aboutsummaryrefslogtreecommitdiffstats
path: root/tests/openmsp430/rtl/omsp_frontend.v
diff options
context:
space:
mode:
Diffstat (limited to 'tests/openmsp430/rtl/omsp_frontend.v')
-rw-r--r--tests/openmsp430/rtl/omsp_frontend.v966
1 files changed, 966 insertions, 0 deletions
diff --git a/tests/openmsp430/rtl/omsp_frontend.v b/tests/openmsp430/rtl/omsp_frontend.v
new file mode 100644
index 000000000..343944bd2
--- /dev/null
+++ b/tests/openmsp430/rtl/omsp_frontend.v
@@ -0,0 +1,966 @@
+//----------------------------------------------------------------------------
+// Copyright (C) 2009 , Olivier Girard
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions
+// are met:
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+// * Neither the name of the authors nor the names of its contributors
+// may be used to endorse or promote products derived from this software
+// without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
+// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
+// THE POSSIBILITY OF SUCH DAMAGE
+//
+//----------------------------------------------------------------------------
+//
+// *File Name: omsp_frontend.v
+//
+// *Module Description:
+// openMSP430 Instruction fetch and decode unit
+//
+// *Author(s):
+// - Olivier Girard, olgirard@gmail.com
+//
+//----------------------------------------------------------------------------
+// $Rev: 134 $
+// $LastChangedBy: olivier.girard $
+// $LastChangedDate: 2012-03-22 21:31:06 +0100 (Thu, 22 Mar 2012) $
+//----------------------------------------------------------------------------
+`ifdef OMSP_NO_INCLUDE
+`else
+`include "openMSP430_defines.v"
+`endif
+
+module omsp_frontend (
+
+// OUTPUTs
+ dbg_halt_st, // Halt/Run status from CPU
+ decode_noirq, // Frontend decode instruction
+ e_state, // Execution state
+ exec_done, // Execution completed
+ inst_ad, // Decoded Inst: destination addressing mode
+ inst_as, // Decoded Inst: source addressing mode
+ inst_alu, // ALU control signals
+ inst_bw, // Decoded Inst: byte width
+ inst_dest, // Decoded Inst: destination (one hot)
+ inst_dext, // Decoded Inst: destination extended instruction word
+ inst_irq_rst, // Decoded Inst: Reset interrupt
+ inst_jmp, // Decoded Inst: Conditional jump
+ inst_mov, // Decoded Inst: mov instruction
+ inst_sext, // Decoded Inst: source extended instruction word
+ inst_so, // Decoded Inst: Single-operand arithmetic
+ inst_src, // Decoded Inst: source (one hot)
+ inst_type, // Decoded Instruction type
+ irq_acc, // Interrupt request accepted (one-hot signal)
+ mab, // Frontend Memory address bus
+ mb_en, // Frontend Memory bus enable
+ mclk_enable, // Main System Clock enable
+ mclk_wkup, // Main System Clock wake-up (asynchronous)
+ nmi_acc, // Non-Maskable interrupt request accepted
+ pc, // Program counter
+ pc_nxt, // Next PC value (for CALL & IRQ)
+
+// INPUTs
+ cpu_en_s, // Enable CPU code execution (synchronous)
+ cpuoff, // Turns off the CPU
+ dbg_halt_cmd, // Halt CPU command
+ dbg_reg_sel, // Debug selected register for rd/wr access
+ fe_pmem_wait, // Frontend wait for Instruction fetch
+ gie, // General interrupt enable
+ irq, // Maskable interrupts
+ mclk, // Main system clock
+ mdb_in, // Frontend Memory data bus input
+ nmi_pnd, // Non-maskable interrupt pending
+ nmi_wkup, // NMI Wakeup
+ pc_sw, // Program counter software value
+ pc_sw_wr, // Program counter software write
+ puc_rst, // Main system reset
+ scan_enable, // Scan enable (active during scan shifting)
+ wdt_irq, // Watchdog-timer interrupt
+ wdt_wkup, // Watchdog Wakeup
+ wkup // System Wake-up (asynchronous)
+);
+
+// OUTPUTs
+//=========
+output dbg_halt_st; // Halt/Run status from CPU
+output decode_noirq; // Frontend decode instruction
+output [3:0] e_state; // Execution state
+output exec_done; // Execution completed
+output [7:0] inst_ad; // Decoded Inst: destination addressing mode
