc_dff (.D($Q), .Q($abc9_currQ));
+
+ // Special signals
+ wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0;
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = $abc9_currQ;
+`else
+ (* abc9_keep *)
+ FDPE_1 #(
+ .INIT(INIT)
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q(Q), .C(C), .CE(CE), .PRE(PRE)
+ );
+`endif
+endmodule
+
+module FDSE (output Q, input C, CE, D, S);
+ parameter [0:0] INIT = 1'b1;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_S_INVERTED = 1'b0;
+`ifdef DFF_MODE
+ wire QQ, $Q;
+ generate if (INIT == 1'b1) begin
+ assign Q = ~QQ;
+ FDRE #(
+ .INIT(1'b0),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_R_INVERTED(IS_S_INVERTED)
+ ) _TECHMAP_REPLACE_ (
+ .D(~D), .Q($Q), .C(C), .CE(CE), .R(S)
+ );
+ end
+ else begin
+ assign Q = QQ;
+ FDSE #(
+ .INIT(1'b0),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_S_INVERTED(IS_S_INVERTED)
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q($Q), .C(C), .CE(CE), .S(S)
+ );
+ end endgenerate
+ $__ABC9_FF_ abc_dff (.D($Q), .Q(QQ));
+
+ // Special signals
+ wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0;
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = QQ;
+`else
+ (* abc9_keep *)
+ FDSE #(
+ .INIT(INIT),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_S_INVERTED(IS_S_INVERTED)
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q(Q), .C(C), .CE(CE), .S(S)
+ );
+`endif
+endmodule
+module FDSE_1 (output Q, input C, CE, D, S);
+ parameter [0:0] INIT = 1'b1;
+`ifdef DFF_MODE
+ wire QQ, $Q;
+ generate if (INIT == 1'b1) begin
+ assign Q = ~QQ;
+ FDRE_1 #(
+ .INIT(1'b0)
+ ) _TECHMAP_REPLACE_ (
+ .D(~D), .Q($Q), .C(C), .CE(CE), .R(S)
+ );
+ end
+ else begin
+ assign Q = QQ;
+ FDSE_1 #(
+ .INIT(1'b0)
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q($Q), .C(C), .CE(CE), .S(S)
+ );
+ end endgenerate
+ $__ABC9_FF_ abc_dff (.D($Q), .Q(QQ));
+
+ // Special signals
+ wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0;
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = QQ;
+`else
+ (* abc9_keep *)
+ FDSE_1 #(
+ .INIT(INIT)
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q(Q), .C(C), .CE(CE), .S(S)
+ );
+`endif
+endmodule
module RAM32X1D (
output DPO, SPO,
@@ -30,17 +472,17 @@ module RAM32X1D (
);
parameter INIT = 32'h0;
parameter IS_WCLK_INVERTED = 1'b0;
- wire \$DPO , \$SPO ;
+ wire $DPO, $SPO;
RAM32X1D #(
.INIT(INIT), .IS_WCLK_INVERTED(IS_WCLK_INVERTED)
) _TECHMAP_REPLACE_ (
- .DPO(\$DPO ), .SPO(\$SPO ),
+ .DPO($DPO), .SPO($SPO),
.D(D), .WCLK(WCLK), .WE(WE),
.A0(A0), .A1(A1), .A2(A2), .A3(A3), .A4(A4),
.DPRA0(DPRA0), .DPRA1(DPRA1), .DPRA2(DPRA2), .DPRA3(DPRA3), .DPRA4(DPRA4)
);
- \$__ABC9_LUT6 spo (.A(\$SPO ), .S({1'b1, A4, A3, A2, A1, A0}), .Y(SPO));
- \$__ABC9_LUT6 dpo (.A(\$DPO ), .S({1'b1, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}), .Y(DPO));
