diff options
Diffstat (limited to 'techlibs')
-rw-r--r-- | techlibs/ecp5/ecp5_ffinit.cc | 12 | ||||
-rw-r--r-- | techlibs/ecp5/ecp5_gsr.cc | 4 | ||||
-rw-r--r-- | techlibs/intel_alm/common/alm_sim.v | 69 | ||||
-rw-r--r-- | techlibs/intel_alm/common/dff_map.v | 28 | ||||
-rw-r--r-- | techlibs/intel_alm/common/dff_sim.v | 44 | ||||
-rw-r--r-- | techlibs/intel_alm/synth_intel_alm.cc | 10 | ||||
-rw-r--r-- | techlibs/xilinx/xilinx_dffopt.cc | 15 |
7 files changed, 151 insertions, 31 deletions
diff --git a/techlibs/ecp5/ecp5_ffinit.cc b/techlibs/ecp5/ecp5_ffinit.cc index e85bee64e..ba72bd0c6 100644 --- a/techlibs/ecp5/ecp5_ffinit.cc +++ b/techlibs/ecp5/ecp5_ffinit.cc @@ -106,9 +106,7 @@ struct Ecp5FfinitPass : public Pass { SigBit bit_d = sigmap(sig_d[0]); SigBit bit_q = sigmap(sig_q[0]); - std::string regset = "RESET"; - if (cell->hasParam(ID(REGSET))) - regset = cell->getParam(ID(REGSET)).decode_string(); + std::string regset = cell->getParam(ID(REGSET)).decode_string(); State resetState; if (regset == "SET") resetState = State::S1; @@ -135,9 +133,7 @@ struct Ecp5FfinitPass : public Pass { } if (GetSize(sig_lsr) >= 1 && sig_lsr[0] != State::S0) { - std::string srmode = "LSR_OVER_CE"; - if (cell->hasParam(ID(SRMODE))) - srmode = cell->getParam(ID(SRMODE)).decode_string(); + std::string srmode = cell->getParam(ID(SRMODE)).decode_string(); if (srmode == "ASYNC") { log("Async reset value %c for FF cell %s inconsistent with init value %c.\n", resetState != State::S0 ? '1' : '0', log_id(cell), val != State::S0 ? '1' : '0'); @@ -154,9 +150,7 @@ struct Ecp5FfinitPass : public Pass { cell->setPort(ID(LSR), State::S0); if(cell->hasPort(ID(CE))) { - std::string cemux = "CE"; - if (cell->hasParam(ID(CEMUX))) - cemux = cell->getParam(ID(CEMUX)).decode_string(); + std::string cemux = cell->getParam(ID(CEMUX)).decode_string(); SigSpec sig_ce = cell->getPort(ID(CE)); if (GetSize(sig_ce) >= 1) { SigBit bit_ce = sigmap(sig_ce[0]); diff --git a/techlibs/ecp5/ecp5_gsr.cc b/techlibs/ecp5/ecp5_gsr.cc index d1503f71f..3d3f8e1c1 100644 --- a/techlibs/ecp5/ecp5_gsr.cc +++ b/techlibs/ecp5/ecp5_gsr.cc @@ -114,9 +114,9 @@ struct Ecp5GsrPass : public Pass { { if (cell->type != ID(TRELLIS_FF)) continue; - if (!cell->hasParam(ID(GSR)) || cell->getParam(ID(GSR)).decode_string() != "ENABLED") + if (cell->getParam(ID(GSR)).decode_string() != "ENABLED") continue; - if (!cell->hasParam(ID(SRMODE)) || cell->getParam(ID(SRMODE)).decode_string() != "ASYNC") + if (cell->getParam(ID(SRMODE)).decode_string() != "ASYNC") continue; SigSpec sig_lsr = cell->getPort(ID(LSR)); if (GetSize(sig_lsr) < 1) diff --git a/techlibs/intel_alm/common/alm_sim.v b/techlibs/intel_alm/common/alm_sim.v index 69768d9f7..979c51132 100644 --- a/techlibs/intel_alm/common/alm_sim.v +++ b/techlibs/intel_alm/common/alm_sim.v @@ -1,3 +1,72 @@ +// The core logic primitive of the Cyclone V/10GX is the Adaptive Logic Module +// (ALM). Each ALM is made up of an 8-input, 2-output look-up table, covered +// in this file, connected to combinational outputs, a carry chain, and four +// D flip-flops (which are covered as MISTRAL_FF in dff_sim.v). +// +// The ALM is vertically symmetric, so I find it helps to think in terms of +// half-ALMs, as