+output [7:0] inst_as; // Decoded Inst: source addressing mode
+output [11:0] inst_alu; // ALU control signals
+output inst_bw; // Decoded Inst: byte width
+output [15:0] inst_dest; // Decoded Inst: destination (one hot)
+output [15:0] inst_dext; // Decoded Inst: destination extended instruction word
+output inst_irq_rst; // Decoded Inst: Reset interrupt
+output [7:0] inst_jmp; // Decoded Inst: Conditional jump
+output inst_mov; // Decoded Inst: mov instruction
+output [15:0] inst_sext; // Decoded Inst: source extended instruction word
+output [7:0] inst_so; // Decoded Inst: Single-operand arithmetic
+output [15:0] inst_src; // Decoded Inst: source (one hot)
+output [2:0] inst_type; // Decoded Instruction type
+output [13:0] irq_acc; // Interrupt request accepted (one-hot signal)
+output [15:0] mab; // Frontend Memory address bus
+output mb_en; // Frontend Memory bus enable
+output mclk_enable; // Main System Clock enable
+output mclk_wkup; // Main System Clock wake-up (asynchronous)
+output nmi_acc; // Non-Maskable interrupt request accepted
+output [15:0] pc; // Program counter
+output [15:0] pc_nxt; // Next PC value (for CALL & IRQ)
+
+// INPUTs
+//=========
+input cpu_en_s; // Enable CPU code execution (synchronous)
+input cpuoff; // Turns off the CPU
+input dbg_halt_cmd; // Halt CPU command
+input [3:0] dbg_reg_sel; // Debug selected register for rd/wr access
+input fe_pmem_wait; // Frontend wait for Instruction fetch
+input gie; // General interrupt enable
+input [13:0] irq; // Maskable interrupts
+input mclk; // Main system clock
+input [15:0] mdb_in; // Frontend Memory data bus input
+input nmi_pnd; // Non-maskable interrupt pending
+input nmi_wkup; // NMI Wakeup
+input [15:0] pc_sw; // Program counter software value
+input pc_sw_wr; // Program counter software write
+input puc_rst; // Main system reset
+input scan_enable; // Scan enable (active during scan shifting)
+input wdt_irq; // Watchdog-timer interrupt
+input wdt_wkup; // Watchdog Wakeup
+input wkup; // System Wake-up (asynchronous)
+
+
+//=============================================================================
+// 1) UTILITY FUNCTIONS
+//=============================================================================
+
+// 16 bits one-hot decoder
+function [15:0] one_hot16;
+ input [3:0] binary;
+ begin
+ one_hot16 = 16'h0000;
+ one_hot16[binary] = 1'b1;
+ end
+endfunction
+
+// 8 bits one-hot decoder
+function [7:0] one_hot8;
+ input [2:0] binary;
+ begin
+ one_hot8 = 8'h00;
+ one_hot8[binary] = 1'b1;
+ end
+endfunction
+
+
+//=============================================================================
+// 2) PARAMETER DEFINITIONS
+//=============================================================================
+
+//
+// 2.1) Instruction State machine definitons
+//-------------------------------------------
+
+parameter I_IRQ_FETCH = `I_IRQ_FETCH;
+parameter I_IRQ_DONE = `I_IRQ_DONE;
+parameter I_DEC = `I_DEC; // New instruction ready for decode
+parameter I_EXT1 = `I_EXT1; // 1st Extension word
+parameter I_EXT2 = `I_EXT2; // 2nd Extension word
+parameter I_IDLE = `I_IDLE; // CPU is in IDLE mode
+
+//
+// 2.2) Execution State machine definitons
+//-------------------------------------------
+
+parameter E_IRQ_0 = `E_IRQ_0;
+parameter E_IRQ_1 = `E_IRQ_1;
+parameter E_IRQ_2 = `E_IRQ_2;
+parameter E_IRQ_3 = `E_IRQ_3;
+parameter E_IRQ_4 = `E_IRQ_4;
+parameter E_SRC_AD = `E_SRC_AD;
+parameter E_SRC_RD = `E_SRC_RD;
+parameter E_SRC_WR = `E_SRC_WR;
+parameter E_DST_AD = `E_DST_AD;
+parameter E_DST_RD = `E_DST_RD;
+parameter E_DST_WR = `E_DST_WR;
+parameter E_EXEC = `E_EXEC;
+parameter E_JUMP = `E_JUMP;
+parameter E_IDLE = `E_IDLE;
+
+
+//=============================================================================
+// 3) FRONTEND STATE MACHINE
+//=============================================================================
+
