diff options
Diffstat (limited to 'tests/openmsp430/rtl/omsp_dbg.v')
-rw-r--r-- | tests/openmsp430/rtl/omsp_dbg.v | 827 |
1 files changed, 827 insertions, 0 deletions
diff --git a/tests/openmsp430/rtl/omsp_dbg.v b/tests/openmsp430/rtl/omsp_dbg.v new file mode 100644 index 000000000..97e9ede44 --- /dev/null +++ b/tests/openmsp430/rtl/omsp_dbg.v @@ -0,0 +1,827 @@ +//---------------------------------------------------------------------------- +// Copyright (C) 2009 , Olivier Girard +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions +// are met: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of the authors nor the names of its contributors +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE +// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, +// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF +// THE POSSIBILITY OF SUCH DAMAGE +// +//---------------------------------------------------------------------------- +// +// *File Name: omsp_dbg.v +// +// *Module Description: +// Debug interface +// +// *Author(s): +// - Olivier Girard, olgirard@gmail.com +// +//---------------------------------------------------------------------------- +// $Rev: 149 $ +// $LastChangedBy: olivier.girard $ +// $LastChangedDate: 2012-07-19 22:21:12 +0200 (Thu, 19 Jul 2012) $ +//---------------------------------------------------------------------------- +`ifdef OMSP_NO_INCLUDE +`else +`include "openMSP430_defines.v" +`endif + +module omsp_dbg ( + +// OUTPUTs + dbg_freeze, // Freeze peripherals + dbg_halt_cmd, // Halt CPU command + dbg_mem_addr, // Debug address for rd/wr access + dbg_mem_dout, // Debug unit data output + dbg_mem_en, // Debug unit memory enable + dbg_mem_wr, // Debug unit memory write + dbg_reg_wr, // Debug unit CPU register write + dbg_cpu_reset, // Reset CPU from debug interface + dbg_uart_txd, // Debug interface: UART TXD + +// INPUTs + cpu_en_s, // Enable CPU code execution (synchronous) + cpu_id, // CPU ID + dbg_clk, // Debug unit clock + dbg_en_s, // Debug interface enable (synchronous) + dbg_halt_st, // Halt/Run status from CPU + dbg_mem_din, // Debug unit Memory data input + dbg_reg_din, // Debug unit CPU register data input + dbg_rst, // Debug unit reset + dbg_uart_rxd, // Debug interface: UART RXD (asynchronous) + decode_noirq, // Frontend decode instruction + eu_mab, // Execution-Unit Memory address bus + eu_mb_en, // Execution-Unit Memory bus enable + eu_mb_wr, // Execution-Unit Memory bus write transfer + eu_mdb_in, // Memory data bus input + eu_mdb_out, // Memory data bus output + exec_done, // Execution completed + fe_mb_en, // Frontend Memory bus enable + fe_mdb_in, // Frontend Memory data bus input + pc, // Program counter + puc_pnd_set // PUC pending set for the serial debug interface +); + +// OUTPUTs +//========= +output dbg_freeze; // Freeze peripherals +output dbg_halt_cmd; // Halt CPU command +output [15:0] dbg_mem_addr; // Debug address for rd/wr access +output [15:0] dbg_mem_dout; // Debug unit data output +output dbg_mem_en; // Debug unit memory enable +output [1:0] dbg_mem_wr; // Debug unit memory write +output dbg_reg_wr; // Debug unit CPU register write +output dbg_cpu_reset; // Reset CPU from debug interface +output dbg_uart_txd; // Debug interface: UART TXD + +// INPUTs +//========= +input cpu_en_s; // Enable CPU code execution (synchronous) +input [31:0] cpu_id; // CPU