+ $__ABC9_LUT6 spo (.A($SPO), .S({1'b1, A4, A3, A2, A1, A0}), .Y(SPO));
+ $__ABC9_LUT6 dpo (.A($DPO), .S({1'b1, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}), .Y(DPO));
endmodule
module RAM64X1D (
@@ -53,17 +495,17 @@ module RAM64X1D (
);
parameter INIT = 64'h0;
parameter IS_WCLK_INVERTED = 1'b0;
- wire \$DPO , \$SPO ;
+ wire $DPO, $SPO;
RAM64X1D #(
.INIT(INIT), .IS_WCLK_INVERTED(IS_WCLK_INVERTED)
) _TECHMAP_REPLACE_ (
- .DPO(\$DPO ), .SPO(\$SPO ),
+ .DPO($DPO), .SPO($SPO),
.D(D), .WCLK(WCLK), .WE(WE),
.A0(A0), .A1(A1), .A2(A2), .A3(A3), .A4(A4), .A5(A5),
.DPRA0(DPRA0), .DPRA1(DPRA1), .DPRA2(DPRA2), .DPRA3(DPRA3), .DPRA4(DPRA4), .DPRA5(DPRA5)
);
- \$__ABC9_LUT6 spo (.A(\$SPO ), .S({A5, A4, A3, A2, A1, A0}), .Y(SPO));
- \$__ABC9_LUT6 dpo (.A(\$DPO ), .S({DPRA5, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}), .Y(DPO));
+ $__ABC9_LUT6 spo (.A($SPO), .S({A5, A4, A3, A2, A1, A0}), .Y(SPO));
+ $__ABC9_LUT6 dpo (.A($DPO), .S({DPRA5, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}), .Y(DPO));
endmodule
module RAM128X1D (
@@ -75,17 +517,17 @@ module RAM128X1D (
);
parameter INIT = 128'h0;
parameter IS_WCLK_INVERTED = 1'b0;
- wire \$DPO , \$SPO ;
+ wire $DPO, $SPO;
RAM128X1D #(
.INIT(INIT), .IS_WCLK_INVERTED(IS_WCLK_INVERTED)
) _TECHMAP_REPLACE_ (
- .DPO(\$DPO ), .SPO(\$SPO ),
+ .DPO($DPO), .SPO($SPO),
.D(D), .WCLK(WCLK), .WE(WE),
.A(A),
.DPRA(DPRA)
);
- \$__ABC9_LUT7 spo (.A(\$SPO ), .S(A), .Y(SPO));
- \$__ABC9_LUT7 dpo (.A(\$DPO ), .S(DPRA), .Y(DPO));
+ $__ABC9_LUT7 spo (.A($SPO), .S(A), .Y(SPO));
+ $__ABC9_LUT7 dpo (.A($DPO), .S(DPRA), .Y(DPO));
endmodule
module RAM32M (
@@ -109,24 +551,24 @@ module RAM32M (
parameter [63:0] INIT_C = 64'h0000000000000000;
parameter [63:0] INIT_D = 64'h0000000000000000;
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
- wire [1:0] \$DOA , \$DOB , \$DOC , \$DOD ;
+ wire [1:0] $DOA, $DOB, $DOC, $DOD;
RAM32M #(
.INIT_A(INIT_A), .INIT_B(INIT_B), .INIT_C(INIT_C), .INIT_D(INIT_D),
.IS_WCLK_INVERTED(IS_WCLK_INVERTED)
) _TECHMAP_REPLACE_ (
- .DOA(\$DOA ), .DOB(\$DOB ), .DOC(\$DOC ), .DOD(\$DOD ),
+ .DOA($DOA), .DOB($DOB), .DOC($DOC), .DOD($DOD),
.WCLK(WCLK), .WE(WE),
.ADDRA(ADDRA), .ADDRB(ADDRB), .ADDRC(ADDRC), .ADDRD(ADDRD),
.DIA(DIA), .DIB(DIB), .DIC(DIC), .DID(DID)
);
- \$__ABC9_LUT6 doa0 (.A(\$DOA [0]), .S({1'b1, ADDRA}), .Y(DOA[0]));
- \$__ABC9_LUT6 doa1 (.A(\$DOA [1]), .S({1'b1, ADDRA}), .Y(DOA[1]));
- \$__ABC9_LUT6 dob0 (.A(\$DOB [0]), .S({1'b1, ADDRB}), .Y(DOB[0]));
- \$__ABC9_LUT6 dob1 (.A(\$DOB [1]), .S({1'b1, ADDRB}), .Y(DOB[1]));
- \$__ABC9_LUT6 doc0 (.A(\$DOC [0]), .S({1'b1, ADDRC}), .Y(DOC[0]));
- \$__ABC9_LUT6 doc1 (.A(\$DOC [1]), .S({1'b1, ADDRC}), .Y(DOC[1]));
- \$__ABC9_LUT6 dod0 (.A(\$DOD [0]), .S({1'b1, ADDRD}), .Y(DOD[0]));
- \$__ABC9_LUT6 dod1 (.A(\$DOD [1]), .S({1'b1, ADDRD}), .Y(DOD[1]));