+// The wire "conv" is used as state bits to calculate the next response
+reg [2:0] i_state;
+reg [2:0] i_state_nxt;
+
+reg [1:0] inst_sz;
+wire [1:0] inst_sz_nxt;
+wire irq_detect;
+wire [2:0] inst_type_nxt;
+wire is_const;
+reg [15:0] sconst_nxt;
+reg [3:0] e_state_nxt;
+
+// CPU on/off through the debug interface or cpu_en port
+wire cpu_halt_cmd = dbg_halt_cmd | ~cpu_en_s;
+
+// States Transitions
+always @(i_state or inst_sz or inst_sz_nxt or pc_sw_wr or exec_done or
+ irq_detect or cpuoff or cpu_halt_cmd or e_state)
+ case(i_state)
+ I_IDLE : i_state_nxt = (irq_detect & ~cpu_halt_cmd) ? I_IRQ_FETCH :
+ (~cpuoff & ~cpu_halt_cmd) ? I_DEC : I_IDLE;
+ I_IRQ_FETCH: i_state_nxt = I_IRQ_DONE;
+ I_IRQ_DONE : i_state_nxt = I_DEC;
+ I_DEC : i_state_nxt = irq_detect ? I_IRQ_FETCH :
+ (cpuoff | cpu_halt_cmd) & exec_done ? I_IDLE :
+ cpu_halt_cmd & (e_state==E_IDLE) ? I_IDLE :
+ pc_sw_wr ? I_DEC :
+ ~exec_done & ~(e_state==E_IDLE) ? I_DEC : // Wait in decode state
+ (inst_sz_nxt!=2'b00) ? I_EXT1 : I_DEC; // until execution is completed
+ I_EXT1 : i_state_nxt = pc_sw_wr ? I_DEC :
+ (inst_sz!=2'b01) ? I_EXT2 : I_DEC;
+ I_EXT2 : i_state_nxt = I_DEC;
+ // pragma coverage off
+ default : i_state_nxt = I_IRQ_FETCH;
+ // pragma coverage on
+ endcase
+
+// State machine
+always @(posedge mclk or posedge puc_rst)
+ if (puc_rst) i_state <= I_IRQ_FETCH;
+ else i_state <= i_state_nxt;
+
+// Utility signals
+wire decode_noirq = ((i_state==I_DEC) & (exec_done | (e_state==E_IDLE)));
+wire decode = decode_noirq | irq_detect;
+wire fetch = ~((i_state==I_DEC) & ~(exec_done | (e_state==E_IDLE))) & ~(e_state_nxt==E_IDLE);
+
+// Debug interface cpu status
+reg dbg_halt_st;
+always @(posedge mclk or posedge puc_rst)
+ if (puc_rst) dbg_halt_st <= 1'b0;
+ else dbg_halt_st <= cpu_halt_cmd & (i_state_nxt==I_IDLE);
+
+
+//=============================================================================
+// 4) INTERRUPT HANDLING & SYSTEM WAKEUP
+//=============================================================================
+
+//
+// 4.1) INTERRUPT HANDLING
+//-----------------------------------------
+
+// Detect reset interrupt
+reg inst_irq_rst;
+always @(posedge mclk or posedge puc_rst)
+ if (puc_rst) inst_irq_rst <= 1'b1;
+ else if (exec_done) inst_irq_rst <= 1'b0;
+
+// Detect other interrupts
+assign irq_detect = (nmi_pnd | ((|irq | wdt_irq) & gie)) & ~cpu_halt_cmd & ~dbg_halt_st & (exec_done | (i_state==I_IDLE));
+
+`ifdef CLOCK_GATING
+wire mclk_irq_num;
+omsp_clock_gate clock_gate_irq_num (.gclk(mclk_irq_num),
+ .clk (mclk), .enable(irq_detect), .scan_enable(scan_enable));
+`else
+wire mclk_irq_num = mclk;
+`endif
+
+// Select interrupt vector
+reg [3:0] irq_num;
+always @(posedge mclk_irq_num or posedge puc_rst)
+ if (puc_rst) irq_num <= 4'hf;
+`ifdef CLOCK_GATING
+ else irq_num <= nmi_pnd ? 4'he :
+`else
+ else if (irq_detect) irq_num <= nmi_pnd ? 4'he :
+`endif
+ irq[13] ? 4'hd :
+ irq[12] ? 4'hc :
+ irq[11] ? 4'hb :
+ (irq[10] | wdt_irq) ? 4'ha :
+ irq[9] ? 4'h9 :
+ irq[8] ? 4'h8 :
+ irq[7] ? 4'h7 :
+ irq[6] ? 4'h6 :
+ irq[5] ? 4'h5 :
+ irq[4] ? 4'h4 :
+ irq[3] ? 4'h3 :
+ irq[2] ? 4'h2 :
+ irq[1] ? 4'h1 :
+ irq[0] ? 4'h0 : 4'hf;
+
+wire [15:0] irq_addr = {11'h7ff, irq_num, 1'b0};
+
+// Interrupt request accepted
+wire [15:0] irq_acc_all = one_hot16(irq_num) & {16{(i_state==I_IRQ_FETCH)}};
+wire [13:0] irq_acc = irq_acc_all[13:0];
+wire nmi_acc = irq_acc_all[14];
+
+//
+// 4.2) SYSTEM WAKEUP
+//-----------------------------------------
+`ifdef CPUOFF_EN
+
+// Generate the main system clock enable signal
+ // Keep the clock running if:
+wire mclk_enable = inst_irq_rst ? cpu_en_s : // - the RESET interrupt is currently executing
+ // and if the CPU is enabled
+ // otherwise if:
+ ~((cpuoff | ~cpu_en_s) & // - the CPUOFF flag, cpu_en command, instruction
+ (i_state==I_IDLE) & // and execution state machines are all two
+ (e_state==E_IDLE)); // not idle.