ID +input dbg_clk; // Debug unit clock +input dbg_en_s; // Debug interface enable (synchronous) +input dbg_halt_st; // Halt/Run status from CPU +input [15:0] dbg_mem_din; // Debug unit Memory data input +input [15:0] dbg_reg_din; // Debug unit CPU register data input +input dbg_rst; // Debug unit reset +input dbg_uart_rxd; // Debug interface: UART RXD (asynchronous) +input decode_noirq; // Frontend decode instruction +input [15:0] eu_mab; // Execution-Unit Memory address bus +input eu_mb_en; // Execution-Unit Memory bus enable +input [1:0] eu_mb_wr; // Execution-Unit Memory bus write transfer +input [15:0] eu_mdb_in; // Memory data bus input +input [15:0] eu_mdb_out; // Memory data bus output +input exec_done; // Execution completed +input fe_mb_en; // Frontend Memory bus enable +input [15:0] fe_mdb_in; // Frontend Memory data bus input +input [15:0] pc; // Program counter +input puc_pnd_set; // PUC pending set for the serial debug interface + + +//============================================================================= +// 1) WIRE & PARAMETER DECLARATION +//============================================================================= + +// Diverse wires and registers +wire [5:0] dbg_addr; +wire [15:0] dbg_din; +wire dbg_wr; +reg mem_burst; +wire dbg_reg_rd; +wire dbg_mem_rd; +reg dbg_mem_rd_dly; +wire dbg_swbrk; +wire dbg_rd; +reg dbg_rd_rdy; +wire mem_burst_rd; +wire mem_burst_wr; +wire brk0_halt; +wire brk0_pnd; +wire [15:0] brk0_dout; +wire brk1_halt; +wire brk1_pnd; +wire [15:0] brk1_dout; +wire brk2_halt; +wire brk2_pnd; +wire [15:0] brk2_dout; +wire brk3_halt; +wire brk3_pnd; +wire [15:0] brk3_dout; + +// Number of registers +parameter NR_REG = 24; + +// Register addresses +parameter CPU_ID_LO = 6'h00; +parameter CPU_ID_HI = 6'h01; +parameter CPU_CTL = 6'h02; +parameter CPU_STAT = 6'h03; +parameter MEM_CTL = 6'h04; +parameter MEM_ADDR = 6'h05; +parameter MEM_DATA = 6'h06; +parameter MEM_CNT = 6'h07; +`ifdef DBG_HWBRK_0 +parameter BRK0_CTL = 6'h08; +parameter BRK0_STAT = 6'h09; +parameter BRK0_ADDR0 = 6'h0A; +parameter BRK0_ADDR1 = 6'h0B; +`endif +`ifdef DBG_HWBRK_1 +parameter BRK1_CTL = 6'h0C; +parameter BRK1_STAT = 6'h0D; +parameter BRK1_ADDR0 = 6'h0E; +parameter BRK1_ADDR1 = 6'h0F; +`endif +`ifdef DBG_HWBRK_2 +parameter BRK2_CTL = 6'h10; +parameter BRK2_STAT = 6'h11; +parameter BRK2_ADDR0 = 6'h12; +parameter BRK2_ADDR1 = 6'h13; +`endif +`ifdef DBG_HWBRK_3 +parameter BRK3_CTL = 6'h14; +parameter BRK3_STAT = 6'h15; +parameter BRK3_ADDR0 = 6'h16; +parameter BRK3_ADDR1 = 6'h17; +`endif + +// Register one-hot decoder +parameter BASE_D = {{NR_REG-1{1'b0}}, 1'b1}; +parameter CPU_ID_LO_D = (BASE_D << CPU_ID_LO); +parameter CPU_ID_HI_D = (BASE_D << CPU_ID_HI); +parameter CPU_CTL_D = (BASE_D << CPU_CTL); +parameter CPU_STAT_D = (BASE_D << CPU_STAT); +parameter MEM_CTL_D = (BASE_D << MEM_CTL); +parameter MEM_ADDR_D = (BASE_D << MEM_ADDR); +parameter MEM_DATA_D = (BASE_D << MEM_DATA); +parameter MEM_CNT_D = (BASE_D << MEM_CNT); +`ifdef DBG_HWBRK_0 +parameter BRK0_CTL_D = (BASE_D << BRK0_CTL); +parameter BRK0_STAT_D = (BASE_D << BRK0_STAT); +parameter BRK0_ADDR0_D = (BASE_D << BRK0_ADDR0); +parameter BRK0_ADDR1_D = (BASE_D << BRK0_ADDR1); +`endif +`ifdef DBG_HWBRK_1 +parameter BRK1_CTL_D = (BASE_D << BRK1_CTL); +parameter BRK1_STAT_D = (BASE_D << BRK1_STAT); +parameter BRK1_ADDR0_D = (BASE_D << BRK1_ADDR0); +parameter BRK1_ADDR1_D = (BASE_D << BRK1_ADDR1); +`endif +`ifdef DBG_HWBRK_2 +parameter BRK2_CTL_D = (BASE_D << BRK2_CTL); +parameter BRK2_STAT_D = (BASE_D << BRK2_STAT); +parameter BRK2_ADDR0_D = (BASE_D << BRK2_ADDR0); +parameter BRK2_ADDR1_D = (BASE_D << BRK2_ADDR1); +`endif +`ifdef DBG_HWBRK_3 +parameter BRK3_CTL_D = (BASE_D << BRK3_CTL); +parameter BRK3_STAT_D = (BASE_D << BRK3_STAT); +parameter BRK3_ADDR0_D = (BASE_D << BRK3_ADDR0); +parameter BRK3_ADDR1_D = (BASE_D << BRK3_ADDR1); +`endif + + +//============================================================================ +// 2) REGISTER DECODER +//============================================================================ + +// Select Data register during a burst +wire [5:0] dbg_addr_in = mem_burst ? MEM_DATA : dbg_addr; + +// Register address decode +reg [NR_REG-1:0] reg_dec; +always @(dbg_addr_in) + case (dbg_addr_in) + CPU_ID_LO : reg_dec = CPU_ID_LO_D; + CPU_ID_HI : reg_dec = CPU_ID_HI_D; + CPU_CTL : reg_dec = CPU_CTL_D; + CPU_STAT : reg_dec = CPU_STAT_D; + MEM_CTL : reg_dec = MEM_CTL_D; + MEM_ADDR : reg_dec = MEM_ADDR_D; + MEM_DATA : reg_dec = MEM_DATA_D; + MEM_CNT : reg_dec = MEM_CNT_D; +`ifdef DBG_HWBRK_0 + BRK0_CTL : reg_dec = BRK0_CTL_D; + BRK0_STAT : reg_dec = BRK0_STAT_D; + BRK0_ADDR0: reg_dec = BRK0_ADDR0_D; + BRK0_ADDR1: reg_dec = BRK0_ADDR1_D; +`endif +`ifdef DBG_HWBRK_1 + BRK1_CTL : reg_dec = BRK1_CTL_D; + BRK1_STAT : reg_dec = BRK1_STAT_D; + BRK1_ADDR0: reg_dec = BRK1_ADDR0_D; + BRK1_ADDR1: reg_dec = BRK1_ADDR1_D; +`endif +`ifdef DBG_HWBRK_2 + BRK2_CTL : reg_dec = BRK2_CTL_D; + BRK2_STAT : reg_dec = BRK2_STAT_D; + BRK2_ADDR0: reg_dec = BRK2_ADDR0_D; + BRK2_ADDR1: reg_dec = BRK2_ADDR1_D; +`endif +`ifdef DBG_HWBRK_3 + BRK3_CTL : reg_dec = BRK3_CTL_D; + BRK3_STAT : reg_dec = BRK3_STAT_D; + BRK3_ADDR0: reg_dec = BRK3_ADDR0_D; + BRK3_ADDR1: reg_dec = BRK3_ADDR1_D; +`endif + // pragma coverage off + default: reg_dec = {NR_REG{1'b0}}; + // pragma coverage on + endcase + +// Read/Write probes +wire reg_write = dbg_wr; +wire reg_read = 1'b1; + +// Read/Write vectors +wire [NR_REG-1:0] reg_wr = reg_dec & {NR_REG{reg_write}}; +wire [NR_REG-1:0] reg_rd = reg_dec & {NR_REG{reg_read}}; + + +//============================================================================= +// 3) REGISTER: CORE INTERFACE +//============================================================================= + +// CPU_ID Register +//----------------- +// ------------------------------------------------------------------- +// CPU_ID_LO: | 15 14 13 12 11 10 9 | 8 7 6 5 4 | 3 | 2 1 0 | +// |----------------------------+-----------------+------+-------------| +// | PER_SPACE | USER_VERSION | ASIC | CPU_VERSION | +// -------------------------------------------------------------------- +// CPU_ID_HI: | 15 14 13 12 11 10 | 9 8 7 6 5 4 3 2 1 | 0 | +// |----------------------------+-------------------------------+------| +// | PMEM_SIZE | DMEM_SIZE | MPY | +// ------------------------------------------------------------------- + +// This register is assigned in the SFR module + + +// CPU_CTL Register +//----------------------------------------------------------------------------- +// 7 6 5 4 3 2 1 0 +// Reserved CPU_RST RST_BRK_EN FRZ_BRK_EN SW_BRK_EN ISTEP RUN HALT +//----------------------------------------------------------------------------- +reg [6:3] cpu_ctl; + +wire