+ $__ABC9_LUT6 doa0 (.A($DOA[0]), .S({1'b1, ADDRA}), .Y(DOA[0]));
+ $__ABC9_LUT6 doa1 (.A($DOA[1]), .S({1'b1, ADDRA}), .Y(DOA[1]));
+ $__ABC9_LUT6 dob0 (.A($DOB[0]), .S({1'b1, ADDRB}), .Y(DOB[0]));
+ $__ABC9_LUT6 dob1 (.A($DOB[1]), .S({1'b1, ADDRB}), .Y(DOB[1]));
+ $__ABC9_LUT6 doc0 (.A($DOC[0]), .S({1'b1, ADDRC}), .Y(DOC[0]));
+ $__ABC9_LUT6 doc1 (.A($DOC[1]), .S({1'b1, ADDRC}), .Y(DOC[1]));
+ $__ABC9_LUT6 dod0 (.A($DOD[0]), .S({1'b1, ADDRD}), .Y(DOD[0]));
+ $__ABC9_LUT6 dod1 (.A($DOD[1]), .S({1'b1, ADDRD}), .Y(DOD[1]));
endmodule
module RAM64M (
@@ -150,20 +592,20 @@ module RAM64M (
parameter [63:0] INIT_C = 64'h0000000000000000;
parameter [63:0] INIT_D = 64'h0000000000000000;
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
- wire \$DOA , \$DOB , \$DOC , \$DOD ;
+ wire $DOA, $DOB, $DOC, $DOD;
RAM64M #(
.INIT_A(INIT_A), .INIT_B(INIT_B), .INIT_C(INIT_C), .INIT_D(INIT_D),
.IS_WCLK_INVERTED(IS_WCLK_INVERTED)
) _TECHMAP_REPLACE_ (
- .DOA(\$DOA ), .DOB(\$DOB ), .DOC(\$DOC ), .DOD(\$DOD ),
+ .DOA($DOA), .DOB($DOB), .DOC($DOC), .DOD($DOD),
.WCLK(WCLK), .WE(WE),
.ADDRA(ADDRA), .ADDRB(ADDRB), .ADDRC(ADDRC), .ADDRD(ADDRD),
.DIA(DIA), .DIB(DIB), .DIC(DIC), .DID(DID)
);
- \$__ABC9_LUT6 doa (.A(\$DOA ), .S(ADDRA), .Y(DOA));
- \$__ABC9_LUT6 dob (.A(\$DOB ), .S(ADDRB), .Y(DOB));
- \$__ABC9_LUT6 doc (.A(\$DOC ), .S(ADDRC), .Y(DOC));
- \$__ABC9_LUT6 dod (.A(\$DOD ), .S(ADDRD), .Y(DOD));
+ $__ABC9_LUT6 doa (.A($DOA), .S(ADDRA), .Y(DOA));
+ $__ABC9_LUT6 dob (.A($DOB), .S(ADDRB), .Y(DOB));
+ $__ABC9_LUT6 doc (.A($DOC), .S(ADDRC), .Y(DOC));
+ $__ABC9_LUT6 dod (.A($DOD), .S(ADDRD), .Y(DOD));
endmodule
module SRL16E (
@@ -172,14 +614,14 @@ module SRL16E (
);
parameter [15:0] INIT = 16'h0000;
parameter [0:0] IS_CLK_INVERTED = 1'b0;
- wire \$Q ;
+ wire $Q;
SRL16E #(
.INIT(INIT), .IS_CLK_INVERTED(IS_CLK_INVERTED)
) _TECHMAP_REPLACE_ (
- .Q(\$Q ),
+ .Q($Q),
.A0(A0), .A1(A1), .A2(A2), .A3(A3), .CE(CE), .CLK(CLK), .D(D)
);
- \$__ABC9_LUT6 q (.A(\$Q ), .S({1'b1, A3, A2, A1, A0, 1'b1}), .Y(Q));
+ $__ABC9_LUT6 q (.A($Q), .S({1'b1, A3, A2, A1, A0, 1'b1}), .Y(Q));
endmodule
module SRLC32E (
@@ -190,14 +632,14 @@ module SRLC32E (
);
parameter [31:0] INIT = 32'h00000000;
parameter [0:0] IS_CLK_INVERTED = 1'b0;
- wire \$Q ;
+ wire $Q;
SRLC32E #(
.INIT(INIT), .IS_CLK_INVERTED(IS_CLK_INVERTED)
) _TECHMAP_REPLACE_ (
- .Q(\$Q ), .Q31(Q31),
+ .Q($Q), .Q31(Q31),
.A(A), .CE(CE), .CLK(CLK), .D(D)
);
- \$__ABC9_LUT6 q (.A(\$Q ), .S({1'b1, A}), .Y(Q));
+ $__ABC9_LUT6 q (.A($Q), .S({1'b1, A}), .Y(Q));
endmodule
module DSP48E1 (
@@ -386,15 +828,15 @@ __CELL__ #(
if (AREG == 0 && MREG == 0 && PREG == 0)
assign iA = A, pA = 1'bx;
else
- \$__ABC9_REG #(.WIDTH(30)) rA (.I(A), .O(iA), .Q(pA));
+ $__ABC9_REG #(.WIDTH(30)) rA (.I(A), .O(iA), .Q(pA));
if (BREG == 0 && MREG == 0 && PREG == 0)