+
+
+// Wakeup condition from maskable interrupts
+wire mirq_wkup;
+omsp_and_gate and_mirq_wkup (.y(mirq_wkup), .a(wkup | wdt_wkup), .b(gie));
+
+// Combined asynchronous wakeup detection from nmi & irq (masked if the cpu is disabled)
+omsp_and_gate and_mclk_wkup (.y(mclk_wkup), .a(nmi_wkup | mirq_wkup), .b(cpu_en_s));
+
+`else
+
+// In the CPUOFF feature is disabled, the wake-up and enable signals are always 1
+assign mclk_wkup = 1'b1;
+assign mclk_enable = 1'b1;
+`endif
+
+//=============================================================================
+// 5) FETCH INSTRUCTION
+//=============================================================================
+
+//
+// 5.1) PROGRAM COUNTER & MEMORY INTERFACE
+//-----------------------------------------
+
+// Program counter
+reg [15:0] pc;
+
+// Compute next PC value
+wire [15:0] pc_incr = pc + {14'h0000, fetch, 1'b0};
+wire [15:0] pc_nxt = pc_sw_wr ? pc_sw :
+ (i_state==I_IRQ_FETCH) ? irq_addr :
+ (i_state==I_IRQ_DONE) ? mdb_in : pc_incr;
+
+`ifdef CLOCK_GATING
+wire pc_en = fetch |
+ pc_sw_wr |
+ (i_state==I_IRQ_FETCH) |
+ (i_state==I_IRQ_DONE);
+wire mclk_pc;
+omsp_clock_gate clock_gate_pc (.gclk(mclk_pc),
+ .clk (mclk), .enable(pc_en), .scan_enable(scan_enable));
+`else
+wire mclk_pc = mclk;
+`endif
+
+always @(posedge mclk_pc or posedge puc_rst)
+ if (puc_rst) pc <= 16'h0000;
+ else pc <= pc_nxt;
+
+// Check if ROM has been busy in order to retry ROM access
+reg pmem_busy;
+always @(posedge mclk or posedge puc_rst)
+ if (puc_rst) pmem_busy <= 1'b0;
+ else pmem_busy <= fe_pmem_wait;
+
+// Memory interface
+wire [15:0] mab = pc_nxt;
+wire mb_en = fetch | pc_sw_wr | (i_state==I_IRQ_FETCH) | pmem_busy | (dbg_halt_st & ~cpu_halt_cmd);
+
+
+//
+// 5.2) INSTRUCTION REGISTER
+//--------------------------------
+
+// Instruction register
+wire [15:0] ir = mdb_in;
+
+// Detect if source extension word is required
+wire is_sext = (inst_as[`IDX] | inst_as[`SYMB] | inst_as[`ABS] | inst_as[`IMM]);
+
+// For the Symbolic addressing mode, add -2 to the extension word in order
+// to make up for the PC address
+wire [15:0] ext_incr = ((i_state==I_EXT1) & inst_as[`SYMB]) |
+ ((i_state==I_EXT2) & inst_ad[`SYMB]) |
+ ((i_state==I_EXT1) & ~inst_as[`SYMB] &
+ ~(i_state_nxt==I_EXT2) & inst_ad[`SYMB]) ? 16'hfffe : 16'h0000;
+
+wire [15:0] ext_nxt = ir + ext_incr;
+
+// Store source extension word
+reg [15:0] inst_sext;
+
+`ifdef CLOCK_GATING
+wire inst_sext_en = (decode & is_const) |
+ (decode & inst_type_nxt[`INST_JMP]) |
+ ((i_state==I_EXT1) & is_sext);
+wire mclk_inst_sext;
+omsp_clock_gate clock_gate_inst_sext (.gclk(mclk_inst_sext),
+ .clk (mclk), .enable(inst_sext_en), .scan_enable(scan_enable));
+`else
+wire mclk_inst_sext = mclk;
+`endif
+
+always @(posedge mclk_inst_sext or posedge puc_rst)
+ if (puc_rst) inst_sext <= 16'h0000;
+ else if (decode & is_const) inst_sext <= sconst_nxt;
+ else if (decode & inst_type_nxt[`INST_JMP]) inst_sext <= {{5{ir[9]}},ir[9:0],1'b0};
+`ifdef CLOCK_GATING
+ else inst_sext <= ext_nxt;
+`else
+ else if ((i_state==I_EXT1) & is_sext) inst_sext <= ext_nxt;
+`endif
+
+// Source extension word is ready
+wire inst_sext_rdy = (i_state==I_EXT1) & is_sext;
+
+
+// Store destination extension word
+reg [15:0] inst_dext;
+
+`ifdef CLOCK_GATING
+wire inst_dext_en = ((i_state==I_EXT1) & ~is_sext) |
+ (i_state==I_EXT2);
+wire mclk_inst_dext;
+omsp_clock_gate clock_gate_inst_dext (.gclk(mclk_inst_dext),
+ .clk (mclk), .enable(inst_dext_en), .scan_enable(scan_enable));
+`else
+wire mclk_inst_dext = mclk;
+`endif
+
+always @(posedge mclk_inst_dext or posedge puc_rst)
+ if (puc_rst) inst_dext <= 16'h0000;
+ else if ((i_state==I_EXT1) & ~is_sext) inst_dext <= ext_nxt;
+`ifdef CLOCK_GATING
+ else inst_dext <= ext_nxt;
+`else
+ else if (i_state==I_EXT2) inst_dext <= ext_nxt;
+`endif
+
+// Destination extension word is ready
+wire inst_dext_rdy = (((i_state==I_EXT1) & ~is_sext) | (i_state==I_EXT2));
+
+
+//=============================================================================
+// 6) DECODE INSTRUCTION
+//=============================================================================
+