that's predominantly the unit that synth_intel_alm uses. +// +// ALMs are quite flexible, having multiple modes. +// +// Normal (combinational) mode +// --------------------------- +// The ALM can implement: +// - a single 6-input function (with the other inputs usable for flip-flop access) +// - two 5-input functions that share two inputs +// - a 5-input and a 4-input function that share one input +// - a 5-input and a 3-or-less-input function that share no inputs +// - two 4-or-less-input functions that share no inputs +// +// Normal-mode functions are represented as MISTRAL_ALUTN cells with N inputs. +// It would be possible to represent a normal mode function as a single cell - +// the vendor cyclone{v,10gx}_lcell_comb cell does exactly that - but I felt +// it was more user-friendly to print out the specific function sizes +// separately. +// +// With the exception of MISTRAL_ALUT6, you can think of two normal-mode cells +// fitting inside a single ALM. +// +// Extended (7-input) mode +// ----------------------- +// The ALM can also fit a 7-input function made of two 5-input functions that +// share four inputs, multiplexed by another input. +// +// Because this can't accept arbitrary 7-input functions, Yosys can't handle +// it, so it doesn't have a cell, but I would likely call it MISTRAL_ALUT7(E?) +// if it did, and it would take up a full ALM. +// +// It might be possible to add an extraction pass to examine all ALUT5 cells +// that feed into ALUT3 cells to see if they can be combined into an extended +// ALM, but I don't think it will be worth it. +// +// Arithmetic mode +// --------------- +// In arithmetic mode, each half-ALM uses its carry chain to perform fast addition +// of two four-input functions that share three inputs. Oddly, the result of +// one of the functions is inverted before being added (you can see this as +// the dot on a full-adder input of Figure 1-8 in the Handbook). +// +// The cell for an arithmetic-mode half-ALM is MISTRAL_ALM_ARITH. One idea +// I've had (or rather was suggested by mwk) is that functions that feed into +// arithmetic-mode cells could be packed directly into the arithmetic-mode +// cell as a function, which reduces the number of ALMs needed. +// +// Shared arithmetic mode +// ---------------------- +// Shared arithmetic mode looks a lot like arithmetic mode, but here the +// output of every other four-input function goes to the input of the adder +// the next bit along. What this means is that adding three bits together can +// be done in an ALM, because functions can be used to implement addition that +// then feeds into the carry chain. This means that three bits can be added per +// ALM, as opposed to two in the arithmetic mode. +// +// Shared arithmetic mode doesn't currently have a cell, but I intend to add +// it as MISTRAL_ALM_SHARED, and have it occupy a full ALM. Because it adds +// three bits per cell, it makes addition shorter and use less ALMs, but +// I don't know enough to tell whether it's more efficient to use shared +// arithmetic mode to shorten the carry chain, or plain arithmetic mode with +// the functions packed in. + `default_nettype none (* abc9_lut=2, lib_whitebox *) diff --git a/techlibs/intel_alm/common/dff_map.v b/techlibs/intel_alm/common/dff_map.v index f7f2fe3c3..962be670c 100644 --- a/techlibs/intel_alm/common/dff_map.v +++ b/techlibs/intel_alm/common/dff_map.v @@ -6,7 +6,7 @@ parameter _TECHMAP_WIREINIT_Q_ = 1'b0; if (_TECHMAP_WIREINIT_Q_ !