cpu_ctl_wr = reg_wr[CPU_CTL]; + +always @ (posedge dbg_clk or posedge dbg_rst) +`ifdef DBG_RST_BRK_EN + if (dbg_rst) cpu_ctl <= 4'h6; +`else + if (dbg_rst) cpu_ctl <= 4'h2; +`endif + else if (cpu_ctl_wr) cpu_ctl <= dbg_din[6:3]; + +wire [7:0] cpu_ctl_full = {1'b0, cpu_ctl, 3'b000}; + +wire halt_cpu = cpu_ctl_wr & dbg_din[`HALT] & ~dbg_halt_st; +wire run_cpu = cpu_ctl_wr & dbg_din[`RUN] & dbg_halt_st; +wire istep = cpu_ctl_wr & dbg_din[`ISTEP] & dbg_halt_st; + + +// CPU_STAT Register +//------------------------------------------------------------------------------------ +// 7 6 5 4 3 2 1 0 +// HWBRK3_PND HWBRK2_PND HWBRK1_PND HWBRK0_PND SWBRK_PND PUC_PND Res. HALT_RUN +//------------------------------------------------------------------------------------ +reg [3:2] cpu_stat; + +wire cpu_stat_wr = reg_wr[CPU_STAT]; +wire [3:2] cpu_stat_set = {dbg_swbrk, puc_pnd_set}; +wire [3:2] cpu_stat_clr = ~dbg_din[3:2]; + +always @ (posedge dbg_clk or posedge dbg_rst) + if (dbg_rst) cpu_stat <= 2'b00; + else if (cpu_stat_wr) cpu_stat <= ((cpu_stat & cpu_stat_clr) | cpu_stat_set); + else cpu_stat <= (cpu_stat | cpu_stat_set); + +wire [7:0] cpu_stat_full = {brk3_pnd, brk2_pnd, brk1_pnd, brk0_pnd, + cpu_stat, 1'b0, dbg_halt_st}; + + +//============================================================================= +// 4) REGISTER: MEMORY INTERFACE +//============================================================================= + +// MEM_CTL Register +//----------------------------------------------------------------------------- +// 7 6 5 4 3 2 1 0 +// Reserved B/W MEM/REG RD/WR START +// +// START : - 0 : Do nothing. +// - 1 : Initiate memory transfer. +// +// RD/WR : - 0 : Read access. +// - 1 : Write access. +// +// MEM/REG: - 0 : Memory access. +// - 1 : CPU Register access. +// +// B/W : - 0 : 16 bit access. +// - 1 : 8 bit access (not valid for CPU Registers). +// +//----------------------------------------------------------------------------- +reg [3:1] mem_ctl; + +wire mem_ctl_wr = reg_wr[MEM_CTL]; + +always @ (posedge dbg_clk or posedge dbg_rst) + if (dbg_rst) mem_ctl <= 3'h0; + else if (mem_ctl_wr) mem_ctl <= dbg_din[3:1]; + +wire [7:0] mem_ctl_full = {4'b0000, mem_ctl, 1'b0}; + +reg mem_start; +always @ (posedge dbg_clk or posedge dbg_rst) + if (dbg_rst) mem_start <= 1'b0; + else mem_start <= mem_ctl_wr & dbg_din[0]; + +wire mem_bw = mem_ctl[3]; + +// MEM_DATA Register +//------------------ +reg [15:0] mem_data; +reg [15:0] mem_addr; +wire mem_access; + +wire mem_data_wr = reg_wr[MEM_DATA]; + +wire [15:0] dbg_mem_din_bw = ~mem_bw ? dbg_mem_din : + mem_addr[0] ? {8'h00, dbg_mem_din[15:8]} : + {8'h00, dbg_mem_din[7:0]}; + +always @ (posedge dbg_clk or posedge dbg_rst) + if (dbg_rst) mem_data <= 16'h0000; + else if (mem_data_wr) mem_data <= dbg_din; + else if (dbg_reg_rd) mem_data <= dbg_reg_din; + else if (dbg_mem_rd_dly) mem_data <= dbg_mem_din_bw; + + +// MEM_ADDR Register +//------------------ +reg [15:0] mem_cnt; + +wire mem_addr_wr = reg_wr[MEM_ADDR]; +wire dbg_mem_acc = (|dbg_mem_wr | (dbg_rd_rdy & ~mem_ctl[2])); +wire dbg_reg_acc = ( dbg_reg_wr | (dbg_rd_rdy & mem_ctl[2])); + +wire [15:0] mem_addr_inc = (mem_cnt==16'h0000) ? 16'h0000 : + (dbg_mem_acc & ~mem_bw) ? 16'h0002 : + (dbg_mem_acc | dbg_reg_acc) ? 