+`ifdef CLOCK_GATING
+wire mclk_decode;
+omsp_clock_gate clock_gate_decode (.gclk(mclk_decode),
+ .clk (mclk), .enable(decode), .scan_enable(scan_enable));
+`else
+wire mclk_decode = mclk;
+`endif
+
+//
+// 6.1) OPCODE: INSTRUCTION TYPE
+//----------------------------------------
+// Instructions type is encoded in a one hot fashion as following:
+//
+// 3'b001: Single-operand arithmetic
+// 3'b010: Conditional jump
+// 3'b100: Two-operand arithmetic
+
+reg [2:0] inst_type;
+assign inst_type_nxt = {(ir[15:14]!=2'b00),
+ (ir[15:13]==3'b001),
+ (ir[15:13]==3'b000)} & {3{~irq_detect}};
+
+always @(posedge mclk_decode or posedge puc_rst)
+ if (puc_rst) inst_type <= 3'b000;
+`ifdef CLOCK_GATING
+ else inst_type <= inst_type_nxt;
+`else
+ else if (decode) inst_type <= inst_type_nxt;
+`endif
+
+//
+// 6.2) OPCODE: SINGLE-OPERAND ARITHMETIC
+//----------------------------------------
+// Instructions are encoded in a one hot fashion as following:
+//
+// 8'b00000001: RRC
+// 8'b00000010: SWPB
+// 8'b00000100: RRA
+// 8'b00001000: SXT
+// 8'b00010000: PUSH
+// 8'b00100000: CALL
+// 8'b01000000: RETI
+// 8'b10000000: IRQ
+
+reg [7:0] inst_so;
+wire [7:0] inst_so_nxt = irq_detect ? 8'h80 : (one_hot8(ir[9:7]) & {8{inst_type_nxt[`INST_SO]}});
+
+always @(posedge mclk_decode or posedge puc_rst)
+ if (puc_rst) inst_so <= 8'h00;
+`ifdef CLOCK_GATING
+ else inst_so <= inst_so_nxt;
+`else
+ else if (decode) inst_so <= inst_so_nxt;
+`endif
+
+//
+// 6.3) OPCODE: CONDITIONAL JUMP
+//--------------------------------
+// Instructions are encoded in a one hot fashion as following:
+//
+// 8'b00000001: JNE/JNZ
+// 8'b00000010: JEQ/JZ
+// 8'b00000100: JNC/JLO
+// 8'b00001000: JC/JHS
+// 8'b00010000: JN
+// 8'b00100000: JGE
+// 8'b01000000: JL
+// 8'b10000000: JMP
+
+reg [2:0] inst_jmp_bin;
+always @(posedge mclk_decode or posedge puc_rst)
+ if (puc_rst) inst_jmp_bin <= 3'h0;
+`ifdef CLOCK_GATING
+ else inst_jmp_bin <= ir[12:10];
+`else
+ else if (decode) inst_jmp_bin <= ir[12:10];
+`endif
+
+wire [7:0] inst_jmp = one_hot8(inst_jmp_bin) & {8{inst_type[`INST_JMP]}};
+
+
+//
+// 6.4) OPCODE: TWO-OPERAND ARITHMETIC
+//-------------------------------------
+// Instructions are encoded in a one hot fashion as following:
+//
+// 12'b000000000001: MOV
+// 12'b000000000010: ADD
+// 12'b000000000100: ADDC
+// 12'b000000001000: SUBC
+// 12'b000000010000: SUB
+// 12'b000000100000: CMP
+// 12'b000001000000: DADD
+// 12'b000010000000: BIT
+// 12'b000100000000: BIC
+// 12'b001000000000: BIS
+// 12'b010000000000: XOR
+// 12'b100000000000: AND
+
+wire [15:0] inst_to_1hot = one_hot16(ir[15:12]) & {16{inst_type_nxt[`INST_TO]}};
+wire [11:0] inst_to_nxt = inst_to_1hot[15:4];
+
+reg inst_mov;
+always @(posedge mclk_decode or posedge puc_rst)
+ if (puc_rst) inst_mov <= 1'b0;
+`ifdef CLOCK_GATING
+ else inst_mov <= inst_to_nxt[`MOV];
+`else
+ else if (decode) inst_mov <= inst_to_nxt[`MOV];
+`endif
+
+
+//
+// 6.5) SOURCE AND DESTINATION REGISTERS
+//---------------------------------------
+
+// Destination register
+reg [3:0] inst_dest_bin;
+always @(posedge mclk_decode or posedge puc_rst)
+ if (puc_rst) inst_dest_bin <= 4'h0;
+`ifdef CLOCK_GATING
+ else inst_dest_bin <= ir[3:0];
+`else
+ else if (decode) inst_dest_bin <= ir[3:0];
+`endif
+
+wire [15:0] inst_dest = dbg_halt_st ? one_hot16(dbg_reg_sel) :
+ inst_type[`INST_JMP] ? 16'h0001 :
+ inst_so[`IRQ] |
+ inst_so[`PUSH] |
+ inst_so[`CALL] ? 16'h0002 :
+ one_hot16(inst_dest_bin);
+
+
+// Source register
+reg [3:0] inst_src_bin;
+always @(posedge mclk_decode or posedge puc_rst)
+ if (puc_rst) inst_src_bin <= 4'h0;
+`ifdef CLOCK_GATING
+ else inst_src_bin <= ir[11:8];
+`else
+ else if (decode) inst_src_bin <= ir[11:8];
+`endif
+
+wire [15:0] inst_src = inst_type[`INST_TO] ? one_hot16(inst_src_bin) :
+ inst_so[`RETI] ? 16'h0002 :
+ inst_so[`IRQ] ? 16'h0001 :
+ inst_type[`INST_SO] ? one_hot16(inst_dest_bin) : 16'h0000;
+
+
+//
+// 6.6) SOURCE ADDRESSING MODES
+//--------------------------------
+// Source addressing modes are encoded in a one hot fashion as following:
+//
+// 13'b0000000000001: Register direct.
+// 13'b0000000000010: Register indexed.