== 1'b1) begin wire _TECHMAP_REMOVEINIT_Q_ = 1'b1; MISTRAL_FF _TECHMAP_REPLACE_(.DATAIN(D), .CLK(C), .ACLR(1'b1), .ENA(1'b1), .SCLR(1'b0), .SLOAD(1'b0), .SDATA(1'b0), .Q(Q)); -end else $error("Unsupported flop: $_DFF_P_ with INIT=1"); +end else $error("Cannot implement a flip-flop that initialises to one"); endmodule module \$_DFF_N_ (input D, C, output Q); @@ -14,7 +14,7 @@ parameter _TECHMAP_WIREINIT_Q_ = 1'b0; if (_TECHMAP_WIREINIT_Q_ !== 1'b1) begin wire _TECHMAP_REMOVEINIT_Q_ = 1'b1; MISTRAL_FF _TECHMAP_REPLACE_(.DATAIN(D), .CLK(~C), .ACLR(1'b1), .ENA(1'b1), .SCLR(1'b0), .SLOAD(1'b0), .SDATA(1'b0), .Q(Q)); -end else $error("Unsupported flop: $_DFF_N_ with INIT=1"); +end else $error("Cannot implement a flip-flop that initialises to one"); endmodule // D flip-flops with reset @@ -23,7 +23,7 @@ parameter _TECHMAP_WIREINIT_Q_ = 1'b0; if (_TECHMAP_WIREINIT_Q_ !== 1'b1) begin wire _TECHMAP_REMOVEINIT_Q_ = 1'b1; MISTRAL_FF _TECHMAP_REPLACE_(.DATAIN(D), .CLK(C), .ACLR(~R), .ENA(1'b1), .SCLR(1'b0), .SLOAD(1'b0), .SDATA(1'b0), .Q(Q)); -end else $error("Unsupported flop: $_DFF_PP0_ with INIT=1"); +end else $error("Cannot implement a flip-flop with reset that initialises to one"); endmodule module \$_DFF_PN0_ (input D, C, R, output Q); @@ -31,7 +31,7 @@ parameter _TECHMAP_WIREINIT_Q_ = 1'b0; if (_TECHMAP_WIREINIT_Q_ !== 1'b1) begin wire _TECHMAP_REMOVEINIT_Q_ = 1'b1; MISTRAL_FF _TECHMAP_REPLACE_(.DATAIN(D), .CLK(C), .ACLR(R), .ENA(1'b1), .SCLR(1'b0), .SLOAD(1'b0), .SDATA(1'b0), .Q(Q)); -end else $error("Unsupported flop: $_DFF_PN0_ with INIT=1"); +end else $error("Cannot implement a flip-flop with reset that initialises to one"); endmodule module \$_DFF_NP0_ (input D, C, R, output Q); @@ -39,7 +39,7 @@ parameter _TECHMAP_WIREINIT_Q_ = 1'b0; if (_TECHMAP_WIREINIT_Q_ !== 1'b1) begin wire _TECHMAP_REMOVEINIT_Q_ = 1'b1; MISTRAL_FF _TECHMAP_REPLACE_(.DATAIN(D), .CLK(~C), .ACLR(~R), .ENA(1'b1), .SCLR(1'b0), .SLOAD(1'b0), .SDATA(1'b0), .Q(Q)); -end else $error("Unsupported flop: $_DFF_NP0_ with INIT=1"); +end else $error("Cannot implement a flip-flop with reset that initialises to one"); endmodule module \$_DFF_NN0_ (input D, C, R, output Q); @@ -47,7 +47,7 @@ parameter _TECHMAP_WIREINIT_Q_ = 1'b0; if (_TECHMAP_WIREINIT_Q_ !== 1'b1) begin wire _TECHMAP_REMOVEINIT_Q_ = 1'b1; MISTRAL_FF _TECHMAP_REPLACE_(.DATAIN(D), .CLK(~C), .ACLR(R), .ENA(1'b1), .SCLR(1'b0), .SLOAD(1'b0), .SDATA(1'b0), .Q(Q)); -end else $error("Unsupported flop: $_DFF_NN0_ with INIT=1"); +end else $error("Cannot implement a flip-flop with reset that initialises to one"); endmodule // D flip-flops with set @@ -58,7 +58,7 @@ if (_TECHMAP_WIREINIT_Q_ !== 1'b0) begin wire Q_tmp; MISTRAL_FF _TECHMAP_REPLACE_(.DATAIN(~D), .CLK(C), .ACLR(~R), .ENA(1'b1), .SCLR(1'b0), .SLOAD(1'b0), .SDATA(1'b0), .Q(Q_tmp)); assign Q = ~Q_tmp; -end else $error("Unsupported flop: $_DFF_PP1_ with INIT=0"); +end else $error("Cannot implement a flip-flop with set that initialises to zero"); endmodule module \$_DFF_PN1_ (input D, C, R, output Q); @@ -67,7 +67,7 @@ if (_TECHMAP_WIREINIT_Q_ !