16'h0001 : 16'h0000; + +always @ (posedge dbg_clk or posedge dbg_rst) + if (dbg_rst) mem_addr <= 16'h0000; + else if (mem_addr_wr) mem_addr <= dbg_din; + else mem_addr <= mem_addr + mem_addr_inc; + +// MEM_CNT Register +//------------------ + +wire mem_cnt_wr = reg_wr[MEM_CNT]; + +wire [15:0] mem_cnt_dec = (mem_cnt==16'h0000) ? 16'h0000 : + (mem_burst & (dbg_mem_acc | dbg_reg_acc)) ? 16'hffff : 16'h0000; + +always @ (posedge dbg_clk or posedge dbg_rst) + if (dbg_rst) mem_cnt <= 16'h0000; + else if (mem_cnt_wr) mem_cnt <= dbg_din; + else mem_cnt <= mem_cnt + mem_cnt_dec; + + +//============================================================================= +// 5) BREAKPOINTS / WATCHPOINTS +//============================================================================= + +`ifdef DBG_HWBRK_0 +// Hardware Breakpoint/Watchpoint Register read select +wire [3:0] brk0_reg_rd = {reg_rd[BRK0_ADDR1], + reg_rd[BRK0_ADDR0], + reg_rd[BRK0_STAT], + reg_rd[BRK0_CTL]}; + +// Hardware Breakpoint/Watchpoint Register write select +wire [3:0] brk0_reg_wr = {reg_wr[BRK0_ADDR1], + reg_wr[BRK0_ADDR0], + reg_wr[BRK0_STAT], + reg_wr[BRK0_CTL]}; + +omsp_dbg_hwbrk dbg_hwbr_0 ( + +// OUTPUTs + .brk_halt (brk0_halt), // Hardware breakpoint command + .brk_pnd (brk0_pnd), // Hardware break/watch-point pending + .brk_dout (brk0_dout), // Hardware break/watch-point register data input + +// INPUTs + .brk_reg_rd (brk0_reg_rd), // Hardware break/watch-point register read select + .brk_reg_wr (brk0_reg_wr), // Hardware break/watch-point register write select + .dbg_clk (dbg_clk), // Debug unit clock + .dbg_din (dbg_din), // Debug register data input + .dbg_rst (dbg_rst), // Debug unit reset + .eu_mab (eu_mab), // Execution-Unit Memory address bus + .eu_mb_en (eu_mb_en), // Execution-Unit Memory bus enable + .eu_mb_wr (eu_mb_wr), // Execution-Unit Memory bus write transfer + .eu_mdb_in (eu_mdb_in), // Memory data bus input + .eu_mdb_out (eu_mdb_out), // Memory data bus output + .exec_done (exec_done), // Execution completed + .fe_mb_en (fe_mb_en), // Frontend Memory bus enable + .pc (pc) // Program counter +); + +`else +assign brk0_halt = 1'b0; +assign brk0_pnd = 1'b0; +assign brk0_dout = 16'h0000; +`endif + +`ifdef DBG_HWBRK_1 +// Hardware Breakpoint/Watchpoint Register read select +wire [3:0] brk1_reg_rd = {reg_rd[BRK1_ADDR1], + reg_rd[BRK1_ADDR0], + reg_rd[BRK1_STAT], + reg_rd[BRK1_CTL]}; + +// Hardware Breakpoint/Watchpoint Register write select +wire [3:0] brk1_reg_wr = {reg_wr[BRK1_ADDR1], + reg_wr[BRK1_ADDR0], + reg_wr[BRK1_STAT], + reg_wr[BRK1_CTL]}; + +omsp_dbg_hwbrk dbg_hwbr_1 ( + +// OUTPUTs + .brk_halt (brk1_halt), // Hardware breakpoint command + .brk_pnd (brk1_pnd), // Hardware break/watch-point pending + .brk_dout (brk1_dout), // Hardware break/watch-point register data input + +// INPUTs + .brk_reg_rd (brk1_reg_rd), // Hardware break/watch-point register read select + .brk_reg_wr (brk1_reg_wr), // Hardware break/watch-point register write select + .dbg_clk (dbg_clk), // Debug unit clock + .dbg_din (dbg_din), // Debug register data input + .dbg_rst (dbg_rst), // Debug unit reset + .eu_mab (eu_mab), // Execution-Unit Memory address bus + .eu_mb_en (eu_mb_en), // Execution-Unit Memory bus enable + .eu_mb_wr (eu_mb_wr), // Execution-Unit Memory bus write transfer + .eu_mdb_in (eu_mdb_in), // Memory data bus input + .eu_mdb_out (eu_mdb_out), // Memory data bus output + .exec_done (exec_done), // Execution completed + .fe_mb_en (fe_mb_en), // Frontend