+// 13'b0000000000100: Register indirect.
+// 13'b0000000001000: Register indirect autoincrement.
+// 13'b0000000010000: Symbolic (operand is in memory at address PC+x).
+// 13'b0000000100000: Immediate (operand is next word in the instruction stream).
+// 13'b0000001000000: Absolute (operand is in memory at address x).
+// 13'b0000010000000: Constant 4.
+// 13'b0000100000000: Constant 8.
+// 13'b0001000000000: Constant 0.
+// 13'b0010000000000: Constant 1.
+// 13'b0100000000000: Constant 2.
+// 13'b1000000000000: Constant -1.
+
+reg [12:0] inst_as_nxt;
+
+wire [3:0] src_reg = inst_type_nxt[`INST_SO] ? ir[3:0] : ir[11:8];
+
+always @(src_reg or ir or inst_type_nxt)
+ begin
+ if (inst_type_nxt[`INST_JMP])
+ inst_as_nxt = 13'b0000000000001;
+ else if (src_reg==4'h3) // Addressing mode using R3
+ case (ir[5:4])
+ 2'b11 : inst_as_nxt = 13'b1000000000000;
+ 2'b10 : inst_as_nxt = 13'b0100000000000;
+ 2'b01 : inst_as_nxt = 13'b0010000000000;
+ default: inst_as_nxt = 13'b0001000000000;
+ endcase
+ else if (src_reg==4'h2) // Addressing mode using R2
+ case (ir[5:4])
+ 2'b11 : inst_as_nxt = 13'b0000100000000;
+ 2'b10 : inst_as_nxt = 13'b0000010000000;
+ 2'b01 : inst_as_nxt = 13'b0000001000000;
+ default: inst_as_nxt = 13'b0000000000001;
+ endcase
+ else if (src_reg==4'h0) // Addressing mode using R0
+ case (ir[5:4])
+ 2'b11 : inst_as_nxt = 13'b0000000100000;
+ 2'b10 : inst_as_nxt = 13'b0000000000100;
+ 2'b01 : inst_as_nxt = 13'b0000000010000;
+ default: inst_as_nxt = 13'b0000000000001;
+ endcase
+ else // General Addressing mode
+ case (ir[5:4])
+ 2'b11 : inst_as_nxt = 13'b0000000001000;
+ 2'b10 : inst_as_nxt = 13'b0000000000100;
+ 2'b01 : inst_as_nxt = 13'b0000000000010;
+ default: inst_as_nxt = 13'b0000000000001;
+ endcase
+ end
+assign is_const = |inst_as_nxt[12:7];
+
+reg [7:0] inst_as;
+always @(posedge mclk_decode or posedge puc_rst)
+ if (puc_rst) inst_as <= 8'h00;
+`ifdef CLOCK_GATING
+ else inst_as <= {is_const, inst_as_nxt[6:0]};
+`else
+ else if (decode) inst_as <= {is_const, inst_as_nxt[6:0]};
+`endif
+
+
+// 13'b0000010000000: Constant 4.
+// 13'b0000100000000: Constant 8.
+// 13'b0001000000000: Constant 0.
+// 13'b0010000000000: Constant 1.
+// 13'b0100000000000: Constant 2.
+// 13'b1000000000000: Constant -1.
+always @(inst_as_nxt)
+ begin
+ if (inst_as_nxt[7]) sconst_nxt = 16'h0004;
+ else if (inst_as_nxt[8]) sconst_nxt = 16'h0008;
+ else if (inst_as_nxt[9]) sconst_nxt = 16'h0000;
+ else if (inst_as_nxt[10]) sconst_nxt = 16'h0001;
+ else if (inst_as_nxt[11]) sconst_nxt = 16'h0002;
+ else if (inst_as_nxt[12]) sconst_nxt = 16'hffff;
+ else sconst_nxt = 16'h0000;
+ end
+
+
+//
+// 6.7) DESTINATION ADDRESSING MODES
+//-----------------------------------
+// Destination addressing modes are encoded in a one hot fashion as following:
+//
+// 8'b00000001: Register direct.
+// 8'b00000010: Register indexed.
+// 8'b00010000: Symbolic (operand is in memory at address PC+x).
+// 8'b01000000: Absolute (operand is in memory at address x).