== 1'b0) begin wire _TECHMAP_REMOVEINIT_Q_ = 1'b1; wire Q_tmp; MISTRAL_FF _TECHMAP_REPLACE_(.DATAIN(~D), .CLK(C), .ACLR(R), .ENA(1'b1), .SCLR(1'b0), .SLOAD(1'b0), .SDATA(1'b0), .Q(Q_tmp)); -end else $error("Unsupported flop: $_DFF_PN1_ with INIT=0"); +end else $error("Cannot implement a flip-flop with set that initialises to zero"); endmodule module \$_DFF_NP1_ (input D, C, R, output Q); @@ -77,7 +77,7 @@ if (_TECHMAP_WIREINIT_Q_ !== 1'b0) begin wire Q_tmp; MISTRAL_FF _TECHMAP_REPLACE_(.DATAIN(~D), .CLK(~C), .ACLR(~R), .ENA(1'b1), .SCLR(1'b0), .SLOAD(1'b0), .SDATA(1'b0), .Q(Q_tmp)); assign Q = ~Q_tmp; -end else $error("Unsupported flop: $_DFF_NP1_ with INIT=0"); +end else $error("Cannot implement a flip-flop with set that initialises to zero"); endmodule module \$_DFF_NN1_ (input D, C, R, output Q); @@ -87,7 +87,7 @@ if (_TECHMAP_WIREINIT_Q_ !== 1'b0) begin wire Q_tmp; MISTRAL_FF _TECHMAP_REPLACE_(.DATAIN(~D), .CLK(~C), .ACLR(R), .ENA(1'b1), .SCLR(1'b0), .SLOAD(1'b0), .SDATA(1'b0), .Q(Q_tmp)); assign Q = ~Q_tmp; -end else $error("Unsupported flop: $_DFF_NN1_ with INIT=0"); +end else $error("Cannot implement a flip-flop with set that initialises to zero"); endmodule // D flip-flops with clock enable @@ -96,7 +96,7 @@ parameter _TECHMAP_WIREINIT_Q_ = 1'b0; if (_TECHMAP_WIREINIT_Q_ !== 1'b1) begin wire _TECHMAP_REMOVEINIT_Q_ = 1'b1; MISTRAL_FF _TECHMAP_REPLACE_(.DATAIN(D), .CLK(C), .ACLR(1'b1), .ENA(E), .SCLR(1'b0), .SLOAD(1'b0), .SDATA(1'b0), .Q(Q)); -end else $error("Unsupported flop: $_DFFE_PP_ with INIT=1"); +end else $error("Cannot implement a flip-flop with enable that initialises to one"); endmodule module \$_DFFE_PN_ (input D, C, E, output Q); @@ -104,7 +104,7 @@ parameter _TECHMAP_WIREINIT_Q_ = 1'b0; if (_TECHMAP_WIREINIT_Q_ !== 1'b1) begin wire _TECHMAP_REMOVEINIT_Q_ = 1'b1; MISTRAL_FF _TECHMAP_REPLACE_(.DATAIN(D), .CLK(C), .ACLR(1'b1), .ENA(~E), .SCLR(1'b0), .SLOAD(1'b0), .SDATA(1'b0), .Q(Q)); -end else $error("Unsupported flop: $_DFFE_PN_ with INIT=1"); +end else $error("Cannot implement a flip-flop with enable that initialises to one"); endmodule module \$_DFFE_NP_ (input D, C, E, output Q); @@ -112,7 +112,7 @@ parameter _TECHMAP_WIREINIT_Q_ = 1'b0; if (_TECHMAP_WIREINIT_Q_ !== 1'b1) begin wire _TECHMAP_REMOVEINIT_Q_ = 1'b1; MISTRAL_FF _TECHMAP_REPLACE_(.DATAIN(D), .CLK(~C), .ACLR(1'b1), .ENA(E), .SCLR(1'b0), .SLOAD(1'b0), .SDATA(1'b0), .Q(Q)); -end else $error("Unsupported flop: $_DFFE_NP_ with INIT=1"); +end else $error("Cannot implement a flip-flop with enable that initialises to one"); endmodule module \$_DFFE_NN_ (input D, C, E, output Q); @@ -120,5 +120,5 @@ parameter _TECHMAP_WIREINIT_Q_ = 1'b0; if (_TECHMAP_WIREINIT_Q_ !