assign iB = B, pB = 1'bx;
else
- \$__ABC9_REG #(.WIDTH(18)) rB (.I(B), .O(iB), .Q(pB));
+ $__ABC9_REG #(.WIDTH(18)) rB (.I(B), .O(iB), .Q(pB));
if (CREG == 0 && PREG == 0)
assign iC = C, pC = 1'bx;
else
- \$__ABC9_REG #(.WIDTH(48)) rC (.I(C), .O(iC), .Q(pC));
+ $__ABC9_REG #(.WIDTH(48)) rC (.I(C), .O(iC), .Q(pC));
if (DREG == 0)
assign iD = D;
else if (techmap_guard)
@@ -405,27 +847,27 @@ __CELL__ #(
assign pAD = 1'bx;
if (PREG == 0) begin
if (MREG == 1)
- \$__ABC9_REG rM (.Q(pM));
+ $__ABC9_REG rM (.Q(pM));
else
assign pM = 1'bx;
assign pP = 1'bx;
end else begin
assign pM = 1'bx;
- \$__ABC9_REG rP (.Q(pP));
+ $__ABC9_REG rP (.Q(pP));
end
if (MREG == 0 && PREG == 0)
assign mP = oP, mPCOUT = oPCOUT;
else
assign mP = 1'bx, mPCOUT = 1'bx;
- \$__ABC9_DSP48E1_MULT_P_MUX muxP (
+ $__ABC9_DSP48E1_MULT_P_MUX muxP (
.Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oP), .Mq(pM), .P(mP), .Pq(pP), .O(P)
);
- \$__ABC9_DSP48E1_MULT_PCOUT_MUX muxPCOUT (
+ $__ABC9_DSP48E1_MULT_PCOUT_MUX muxPCOUT (
.Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oPCOUT), .Mq(pM), .P(mPCOUT), .Pq(pP), .O(PCOUT)
);
- `DSP48E1_INST(\$__ABC9_DSP48E1_MULT )
+ `DSP48E1_INST($__ABC9_DSP48E1_MULT )
end
else if (USE_MULT == "MULTIPLY" && USE_DPORT == "TRUE") begin
// Disconnect the A-input if MREG is enabled, since
@@ -433,26 +875,26 @@ __CELL__ #(
if (AREG == 0 && ADREG == 0 && MREG == 0 && PREG == 0)
assign iA = A, pA = 1'bx;
else
- \$__ABC9_REG #(.WIDTH(30)) rA (.I(A), .O(iA), .Q(pA));
+ $__ABC9_REG #(.WIDTH(30)) rA (.I(A), .O(iA), .Q(pA));
if (BREG == 0 && MREG == 0 && PREG == 0)
assign iB = B, pB = 1'bx;
else
- \$__ABC9_REG #(.WIDTH(18)) rB (.I(B), .O(iB), .Q(pB));
+ $__ABC9_REG #(.WIDTH(18)) rB (.I(B), .O(iB), .Q(pB));
if (CREG == 0 && PREG == 0)
assign iC = C, pC = 1'bx;
else
- \$__ABC9_REG #(.WIDTH(48)) rC (.I(C), .O(iC), .Q(pC));
+ $__ABC9_REG #(.WIDTH(48)) rC (.I(C), .O(iC), .Q(pC));
if (DREG == 0 && ADREG == 0)
assign iD = D, pD = 1'bx;
else
- \$__ABC9_REG #(.WIDTH(25)) rD (.I(D), .O(iD), .Q(pD));
+ $__ABC9_REG #(.WIDTH(25)) rD (.I(D), .O(iD), .Q(pD));
if (PREG == 0) begin
if (MREG == 1) begin
assign pAD = 1'bx;
- \$__ABC9_REG rM (.Q(pM));
+ $__ABC9_REG rM (.Q(pM));
end else begin
if (ADREG == 1)
- \$__ABC9_REG rAD (.Q(pAD));
+ $__ABC9_REG rAD (.Q(pAD));
else
assign pAD = 1'bx;
assign pM = 1'bx;
@@ -460,21 +902,21 @@ __CELL__ #(
assign pP = 1'bx;
end else begin
assign pAD = 1'bx, pM = 1'bx;
- \$__ABC9_REG rP (.Q(pP));
+ $__ABC9_REG rP (.Q(pP));
end
if (MREG == 0 && PREG == 0)
assign mP = oP, mPCOUT = oPCOUT;
else
assign mP = 1'bx, mPCOUT = 1'bx;
- \$__ABC9_DSP48E1_MULT_DPORT_P_MUX muxP (
+ $__ABC9_DSP48E1_MULT_DPORT_P_MUX muxP (
.Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oP), .Mq(pM), .P(mP), .Pq(pP), .O(P)
);
- \$__ABC9_DSP48E1_MULT_DPORT_PCOUT_MUX muxPCOUT (