+
+reg [7:0] inst_ad_nxt;
+
+wire [3:0] dest_reg = ir[3:0];
+
+always @(dest_reg or ir or inst_type_nxt)
+ begin
+ if (~inst_type_nxt[`INST_TO])
+ inst_ad_nxt = 8'b00000000;
+ else if (dest_reg==4'h2) // Addressing mode using R2
+ case (ir[7])
+ 1'b1 : inst_ad_nxt = 8'b01000000;
+ default: inst_ad_nxt = 8'b00000001;
+ endcase
+ else if (dest_reg==4'h0) // Addressing mode using R0
+ case (ir[7])
+ 1'b1 : inst_ad_nxt = 8'b00010000;
+ default: inst_ad_nxt = 8'b00000001;
+ endcase
+ else // General Addressing mode
+ case (ir[7])
+ 1'b1 : inst_ad_nxt = 8'b00000010;
+ default: inst_ad_nxt = 8'b00000001;
+ endcase
+ end
+
+reg [7:0] inst_ad;
+always @(posedge mclk_decode or posedge puc_rst)
+ if (puc_rst) inst_ad <= 8'h00;
+`ifdef CLOCK_GATING
+ else inst_ad <= inst_ad_nxt;
+`else
+ else if (decode) inst_ad <= inst_ad_nxt;
+`endif
+
+
+//
+// 6.8) REMAINING INSTRUCTION DECODING
+//-------------------------------------
+
+// Operation size
+reg inst_bw;
+always @(posedge mclk or posedge puc_rst)
+ if (puc_rst) inst_bw <= 1'b0;
+ else if (decode) inst_bw <= ir[6] & ~inst_type_nxt[`INST_JMP] & ~irq_detect & ~cpu_halt_cmd;
+
+// Extended instruction size
+assign inst_sz_nxt = {1'b0, (inst_as_nxt[`IDX] | inst_as_nxt[`SYMB] | inst_as_nxt[`ABS] | inst_as_nxt[`IMM])} +
+ {1'b0, ((inst_ad_nxt[`IDX] | inst_ad_nxt[`SYMB] | inst_ad_nxt[`ABS]) & ~inst_type_nxt[`INST_SO])};
+always @(posedge mclk_decode or posedge puc_rst)
+ if (puc_rst) inst_sz <= 2'b00;
+`ifdef CLOCK_GATING
+ else inst_sz <= inst_sz_nxt;
+`else
+ else if (decode) inst_sz <= inst_sz_nxt;
+`endif
+
+
+//=============================================================================
+// 7) EXECUTION-UNIT STATE MACHINE
+//=============================================================================
+
+// State machine registers
+reg [3:0] e_state;
+
+
+// State machine control signals
+//--------------------------------
+
+wire src_acalc_pre = inst_as_nxt[`IDX] | inst_as_nxt[`SYMB] | inst_as_nxt[`ABS];
+wire src_rd_pre = inst_as_nxt[`INDIR] | inst_as_nxt[`INDIR_I] | inst_as_nxt[`IMM] | inst_so_nxt[`RETI];
+wire dst_acalc_pre = inst_ad_nxt[`IDX] | inst_ad_nxt[`SYMB] | inst_ad_nxt[`ABS];
+wire dst_acalc = inst_ad[`IDX] | inst_ad[`SYMB] | inst_ad[`ABS];
+wire dst_rd_pre = inst_ad_nxt[`IDX] | inst_so_nxt[`PUSH] | inst_so_nxt[`CALL] | inst_so_nxt[`RETI];
+wire dst_rd = inst_ad[`IDX] | inst_so[`PUSH] | inst_so[`CALL] | inst_so[`RETI];
+
+wire inst_branch = (inst_ad_nxt[`DIR] & (ir[3:0]==4'h0)) | inst_type_nxt[`INST_JMP] | inst_so_nxt[`RETI];
+
+reg exec_jmp;
+always @(posedge mclk or posedge puc_rst)
+ if (puc_rst) exec_jmp <= 1'b0;
+ else if (inst_branch & decode) exec_jmp <= 1'b1;
+ else if (e_state==E_JUMP) exec_jmp <= 1'b0;
+
+reg exec_dst_wr;
+always @(posedge mclk or posedge puc_rst)
+ if (puc_rst) exec_dst_wr <= 1'b0;
+ else if (e_state==E_DST_RD) exec_dst_wr <= 1'b1;
+ else if (e_state==E_DST_WR) exec_dst_wr <= 1'b0;
+
+reg exec_src_wr;
+always @(posedge mclk or posedge puc_rst)
+ if (puc_rst) exec_src_wr <= 1'b0;
+ else if (inst_type[`INST_SO] & (e_state==E_SRC_RD)) exec_src_wr <= 1'b1;
+ else if ((e_state==E_SRC_WR) || (e_state==E_DST_WR)) exec_src_wr <= 1'b0;
+
+reg exec_dext_rdy;
+always @(posedge mclk or posedge puc_rst)
+ if (puc_rst) exec_dext_rdy <= 1'b0;
+ else if (e_state==E_DST_RD) exec_dext_rdy <= 1'b0;
+ else if (inst_dext_rdy) exec_dext_rdy <= 1'b1;
+
+// Execution first state
+wire [3:0] e_first_state = ~dbg_halt_st & inst_so_nxt[`IRQ] ? E_IRQ_0 :
+ cpu_halt_cmd | (i_state==I_IDLE) ? E_IDLE :
+ cpuoff ? E_IDLE :
+ src_acalc_pre ? E_SRC_AD :
+ src_rd_pre ? E_SRC_RD :
+ dst_acalc_pre ? E_DST_AD :
+ dst_rd_pre ? E_DST_RD : E_EXEC;
+
+
+// State machine
+//--------------------------------
+
+// States Transitions