== 1'b1) begin wire _TECHMAP_REMOVEINIT_Q_ = 1'b1; MISTRAL_FF _TECHMAP_REPLACE_(.DATAIN(D), .CLK(~C), .ACLR(1'b1), .ENA(~E), .SCLR(1'b0), .SLOAD(1'b0), .SDATA(1'b0), .Q(Q)); -end else $error("Unsupported flop: $_DFFE_NN_ with INIT=1"); +end else $error("Cannot implement a flip-flop with enable that initialises to one"); endmodule diff --git a/techlibs/intel_alm/common/dff_sim.v b/techlibs/intel_alm/common/dff_sim.v index 07865905f..32444dd46 100644 --- a/techlibs/intel_alm/common/dff_sim.v +++ b/techlibs/intel_alm/common/dff_sim.v @@ -1,3 +1,47 @@ +// The four D flip-flops (DFFs) in a Cyclone V/10GX Adaptive Logic Module (ALM) +// act as one-bit memory cells that can be placed very flexibly (wherever there's +// an ALM); each flop is represented by a MISTRAL_FF cell. +// +// The flops in these chips are rather flexible in some ways, but in practice +// quite crippled by FPGA standards. +// +// What the flops can do +// --------------------- +// The core flop acts as a single-bit memory that initialises to zero at chip +// reset. It takes in data on the rising edge of CLK if ENA is high, +// and outputs it to Q. The ENA (clock enable) pin can therefore be used to +// capture the input only if a condition is true. +// +// The data itself is zero if SCLR (synchronous clear) is high, else it comes +// from SDATA (synchronous data) if SLOAD (synchronous load) is high, or DATAIN +// if SLOAD is low. +// +// If ACLR (asynchronous clear) is low then Q is forced to zero, regardless of +// the synchronous inputs or CLK edge. This is most often used for an FPGA-wide +// power-on reset. +// +// An asynchronous set that sets Q to one can be emulated by inverting the input +// and output of the flop, resulting in ACLR forcing Q to zero, which then gets +// inverted to produce one. Likewise, logic can operate on the falling edge of +// CLK if CLK is inverted before being passed as an input. +// +// What the flops *can't* do +// ------------------------- +// The trickiest part of the above capabilities is the lack of configurable +// initialisation state. For example, it isn't possible to implement a flop with +// asynchronous clear that initialises to one, because the hardware initialises +// to zero. Likewise, you can't emulate a flop with asynchronous set that +// initialises to zero, because the inverters mean the flop initialises to one. +// +// If the input design requires one of these cells (which appears to be rare +// in practice) then synth_intel_alm will fail to synthesize the design where +// other Yosys synthesis scripts might succeed. +// +// This stands in notable contrast to e.g. Xilinx flip-flops, which have +// configurable initialisation state and native synchronous/asynchronous +// set/clear (although not at the same time), which means they can generally +// implement a much wider variety of logic. + // DATAIN: synchronous data input // CLK: clock input (positive edge) // ACLR: asynchronous clear (negative-true) diff --git a/techlibs/intel_alm/synth_intel_alm.cc b/techlibs/intel_alm/synth_intel_alm.cc index 47aa11500..5d4c78d74 100644 --- a/techlibs/intel_alm/synth_intel_alm.cc +++ b/techlibs/intel_alm/synth_intel_alm.cc @@ -200,6 +200,8 @@ struct SynthIntelALMPass : public ScriptPass { if (check_label("map_ffs")) { run("dff2dffe -direct-match $_DFF_*"); + // As mentioned in common/dff_sim.v, Intel flops power up to zero, + // so use `zinit` to add inverters where needed. run("zinit"); run("techmap -map +/techmap.v -map +/intel_alm/common/dff_map.v"); run("opt -full -undriven -mux_undef"); @@ -223,8 +225,16 @@ struct SynthIntelALMPass : public