+ $__ABC9_DSP48E1_MULT_DPORT_PCOUT_MUX muxPCOUT (
.Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oPCOUT), .Mq(pM), .P(mPCOUT), .Pq(pP), .O(PCOUT)
);
- `DSP48E1_INST(\$__ABC9_DSP48E1_MULT_DPORT )
+ `DSP48E1_INST($__ABC9_DSP48E1_MULT_DPORT )
end
else if (USE_MULT == "NONE" && USE_DPORT == "FALSE") begin
// Disconnect the A-input if MREG is enabled, since
@@ -482,15 +924,15 @@ __CELL__ #(
if (AREG == 0 && PREG == 0)
assign iA = A, pA = 1'bx;
else
- \$__ABC9_REG #(.WIDTH(30)) rA (.I(A), .O(iA), .Q(pA));
+ $__ABC9_REG #(.WIDTH(30)) rA (.I(A), .O(iA), .Q(pA));
if (BREG == 0 && PREG == 0)
assign iB = B, pB = 1'bx;
else
- \$__ABC9_REG #(.WIDTH(18)) rB (.I(B), .O(iB), .Q(pB));
+ $__ABC9_REG #(.WIDTH(18)) rB (.I(B), .O(iB), .Q(pB));
if (CREG == 0 && PREG == 0)
assign iC = C, pC = 1'bx;
else
- \$__ABC9_REG #(.WIDTH(48)) rC (.I(C), .O(iC), .Q(pC));
+ $__ABC9_REG #(.WIDTH(48)) rC (.I(C), .O(iC), .Q(pC));
if (DREG == 1 && techmap_guard)
$error("Invalid DSP48E1 configuration: DREG enabled but USE_DPORT == \"FALSE\"");
assign pD = 1'bx;
@@ -501,7 +943,7 @@ __CELL__ #(
$error("Invalid DSP48E1 configuration: MREG enabled but USE_MULT == \"NONE\"");
assign pM = 1'bx;
if (PREG == 1)
- \$__ABC9_REG rP (.Q(pP));
+ $__ABC9_REG rP (.Q(pP));
else
assign pP = 1'bx;
@@ -509,14 +951,14 @@ __CELL__ #(
assign mP = oP, mPCOUT = oPCOUT;
else
assign mP = 1'bx, mPCOUT = 1'bx;
- \$__ABC9_DSP48E1_P_MUX muxP (
+ $__ABC9_DSP48E1_P_MUX muxP (
.Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oP), .Mq(pM), .P(mP), .Pq(pP), .O(P)
);
- \$__ABC9_DSP48E1_PCOUT_MUX muxPCOUT (
+ $__ABC9_DSP48E1_PCOUT_MUX muxPCOUT (
.Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oPCOUT), .Mq(pM), .P(mPCOUT), .Pq(pP), .O(PCOUT)
);
- `DSP48E1_INST(\$__ABC9_DSP48E1 )
+ `DSP48E1_INST($__ABC9_DSP48E1 )
end
else
$error("Invalid DSP48E1 configuration");
diff --git a/techlibs/xilinx/abc9_model.v b/techlibs/xilinx/abc9_model.v
index 8c8e1556c..c793396a4 100644
--- a/techlibs/xilinx/abc9_model.v
+++ b/techlibs/xilinx/abc9_model.v
@@ -30,7 +30,22 @@ module \$__XILINX_MUXF78 (output O, input I0, I1, I2, I3, S0, S1);
: (S0 ? I1 : I0);
endmodule
-// Box to emulate comb/seq behaviour of RAMD{32,64} and SRL{16,32}
+module \$__ABC9_FF_ (input D, output Q);
+endmodule
+
+// Box to emulate async behaviour of FDC*
+(* abc_box_id = 1000 *)
+module \$__ABC9_ASYNC0 (input A, S, output Y);
+ assign Y = S ? 1'b0 : A;
+endmodule
+
+// Box to emulate async behaviour of FDP*
+(* abc_box_id = 1001 *)
+module \$__ABC9_ASYNC1 (input A, S, output Y);
+ assign Y = S ? 1'b0 : A;
+endmodule
+
+// Box to emulate comb/seq behaviour of RAM{32,64} and SRL{16,32}
// Necessary since RAMD* and SRL* have both combinatorial (i.e.
// same-cycle read operation) and sequential (write operation
// is only committed on the next clock edge).