+always @(e_state or dst_acalc or dst_rd or inst_sext_rdy or
+ inst_dext_rdy or exec_dext_rdy or exec_jmp or exec_dst_wr or
+ e_first_state or exec_src_wr)
+ case(e_state)
+ E_IDLE : e_state_nxt = e_first_state;
+ E_IRQ_0 : e_state_nxt = E_IRQ_1;
+ E_IRQ_1 : e_state_nxt = E_IRQ_2;
+ E_IRQ_2 : e_state_nxt = E_IRQ_3;
+ E_IRQ_3 : e_state_nxt = E_IRQ_4;
+ E_IRQ_4 : e_state_nxt = E_EXEC;
+
+ E_SRC_AD : e_state_nxt = inst_sext_rdy ? E_SRC_RD : E_SRC_AD;
+
+ E_SRC_RD : e_state_nxt = dst_acalc ? E_DST_AD :
+ dst_rd ? E_DST_RD : E_EXEC;
+
+ E_DST_AD : e_state_nxt = (inst_dext_rdy |
+ exec_dext_rdy) ? E_DST_RD : E_DST_AD;
+
+ E_DST_RD : e_state_nxt = E_EXEC;
+
+ E_EXEC : e_state_nxt = exec_dst_wr ? E_DST_WR :
+ exec_jmp ? E_JUMP :
+ exec_src_wr ? E_SRC_WR : e_first_state;
+
+ E_JUMP : e_state_nxt = e_first_state;
+ E_DST_WR : e_state_nxt = exec_jmp ? E_JUMP : e_first_state;
+ E_SRC_WR : e_state_nxt = e_first_state;
+ // pragma coverage off
+ default : e_state_nxt = E_IRQ_0;
+ // pragma coverage on
+ endcase
+
+// State machine
+always @(posedge mclk or posedge puc_rst)
+ if (puc_rst) e_state <= E_IRQ_1;
+ else e_state <= e_state_nxt;
+
+
+// Frontend State machine control signals
+//----------------------------------------
+
+wire exec_done = exec_jmp ? (e_state==E_JUMP) :
+ exec_dst_wr ? (e_state==E_DST_WR) :
+ exec_src_wr ? (e_state==E_SRC_WR) : (e_state==E_EXEC);
+
+
+//=============================================================================
+// 8) EXECUTION-UNIT STATE CONTROL
+//=============================================================================
+
+//
+// 8.1) ALU CONTROL SIGNALS
+//-------------------------------------
+//
+// 12'b000000000001: Enable ALU source inverter
+// 12'b000000000010: Enable Incrementer
+// 12'b000000000100: Enable Incrementer on carry bit
+// 12'b000000001000: Select Adder
+// 12'b000000010000: Select AND
+// 12'b000000100000: Select OR
+// 12'b000001000000: Select XOR
+// 12'b000010000000: Select DADD
+// 12'b000100000000: Update N, Z & C (C=~Z)
+// 12'b001000000000: Update all status bits
+// 12'b010000000000: Update status bit for XOR instruction
+// 12'b100000000000: Don't write to destination
+
+reg [11:0] inst_alu;
+
+wire alu_src_inv = inst_to_nxt[`SUB] | inst_to_nxt[`SUBC] |
+ inst_to_nxt[`CMP] | inst_to_nxt[`BIC] ;
+
+wire alu_inc = inst_to_nxt[`SUB] | inst_to_nxt[`CMP];
+
+wire alu_inc_c = inst_to_nxt[`ADDC] | inst_to_nxt[`DADD] |
+ inst_to_nxt[`SUBC];
+
+wire alu_add = inst_to_nxt[`ADD] | inst_to_nxt[`ADDC] |
+ inst_to_nxt[`SUB] | inst_to_nxt[`SUBC] |
+ inst_to_nxt[`CMP] | inst_type_nxt[`INST_JMP] |
+ inst_so_nxt[`RETI];
+
+
+wire alu_and = inst_to_nxt[`AND] | inst_to_nxt[`BIC] |
+ inst_to_nxt[`BIT];
+
+wire alu_or = inst_to_nxt[`BIS];
+
+wire alu_xor = inst_to_nxt[`XOR];
+
+wire alu_dadd = inst_to_nxt[`DADD];
+
+wire alu_stat_7 = inst_to_nxt[`BIT] | inst_to_nxt[`AND] |
+ inst_so_nxt[`SXT];
+
+wire alu_stat_f = inst_to_nxt[`ADD] | inst_to_nxt[`ADDC] |
+ inst_to_nxt[`SUB] | inst_to_nxt[`SUBC] |
+ inst_to_nxt[`CMP] | inst_to_nxt[`DADD] |
+ inst_to_nxt[`BIT] | inst_to_nxt[`XOR] |
+ inst_to_nxt[`AND] |
+ inst_so_nxt[`RRC] | inst_so_nxt[`RRA] |
+ inst_so_nxt[`SXT];
+
+wire alu_shift = inst_so_nxt[`RRC] | inst_so_nxt[`RRA];
+
+wire exec_no_wr = inst_to_nxt[`CMP] | inst_to_nxt[`BIT];
+
+wire [11:0] inst_alu_nxt = {exec_no_wr,
+ alu_shift,
+ alu_stat_f,
+ alu_stat_7,
+ alu_dadd,
+ alu_xor,
+ alu_or,
+ alu_and,
+ alu_add,
+ alu_inc_c,
+ alu_inc,
+ alu_src_inv};
+
+always @(posedge mclk_decode or posedge puc_rst)
+ if (puc_rst) inst_alu <= 12'h000;
+`ifdef CLOCK_GATING
+ else inst_alu <= inst_alu_nxt;
+`else
+ else if (decode) inst_alu <= inst_alu_nxt;
+`endif
+
+
+endmodule // omsp_frontend
+
+`ifdef OMSP_NO_INCLUDE
+`else
+`include "openMSP430_undefines.v"
+`endif