ScriptPass { if (check_label("quartus")) { if (quartus || help_mode) { + // Quartus ICEs if you have a wire which has `[]` in its name, + // which Yosys produces when building memories out of flops. + run("rename -hide w:*[* w:*]*"); + // VQM mode does not support 'x, so replace those with zero. run("setundef -zero"); + // VQM mode does not support multi-bit constant assignments + // (e.g. 2'b00 is an error), so as a workaround use references + // to constant driver cells, which Quartus accepts. run("hilomap -singleton -hicell __MISTRAL_VCC Q -locell __MISTRAL_GND Q"); + // Rename from Yosys-internal MISTRAL_* cells to Quartus cells. run("techmap -map +/intel_alm/common/quartus_rename.v"); run(stringf("techmap -map +/intel_alm/%s/quartus_rename.v", family_opt.c_str())); } diff --git a/techlibs/xilinx/xilinx_dffopt.cc b/techlibs/xilinx/xilinx_dffopt.cc index ac9b57fe1..c9d63c9f7 100644 --- a/techlibs/xilinx/xilinx_dffopt.cc +++ b/techlibs/xilinx/xilinx_dffopt.cc @@ -209,7 +209,7 @@ lut_sigin_done: continue; LutData lut_d = it_D->second.first; Cell *cell_d = it_D->second.second; - if (cell->hasParam(ID(IS_D_INVERTED)) && cell->getParam(ID(IS_D_INVERTED)).as_bool()) { + if (cell->getParam(ID(IS_D_INVERTED)).as_bool()) { // Flip all bits in the LUT. for (int i = 0; i < GetSize(lut_d.first); i++) lut_d.first.bits[i] = (lut_d.first.bits[i] == State::S1) ? State::S0 : State::S1; @@ -249,7 +249,7 @@ lut_sigin_done: if (has_s) { SigBit sig_S = sigmap(cell->getPort(ID::S)); LutData lut_s = LutData(Const(2, 2), {sig_S}); - bool inv_s = cell->hasParam(ID(IS_S_INVERTED)) && cell->getParam(ID(IS_S_INVERTED)).as_bool(); + bool inv_s = cell->getParam(ID(IS_S_INVERTED)).as_bool(); auto it_S = bit_to_lut.find(sig_S); if (it_S != bit_to_lut.end()) lut_s = it_S->second.first; @@ -271,7 +271,7 @@ lut_sigin_done: if (has_r) { SigBit sig_R = sigmap(cell->getPort(ID::R)); LutData lut_r = LutData(Const(2, 2), {sig_R}); - bool inv_r = cell->hasParam(ID(IS_R_INVERTED)) && cell->getParam(ID(IS_R_INVERTED)).as_bool(); + bool inv_r = cell->getParam(ID(IS_R_INVERTED)).as_bool(); auto it_R = bit_to_lut.find(sig_R); if (it_R != bit_to_lut.end()) lut_r = it_R->second.first; @@ -292,18 +292,21 @@ unmap: LutData final_lut; if (worthy_post_r) { final_lut = lut_d_post_r; - log(" Merging R LUT for %s/%s (%d -> %d)\n", log_id(cell), log_id(sig_Q.wire), GetSize(lut_d.second), GetSize(final_lut.second)); } else if (worthy_post_s) { final_lut = lut_d_post_s; - log(" Merging S LUT for %s/%s (%d -> %d)\n", log_id(cell), log_id(sig_Q.wire), GetSize(lut_d.second), GetSize(final_lut.second)); } else if (worthy_post_ce) { final_lut = lut_d_post_ce; - log(" Merging CE LUT for %s/%s (%d -> %d)\n", log_id(cell), log_id(sig_Q.wire), GetSize(lut_d.second), GetSize(final_lut.second)); } else { // Nothing to do here. continue; } + std::string ports; + if (worthy_post_r) ports += " + R"; + if (worthy_post_s) ports += " + S"; + if (worthy_post_ce) ports += " + CE"; + log(" Merging D%s LUTs for %s/%s (%d -> %d)\n", ports.c_str(), log_id(cell), log_id(sig_Q.wire), GetSize(lut_d.second), GetSize(final_lut.second)); + // Okay, we're doing it. Unmap ports. if (worthy_post_r) { cell->unsetParam(ID(IS_R_INVERTED)); |