@@ -39,7 +54,7 @@ endmodule
(* abc9_box_id=2000 *)
module \$__ABC9_LUT6 (input A, input [5:0] S, output Y);
endmodule
-// Box to emulate comb/seq behaviour of RAMD128
+// Box to emulate comb/seq behaviour of RAM128
(* abc9_box_id=2001 *)
module \$__ABC9_LUT7 (input A, input [6:0] S, output Y);
endmodule
diff --git a/techlibs/xilinx/abc9_unmap.v b/techlibs/xilinx/abc9_unmap.v
index ad6469702..46526007d 100644
--- a/techlibs/xilinx/abc9_unmap.v
+++ b/techlibs/xilinx/abc9_unmap.v
@@ -20,6 +20,15 @@
// ============================================================================
+(* techmap_celltype = "$__ABC9_ASYNC0 $__ABC9_ASYNC1" *)
+module \$__ABC9_ASYNC01 (input A, S, output Y);
+ assign Y = A;
+endmodule
+
+module \$__ABC9_FF_ (input D, output Q);
+ assign Q = D;
+endmodule
+
module \$__ABC9_LUT6 (input A, input [5:0] S, output Y);
assign Y = A;
endmodule
diff --git a/techlibs/xilinx/abc9_xc7.box b/techlibs/xilinx/abc9_xc7.box
index 774388d49..16606d14e 100644
--- a/techlibs/xilinx/abc9_xc7.box
+++ b/techlibs/xilinx/abc9_xc7.box
@@ -41,6 +41,72 @@ CARRY4 4 1 10 8
592 540 520 356 - 512 548 292 - 228
580 526 507 398 385 508 528 378 380 114
+# Box to emulate async behaviour of FDC*
+# Inputs: A S
+# Outputs: Y
+$__ABC9_ASYNC0 1000 1 2 1
+0 764
+
+# Box to emulate async behaviour of FDP*
+# Inputs: A S
+# Outputs: Y
+$__ABC9_ASYNC1 1001 1 2 1
+0 764
+
+# Max delays from https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L237-L251
+# https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L265-L277
+
+# NB: Inputs/Outputs must be ordered alphabetically
+# (with exception for \$currQ)