Memory bus enable + .pc (pc) // Program counter +); + +`else +assign brk1_halt = 1'b0; +assign brk1_pnd = 1'b0; +assign brk1_dout = 16'h0000; +`endif + + `ifdef DBG_HWBRK_2 +// Hardware Breakpoint/Watchpoint Register read select +wire [3:0] brk2_reg_rd = {reg_rd[BRK2_ADDR1], + reg_rd[BRK2_ADDR0], + reg_rd[BRK2_STAT], + reg_rd[BRK2_CTL]}; + +// Hardware Breakpoint/Watchpoint Register write select +wire [3:0] brk2_reg_wr = {reg_wr[BRK2_ADDR1], + reg_wr[BRK2_ADDR0], + reg_wr[BRK2_STAT], + reg_wr[BRK2_CTL]}; + +omsp_dbg_hwbrk dbg_hwbr_2 ( + +// OUTPUTs + .brk_halt (brk2_halt), // Hardware breakpoint command + .brk_pnd (brk2_pnd), // Hardware break/watch-point pending + .brk_dout (brk2_dout), // Hardware break/watch-point register data input + +// INPUTs + .brk_reg_rd (brk2_reg_rd), // Hardware break/watch-point register read select + .brk_reg_wr (brk2_reg_wr), // Hardware break/watch-point register write select + .dbg_clk (dbg_clk), // Debug unit clock + .dbg_din (dbg_din), // Debug register data input + .dbg_rst (dbg_rst), // Debug unit reset + .eu_mab (eu_mab), // Execution-Unit Memory address bus + .eu_mb_en (eu_mb_en), // Execution-Unit Memory bus enable + .eu_mb_wr (eu_mb_wr), // Execution-Unit Memory bus write transfer + .eu_mdb_in (eu_mdb_in), // Memory data bus input + .eu_mdb_out (eu_mdb_out), // Memory data bus output + .exec_done (exec_done), // Execution completed + .fe_mb_en (fe_mb_en), // Frontend Memory bus enable + .pc (pc) // Program counter +); + +`else +assign brk2_halt = 1'b0; +assign brk2_pnd = 1'b0; +assign brk2_dout = 16'h0000; +`endif + +`ifdef DBG_HWBRK_3 +// Hardware Breakpoint/Watchpoint Register read select +wire [3:0] brk3_reg_rd = {reg_rd[BRK3_ADDR1], + reg_rd[BRK3_ADDR0], + reg_rd[BRK3_STAT], + reg_rd[BRK3_CTL]}; + +// Hardware Breakpoint/Watchpoint Register write select +wire [3:0] brk3_reg_wr = {reg_wr[BRK3_ADDR1], + reg_wr[BRK3_ADDR0], + reg_wr[BRK3_STAT], + reg_wr[BRK3_CTL]}; + +omsp_dbg_hwbrk dbg_hwbr_3 ( + +// OUTPUTs + .brk_halt (brk3_halt), // Hardware breakpoint command + .brk_pnd (brk3_pnd), // Hardware break/watch-point pending + .brk_dout (brk3_dout), // Hardware break/watch-point register data input + +// INPUTs + .brk_reg_rd (brk3_reg_rd), // Hardware break/watch-point register read select + .brk_reg_wr (brk3_reg_wr), // Hardware break/watch-point register write select + .dbg_clk (dbg_clk), // Debug unit clock + .dbg_din (dbg_din), // Debug register data input + .dbg_rst (dbg_rst), // Debug unit reset + .eu_mab (eu_mab), // Execution-Unit Memory address bus + .eu_mb_en (eu_mb_en), // Execution-Unit Memory bus enable + .eu_mb_wr (eu_mb_wr), // Execution-Unit Memory bus write transfer + .eu_mdb_in (eu_mdb_in), // Memory data bus input + .eu_mdb_out (eu_mdb_out), // Memory data bus output + .exec_done (exec_done), // Execution completed + .fe_mb_en (fe_mb_en), // Frontend Memory bus enable + .pc (pc) // Program counter +); + +`else +assign brk3_halt = 1'b0; +assign brk3_pnd = 1'b0; +assign brk3_dout = 16'h0000; +`endif + + +//============================================================================ +// 6) DATA OUTPUT GENERATION +//============================================================================ + +wire [15:0] cpu_id_lo_rd = cpu_id[15:0] & {16{reg_rd[CPU_ID_LO]}}; +wire [15:0] cpu_id_hi_rd = cpu_id[31:16] & {16{reg_rd[CPU_ID_HI]}}; +wire [15:0] cpu_ctl_rd = {8'h00, cpu_ctl_full} & {16{reg_rd[CPU_CTL]}}; +wire [15:0] cpu_stat_rd = {8'h00, cpu_stat_full} & {16{reg_rd[CPU_STAT]}}; +wire [15:0] mem_ctl_rd = {8'h00, mem_ctl_full} & {16{reg_rd[MEM_CTL]}}; +wire [15:0] mem_data_rd = mem_data & {16{reg_rd[MEM_DATA]}}; +wire [15:0] mem_addr_rd = mem_addr & {16{reg_rd[MEM_ADDR]}}; +wire [15:0] mem_cnt_rd = mem_cnt & {16{reg_rd[MEM_CNT]}}; + +wire [15:0] dbg_dout = cpu_id_lo_rd | + cpu_id_hi_rd | + cpu_ctl_rd | + cpu_stat_rd | + mem_ctl_rd | + mem_data_rd | + mem_addr_rd | + mem_cnt_rd | + brk0_dout | + brk1_dout | + brk2_dout | + brk3_dout; + +// Tell UART/JTAG interface that the data is ready to be read +always @ (posedge dbg_clk or posedge dbg_rst) + if (dbg_rst) dbg_rd_rdy <= 1'b0; + else if (mem_burst | mem_burst_rd) dbg_rd_rdy <= (dbg_reg_rd | dbg_mem_rd_dly); + else dbg_rd_rdy <= dbg_rd; + + +//============================================================================ +// 7) CPU CONTROL +//============================================================================ + +// Reset CPU +//-------------------------- +wire dbg_cpu_reset = cpu_ctl[`CPU_RST]; + + +// Break after reset +//-------------------------- +wire halt_rst = cpu_ctl[`RST_BRK_EN] & dbg_en_s & puc_pnd_set; + + +// Freeze peripherals +//-------------------------- +wire dbg_freeze = dbg_halt_st & (cpu_ctl[`FRZ_BRK_EN] | ~cpu_en_s); + + +// Software break +//-------------------------- +assign dbg_swbrk = (fe_mdb_in==`DBG_SWBRK_OP) & decode_noirq & cpu_ctl[`SW_BRK_EN]; + + +// Single step +//-------------------------- +reg [1:0] inc_step; +always @(posedge dbg_clk or posedge dbg_rst) + if (dbg_rst) inc_step <= 2'b00; + else if (istep) inc_step <= 2'b11; + else inc_step <= {inc_step[0], 1'b0}; + + +// Run / Halt +//-------------------------- +reg halt_flag; + +wire mem_halt_cpu; +wire mem_run_cpu; + +wire halt_flag_clr = run_cpu | mem_run_cpu; +wire halt_flag_set = halt_cpu | halt_rst | dbg_swbrk | mem_halt_cpu | + brk0_halt | brk1_halt | brk2_halt | brk3_halt; + +always @(posedge dbg_clk or posedge dbg_rst) + if (dbg_rst) halt_flag <= 1'b0; + else if (halt_flag_clr) halt_flag <= 1'b0; + else if (halt_flag_set) halt_flag <= 1'b1; + +wire dbg_halt_cmd = (halt_flag | halt_flag_set) & ~inc_step[1]; + + +//============================================================================ +// 8) MEMORY CONTROL +//============================================================================ + +// Control Memory bursts +//------------------------------ + +wire mem_burst_start = (mem_start & |mem_cnt); +wire mem_burst_end = ((dbg_wr | dbg_rd_rdy) & ~|mem_cnt); + +// Detect when burst is on going +always @(posedge dbg_clk or posedge dbg_rst) + if (dbg_rst) mem_burst <= 1'b0; + else if (mem_burst_start) mem_burst <= 1'b1; + else if (mem_burst_end) mem_burst <= 1'b0; + +// Control signals for UART/JTAG interface +assign mem_burst_rd = (mem_burst_start & ~mem_ctl[1]); +assign mem_burst_wr = (mem_burst_start & mem_ctl[1]); + +// Trigger CPU Register or memory access during a burst +reg mem_startb; +always @(posedge dbg_clk or posedge dbg_rst) + if (dbg_rst) mem_startb <= 1'b0; + else mem_startb <= (mem_burst & (dbg_wr | dbg_rd)) | mem_burst_rd; + +// Combine single and burst memory start of sequence +wire mem_seq_start = ((mem_start & ~|mem_cnt) | mem_startb); + + +// Memory access state machine +//------------------------------ +reg [1:0] mem_state; +reg [1:0] mem_state_nxt; + +// State machine definition +parameter M_IDLE = 2'h0; +parameter M_SET_BRK = 2'h1; +parameter M_ACCESS_BRK = 2'h2; +parameter M_ACCESS = 2'h3; + +// State transition +always @(mem_state or mem_seq_start or dbg_halt_st) + case (mem_state) + M_IDLE : mem_state_nxt = ~mem_seq_start ? M_IDLE : + dbg_halt_st ? M_ACCESS : M_SET_BRK; + M_SET_BRK : mem_state_nxt = dbg_halt_st ? M_ACCESS_BRK : M_SET_BRK; + M_ACCESS_BRK : mem_state_nxt = M_IDLE; + M_ACCESS : mem_state_nxt = M_IDLE; + // pragma coverage off + default : mem_state_nxt = M_IDLE; + // pragma coverage on + endcase + +// State machine +always @(posedge dbg_clk or posedge dbg_rst) + if (dbg_rst) mem_state <= M_IDLE; + else mem_state <= mem_state_nxt; + +// Utility signals +assign mem_halt_cpu = (mem_state==M_IDLE) & (mem_state_nxt==M_SET_BRK); +assign mem_run_cpu = (mem_state==M_ACCESS_BRK) & (mem_state_nxt==M_IDLE); +assign mem_access = (mem_state==M_ACCESS) | (mem_state==M_ACCESS_BRK); + + +// Interface to CPU Registers and Memory bacbkone +//------------------------------------------------ +assign dbg_mem_addr = mem_addr; +assign dbg_mem_dout = ~mem_bw ? mem_data : + mem_addr[0] ? {mem_data[7:0], 8'h00} : + {8'h00, mem_data[7:0]}; + +assign dbg_reg_wr = mem_access & mem_ctl[1] & mem_ctl[2]; +assign dbg_reg_rd = mem_access & ~mem_ctl[1] & mem_ctl[2]; + +assign dbg_mem_en = mem_access & ~mem_ctl[2]; +assign dbg_mem_rd = dbg_mem_en & ~mem_ctl[1]; + +wire [1:0] dbg_mem_wr_msk = ~mem_bw ? 2'b11 : + mem_addr[0] ? 2'b10 : 2'b01; +assign dbg_mem_wr = {2{dbg_mem_en & mem_ctl[1]}} & dbg_mem_wr_msk; + + +// It takes one additional cycle to read from Memory as from registers +always @(posedge dbg_clk or posedge dbg_rst) + if (dbg_rst) dbg_mem_rd_dly <= 1'b0; + else dbg_mem_rd_dly <= dbg_mem_rd; + + +//============================================================================= +// 9) UART COMMUNICATION +//============================================================================= +`ifdef DBG_UART +omsp_dbg_uart dbg_uart_0 ( + +// OUTPUTs + .dbg_addr (dbg_addr), // Debug register address + .dbg_din (dbg_din), // Debug register data input + .dbg_rd (dbg_rd), // Debug register data read + .dbg_uart_txd (dbg_uart_txd), // Debug interface: UART TXD + .dbg_wr (dbg_wr), // Debug register data write + +// INPUTs + .dbg_clk (dbg_clk), // Debug unit clock + .dbg_dout (dbg_dout), // Debug register data output + .dbg_rd_rdy (dbg_rd_rdy), // Debug register data is ready for read + .dbg_rst (dbg_rst), // Debug unit reset + .dbg_uart_rxd (dbg_uart_rxd), // Debug interface: UART RXD + .mem_burst (mem_burst), // Burst on going + .mem_burst_end(mem_burst_end), // End TX/RX burst + .mem_burst_rd (mem_burst_rd), // Start TX burst + .mem_burst_wr (mem_burst_wr), // Start RX burst + .mem_bw (mem_bw) // Burst byte width +); + +`else +assign dbg_addr = 6'h00; +assign dbg_din = 16'h0000; +assign dbg_rd = 1'b0; +assign dbg_uart_txd = 1'b0; +assign dbg_wr = 1'b0; +`endif + + +//============================================================================= +// 10) JTAG COMMUNICATION +//============================================================================= +`ifdef DBG_JTAG +JTAG INTERFACE IS NOT SUPPORTED YET +`else +`endif + +endmodule // dbg + +`ifdef OMSP_NO_INCLUDE +`else +`include "openMSP430_undefines.v" +`endif |