+
+# Inputs: C CE D R \$currQ
+# Outputs: Q
+FDRE 1100 1 5 1
+#0 109 -46 404 0
+0 109 0 404 0 # Clamp -46ps Tsu
+
+# Inputs: C CE D R \$currQ
+# Outputs: Q
+FDRE_1 1101 1 5 1
+#0 109 0 -46 404
+0 109 0 0 404 # Clamp -46ps Tsu
+
+# Inputs: C CE CLR D \$currQ
+# Outputs: Q
+FDCE 1102 1 5 1
+#0 109 764 -46 0
+0 109 764 0 0 # Clamp -46ps Tsu
+
+# Inputs: C CE CLR D \$currQ
+# Outputs: Q
+FDCE_1 1103 1 5 1
+#0 109 764 -46 0
+0 109 764 0 0 # Clamp -46ps Tsu
+
+# Inputs: C CE D PRE \$currQ
+# Outputs: Q
+FDPE 1104 1 5 1
+#0 109 -46 764 0
+0 109 0 764 0 # Clamp -46ps Tsu
+
+# Inputs: C CE D PRE \$currQ
+# Outputs: Q
+FDPE_1 1105 1 5 1
+#0 109 -46 764 0
+0 109 0 764 0 # Clamp -46ps Tsu
+
+# Inputs: C CE D S \$currQ
+# Outputs: Q
+FDSE 1106 1 5 1
+#0 109 -46 446 0
+0 109 0 446 0 # Clamp -46ps Tsu
+
+# Inputs: C CE D S \$currQ
+# Outputs: Q
+FDSE_1 1107 1 5 1
+#0 109 -46 446 0
+0 109 0 446 0 # Clamp -46ps Tsu
+
# SLICEM/A6LUT
# Box to emulate comb/seq behaviour of RAMD{32,64} and SRL{16,32}
# Necessary since RAMD* and SRL* have both combinatorial (i.e.
@@ -56,7 +122,7 @@ $__ABC9_LUT6 2000 0 7 1
# SLICEM/A6LUT + F7BMUX
# Box to emulate comb/seq behaviour of RAMD128
# Inputs: A S0 S1 S2 S3 S4 S5 S6
-# Outputs: DPO SPO
+# Outputs: Y
$__ABC9_LUT7 2001 0 8 1
0 1047 1036 877 812 643 532 478
diff --git a/techlibs/xilinx/cells_sim.v b/techlibs/xilinx/cells_sim.v
index c27b0f02b..db7242f85 100644
--- a/techlibs/xilinx/cells_sim.v
+++ b/techlibs/xilinx/cells_sim.v
@@ -325,6 +325,7 @@ endmodule
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLL_L.sdf#L238-L250
+(* abc9_box_id=1100, lib_whitebox, abc9_flop *)
module FDRE (
(* abc9_arrival=303 *)
output reg Q,
@@ -348,27 +349,17 @@ module FDRE (
endcase endgenerate
endmodule
-module FDSE (
+(* abc9_box_id=1101, lib_whitebox, abc9_flop *)
+module FDRE_1 (
(* abc9_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
- (* invertible_pin = "IS_C_INVERTED" *)
input C,
- input CE,
- (* invertible_pin = "IS_D_INVERTED" *)
- input D,
- (* invertible_pin = "IS_S_INVERTED" *)
- input S
+ input CE, D, R
);
- parameter [0:0] INIT = 1'b1;
- parameter [0:0] IS_C_INVERTED = 1'b0;
- parameter [0:0] IS_D_INVERTED = 1'b0;
- parameter [0:0] IS_S_INVERTED = 1'b0;
+ parameter [0:0] INIT = 1'b0;
initial Q <= INIT;
- generate case (|IS_C_INVERTED)
- 1'b0: always @(posedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
- 1'b1: always @(negedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
- endcase endgenerate
+ always @(negedge C) if (R) Q <= 1'b0; else if (CE) Q <= D;
endmodule
module FDRSE (
@@ -406,6 +397,7 @@ module FDRSE (
Q <= d;
endmodule
+(* abc9_box_id=1102, lib_whitebox, abc9_flop *)
module FDCE (
(* abc9_arrival=303 *)
output reg Q,
@@ -431,29 +423,17 @@ module FDCE (
endcase endgenerate
endmodule
-module FDPE (
+(* abc9_box_id=1103, lib_whitebox, abc9_flop *)
+module FDCE_1 (
(* abc9_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
- (* invertible_pin = "IS_C_INVERTED" *)
input C,
- input CE,
- (* invertible_pin = "IS_D_INVERTED" *)
- input D,
- (* invertible_pin = "IS_PRE_INVERTED" *)
- input PRE
+ input CE, D, CLR
);
- parameter [0:0] INIT = 1'b1;
- parameter [0:0] IS_C_INVERTED = 1'b0;
- parameter [0:0] IS_D_INVERTED = 1'b0;
- parameter [0:0] IS_PRE_INVERTED = 1'b0;
+ parameter [0:0] INIT = 1'b0;
initial Q <= INIT;
- generate case ({|IS_C_INVERTED, |IS_PRE_INVERTED})
- 2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
- 2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
- 2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
- 2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
- endcase endgenerate
+ always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else if (CE) Q <= D;
endmodule
module FDCPE (
@@ -501,52 +481,80 @@ module FDCPE (
assign Q = qs ? qp : qc;
endmodule
-module FDRE_1 (
+(* abc9_box_id=1104, lib_whitebox, abc9_flop *)
+module FDPE (
(* abc9_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
+ (* invertible_pin = "IS_C_INVERTED" *)
input C,
- input CE, D, R
+ input CE,
+ (* invertible_pin = "IS_D_INVERTED" *)
+ input D,
+ (* invertible_pin = "IS_PRE_INVERTED" *)
+ input PRE
);
- parameter [0:0] INIT = 1'b0;
+ parameter [0:0] INIT = 1'b1;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_PRE_INVERTED = 1'b0;
initial Q <= INIT;
- always @(negedge C) if (R) Q <= 1'b0; else if(CE) Q <= D;
+ generate case ({|IS_C_INVERTED, |IS_PRE_INVERTED})
+ 2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
+ 2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
+ 2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
+ 2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
+ endcase endgenerate
endmodule
-module FDSE_1 (
+(* abc9_box_id=1105, lib_whitebox, abc9_flop *)
+module FDPE_1 (
(* abc9_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
input C,
- input CE, D, S
+ input CE, D, PRE
);
parameter [0:0] INIT = 1'b1;
initial Q <= INIT;
- always @(negedge C) if (S) Q <= 1'b1; else if(CE) Q <= D;
+ always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else if (CE) Q <= D;
endmodule
-module FDCE_1 (
+(* abc9_box_id=1106, lib_whitebox, abc9_flop *)
+module FDSE (
(* abc9_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
+ (* invertible_pin = "IS_C_INVERTED" *)
input C,
- input CE, D, CLR
+ input CE,
+ (* invertible_pin = "IS_D_INVERTED" *)
+ input D,
+ (* invertible_pin = "IS_S_INVERTED" *)
+ input S
);
- parameter [0:0] INIT = 1'b0;
+ parameter [0:0] INIT = 1'b1;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_S_INVERTED = 1'b0;
initial Q <= INIT;
- always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else if (CE) Q <= D;
+ generate case (|IS_C_INVERTED)
+ 1'b0: always @(posedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
+ 1'b1: always @(negedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
+ endcase endgenerate
endmodule
-module FDPE_1 (
+(* abc9_box_id=1107, lib_whitebox, abc9_flop *)
+module FDSE_1 (
(* abc9_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
input C,
- input CE, D, PRE
+ input CE, D, S
);
parameter [0:0] INIT = 1'b1;
initial Q <= INIT;
- always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else if (CE) Q <= D;
+ always @(negedge C) if (S) Q <= 1'b1; else if (CE) Q <= D;
endmodule
module LDCE (
diff --git a/techlibs/xilinx/synth_xilinx.cc b/techlibs/xilinx/synth_xilinx.cc
index b0c4795ee..2f4c503f2 100644
--- a/techlibs/xilinx/synth_xilinx.cc
+++ b/techlibs/xilinx/synth_xilinx.cc
@@ -107,6 +107,9 @@ struct SynthXilinxPass : public ScriptPass
log(" -flatten\n");
log(" flatten design before synthesis\n");
log("\n");
+ log(" -dff\n");
+ log(" run 'abc9' with -dff option\n");
+ log("\n");
log(" -retime\n");
log(" run 'abc' with '-dff -D 1' options\n");
log("\n");
@@ -120,7 +123,8 @@ struct SynthXilinxPass : public ScriptPass
}
std::string top_opt, edif_file, blif_file, family;
- bool flatten, retime, vpr, ise, noiopad, noclkbuf, nobram, nolutram, nosrl, nocarry, nowidelut, nodsp, uram, abc9;
+ bool flatten, retime, vpr, ise, noiopad, noclkbuf, nobram, nolutram, nosrl, nocarry, nowidelut, nodsp, uram;
+ bool abc9, dff_mode;
bool flatten_before_abc;
int widemux;
@@ -145,6 +149,7 @@ struct SynthXilinxPass : public ScriptPass
nodsp = false;
uram = false;
abc9 = false;
+ dff_mode = false;
flatten_before_abc = false;
widemux = 0;
}
@@ -252,6 +257,10 @@ struct SynthXilinxPass : public ScriptPass
uram = true;
continue;
}
+ if (args[argidx] == "-dff") {
+ dff_mode = true;
+ continue;
+ }
break;
}
extra_args(args, argidx, design);
@@ -287,10 +296,11 @@ struct SynthXilinxPass : public ScriptPass
ff_map_file = "+/xilinx/xc7_ff_map.v";
if (check_label("begin")) {
+ std::string read_args;
if (vpr)
- run("read_verilog -lib -D_EXPLICIT_CARRY +/xilinx/cells_sim.v");
- else
- run("read_verilog -lib +/xilinx/cells_sim.v");
+ read_args += " -D_EXPLICIT_CARRY";
+ read_args += " -lib +/xilinx/cells_sim.v";
+ run("read_verilog" + read_args);
run("read_verilog -lib +/xilinx/cells_xtra.v");
@@ -537,7 +547,10 @@ struct SynthXilinxPass : public ScriptPass
if (family != "xc7")
log_warning("'synth_xilinx -abc9' not currently supported for the '%s' family, "
"will use timing for 'xc7' instead.\n", family.c_str());
- run("techmap -map +/xilinx/abc9_map.v -max_iter 1");
+ std::string techmap_args = "-map +/xilinx/abc9_map.v -max_iter 1";
+ if (dff_mode)
+ techmap_args += " -D DFF_MODE";
+ run("techmap " + techmap_args);
run("read_verilog -icells -lib +/xilinx/abc9_model.v");
std::string abc9_opts = " -box +/xilinx/abc9_xc7.box";
abc9_opts += stringf(" -W %d", XC7_WIRE_DELAY);
@@ -547,6 +560,7 @@ struct SynthXilinxPass : public ScriptPass
else
abc9_opts += " -lut +/xilinx/abc9_xc7.lut";
run("abc9" + abc9_opts);
+ run("techmap -map +/xilinx/abc9_unmap.v");
}
else {
if (nowidelut)
@@ -562,14 +576,11 @@ struct SynthXilinxPass : public ScriptPass
run("xilinx_srl -fixed -minlen 3", "(skip if '-nosrl')");
std::string techmap_args = "-map +/xilinx/lut_map.v -map +/xilinx/cells_map.v";
if (help_mode)
- techmap_args += " [-map " + ff_map_file + "]";
- else if (abc9)
- techmap_args += " -map +/xilinx/abc9_unmap.v";
- else
- techmap_args += " -map " + ff_map_file;
- run("techmap " + techmap_args);
+ techmap_args += stringf("[-map %s]", ff_map_file.c_str());
+ else if (!abc9)
+ techmap_args += stringf(" -map %s", ff_map_file.c_str());
+ run("techmap " + techmap_args, "(option without '-abc9')");
run("xilinx_dffopt");
- run("clean");
}
if (check_label("finalize")) {
@@ -577,6 +588,7 @@ struct SynthXilinxPass : public ScriptPass
run("clkbufmap -buf BUFG O:I ", "(skip if '-noclkbuf')");
if (help_mode || ise)
run("extractinv -inv INV O:I", "(only if '-ise')");
+ run("clean");
}
if (check_label("check")) {