diff options
Diffstat (limited to 'tests/openmsp430/rtl/omsp_multiplier.v')
-rw-r--r-- | tests/openmsp430/rtl/omsp_multiplier.v | 420 |
1 files changed, 420 insertions, 0 deletions
diff --git a/tests/openmsp430/rtl/omsp_multiplier.v b/tests/openmsp430/rtl/omsp_multiplier.v new file mode 100644 index 000000000..4f7b04cad --- /dev/null +++ b/tests/openmsp430/rtl/omsp_multiplier.v @@ -0,0 +1,420 @@ +//---------------------------------------------------------------------------- +// Copyright (C) 2009 , Olivier Girard +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions +// are met: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of the authors nor the names of its contributors +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE +// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, +// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF +// THE POSSIBILITY OF SUCH DAMAGE +// +//---------------------------------------------------------------------------- +// +// *File Name: omsp_multiplier.v +// +// *Module Description: +// 16x16 Hardware multiplier. +// +// *Author(s): +// - Olivier Girard, olgirard@gmail.com +// +//---------------------------------------------------------------------------- +// $Rev: 23 $ +// $LastChangedBy: olivier.girard $ +// $LastChangedDate: 2009-08-30 18:39:26 +0200 (Sun, 30 Aug 2009) $ +//---------------------------------------------------------------------------- +`ifdef OMSP_NO_INCLUDE +`else +`include "openMSP430_defines.v" +`endif + +module omsp_multiplier ( + +// OUTPUTs + per_dout, // Peripheral data output + +// INPUTs + mclk, // Main system clock + per_addr, // Peripheral address + per_din, // Peripheral data input + per_en, // Peripheral enable (high active) + per_we, // Peripheral write enable (high active) + puc_rst, // Main system reset + scan_enable // Scan enable (active during scan shifting) +); + +// OUTPUTs +//========= +output [15:0] per_dout; // Peripheral data output + +// INPUTs +//========= +input mclk; // Main system clock +input [13:0] per_addr; // Peripheral address +input [15:0] per_din; // Peripheral data input +input per_en; // Peripheral enable (high active) +input [1:0] per_we; // Peripheral write enable (high active) +input puc_rst; // Main system reset +input scan_enable; // Scan enable (active during scan shifting) + + +//============================================================================= +// 1) PARAMETER/REGISTERS & WIRE DECLARATION +//============================================================================= + +// Register base address (must be aligned to decoder bit width) +parameter [14:0] BASE_ADDR = 15'h0130; + +// Decoder bit width (defines how many bits are considered for address decoding) +parameter DEC_WD = 4; + +// Register addresses offset +parameter [DEC_WD-1:0] OP1_MPY = 'h0, + OP1_MPYS = 'h2, + OP1_MAC = 'h4, + OP1_MACS = 'h6, + OP2 = 'h8, + RESLO = 'hA, + RESHI = 'hC, + SUMEXT = 'hE; + +// Register one-hot decoder utilities +parameter DEC_SZ = (1 << DEC_WD); +parameter [DEC_SZ-1:0] BASE_REG = {{DEC_SZ-1{1'b0}}, 1'b1}; + +// Register one-hot decoder +parameter [DEC_SZ-1:0] OP1_MPY_D = (BASE_REG << OP1_MPY), + OP1_MPYS_D = (BASE_REG << OP1_MPYS), + OP1_MAC_D = (BASE_REG << OP1_MAC), + OP1_MACS_D = (BASE_REG << OP1_MACS), + OP2_D = (BASE_REG << OP2), + RESLO_D = (BASE_REG << RESLO), + RESHI_D = (BASE_REG << RESHI), + SUMEXT_D = (BASE_REG << SUMEXT); + + +// Wire pre-declarations +wire result_wr; +wire result_clr; +wire early_read; + + +//============================================================================ +// 2) REGISTER DECODER +//============================================================================ + +// Local register selection +wire reg_sel = per_en & (per_addr[13:DEC_WD-1]==BASE_ADDR[14:DEC_WD]); + +// Register local address +wire [DEC_WD-1:0] reg_addr = {per_addr[DEC_WD-2:0], 1'b0}; + +// Register address decode +wire [DEC_SZ-1:0] reg_dec = (OP1_MPY_D & {DEC_SZ{(reg_addr == OP1_MPY )}}) | + (OP1_MPYS_D & {DEC_SZ{(reg_addr == OP1_MPYS )}}) | + (OP1_MAC_D & {DEC_SZ{(reg_addr == OP1_MAC )}}) | + (OP1_MACS_D & {DEC_SZ{(reg_addr == OP1_MACS )}}) | + (OP2_D & {DEC_SZ{(reg_addr == OP2 )}}) | + (RESLO_D & {DEC_SZ{(reg_addr == RESLO )}}) | + (RESHI_D & {DEC_SZ{(reg_addr == RESHI )}}) | + (SUMEXT_D & {DEC_SZ{(reg_addr == SUMEXT )}}); + +// Read/Write probes +wire reg_write = |per_we & reg_sel; +wire reg_read = ~|per_we & reg_sel; + +// Read/Write vectors +wire [DEC_SZ-1:0] reg_wr = reg_dec & {DEC_SZ{reg_write}}; +wire [DEC_SZ-1:0] reg_rd = reg_dec & {DEC_SZ{reg_read}}; + + +//============================================================================ +// 3) REGISTERS +//============================================================================ + +// OP1 Register +//----------------- +reg [15:0] op1; + +wire op1_wr = reg_wr[OP1_MPY] | + reg_wr[OP1_MPYS] | + reg_wr[OP1_MAC] | + reg_wr[OP1_MACS]; + +`ifdef CLOCK_GATING +wire mclk_op1; +omsp_clock_gate clock_gate_op1 (.gclk(mclk_op1), + .clk (mclk), .enable(op1_wr), .scan_enable(scan_enable)); +`else +wire mclk_op1 = mclk; +`endif + +always @ (posedge mclk_op1 or posedge puc_rst) + if (puc_rst) op1 <= 16'h0000; +`ifdef CLOCK_GATING + else op1 <= per_din; +`else + else if (op1_wr) op1 <= per_din; +`endif + +wire [15:0] op1_rd = op1; + + +// OP2 Register +//----------------- +reg [15:0] op2; + +wire op2_wr = reg_wr[OP2]; + +`ifdef CLOCK_GATING +wire mclk_op2; +omsp_clock_gate clock_gate_op2 (.gclk(mclk_op2), + .clk (mclk), .enable(op2_wr), .scan_enable(scan_enable)); +`else +wire mclk_op2 = mclk; +`endif + +always @ (posedge mclk_op2 or posedge puc_rst) + if (puc_rst) op2 <= 16'h0000; +`ifdef CLOCK_GATING + else op2 <= per_din; +`else + else if (op2_wr) op2 <= per_din; +`endif + +wire [15:0] op2_rd = op2; + + +// RESLO Register +//----------------- +reg [15:0] reslo; + +wire [15:0] reslo_nxt; +wire reslo_wr = reg_wr[RESLO]; + +`ifdef CLOCK_GATING +wire reslo_en = reslo_wr | result_clr | result_wr; +wire mclk_reslo; +omsp_clock_gate clock_gate_reslo (.gclk(mclk_reslo), + .clk (mclk), .enable(reslo_en), .scan_enable(scan_enable)); +`else +wire mclk_reslo = mclk; +`endif + +always @ (posedge mclk_reslo or posedge puc_rst) + if (puc_rst) reslo <= 16'h0000; + else if (reslo_wr) reslo <= per_din; + else if (result_clr) reslo <= 16'h0000; +`ifdef CLOCK_GATING + else reslo <= reslo_nxt; +`else + else if (result_wr) reslo <= reslo_nxt; +`endif + +wire [15:0] reslo_rd = early_read ? reslo_nxt : reslo; + + +// RESHI Register +//----------------- +reg [15:0] reshi; + +wire [15:0] reshi_nxt; +wire reshi_wr = reg_wr[RESHI]; + +`ifdef CLOCK_GATING +wire reshi_en = reshi_wr | result_clr | result_wr; +wire mclk_reshi; +omsp_clock_gate clock_gate_reshi (.gclk(mclk_reshi), + .clk (mclk), .enable(reshi_en), .scan_enable(scan_enable)); +`else +wire mclk_reshi = mclk; +`endif + +always @ (posedge mclk_reshi or posedge puc_rst) + if (puc_rst) reshi <= 16'h0000; + else if (reshi_wr) reshi <= per_din; + else if (result_clr) reshi <= 16'h0000; +`ifdef CLOCK_GATING + else reshi <= reshi_nxt; +`else + else if (result_wr) reshi <= reshi_nxt; +`endif + +wire [15:0] reshi_rd = early_read ? reshi_nxt : reshi; + + +// SUMEXT Register +//----------------- +reg [1:0] sumext_s; + +wire [1:0] sumext_s_nxt; + +always @ (posedge mclk or posedge puc_rst) + if (puc_rst) sumext_s <= 2'b00; + else if (op2_wr) sumext_s <= 2'b00; + else if (result_wr) sumext_s <= sumext_s_nxt; + +wire [15:0] sumext_nxt = {{14{sumext_s_nxt[1]}}, sumext_s_nxt}; +wire [15:0] sumext = {{14{sumext_s[1]}}, sumext_s}; +wire [15:0] sumext_rd = early_read ? sumext_nxt : sumext; + + +//============================================================================ +// 4) DATA OUTPUT GENERATION +//============================================================================ + +// Data output mux +wire [15:0] op1_mux = op1_rd & {16{reg_rd[OP1_MPY] | + reg_rd[OP1_MPYS] | + reg_rd[OP1_MAC] | + reg_rd[OP1_MACS]}}; +wire [15:0] op2_mux = op2_rd & {16{reg_rd[OP2]}}; +wire [15:0] reslo_mux = reslo_rd & {16{reg_rd[RESLO]}}; +wire [15:0] reshi_mux = reshi_rd & {16{reg_rd[RESHI]}}; +wire [15:0] sumext_mux = sumext_rd & {16{reg_rd[SUMEXT]}}; + +wire [15:0] per_dout = op1_mux | + op2_mux | + reslo_mux | + reshi_mux | + sumext_mux; + + +//============================================================================ +// 5) HARDWARE MULTIPLIER FUNCTIONAL LOGIC +//============================================================================ + +// Multiplier configuration +//-------------------------- + +// Detect signed mode +reg sign_sel; +always @ (posedge mclk_op1 or posedge puc_rst) + if (puc_rst) sign_sel <= 1'b0; +`ifdef CLOCK_GATING + else sign_sel <= reg_wr[OP1_MPYS] | reg_wr[OP1_MACS]; +`else + else if (op1_wr) sign_sel <= reg_wr[OP1_MPYS] | reg_wr[OP1_MACS]; +`endif + + +// Detect accumulate mode +reg acc_sel; +always @ (posedge mclk_op1 or posedge puc_rst) + if (puc_rst) acc_sel <= 1'b0; +`ifdef CLOCK_GATING + else acc_sel <= reg_wr[OP1_MAC] | reg_wr[OP1_MACS]; +`else + else if (op1_wr) acc_sel <= reg_wr[OP1_MAC] | reg_wr[OP1_MACS]; +`endif + + +// Detect whenever the RESHI and RESLO registers should be cleared +assign result_clr = op2_wr & ~acc_sel; + +// Combine RESHI & RESLO +wire [31:0] result = {reshi, reslo}; + + +// 16x16 Multiplier (result computed in 1 clock cycle) +//----------------------------------------------------- +`ifdef MPY_16x16 + +// Detect start of a multiplication +reg cycle; +always @ (posedge mclk or posedge puc_rst) + if (puc_rst) cycle <= 1'b0; + else cycle <= op2_wr; + +assign result_wr = cycle; + +// Expand the operands to support signed & unsigned operations +wire signed [16:0] op1_xp = {sign_sel & op1[15], op1}; +wire signed [16:0] op2_xp = {sign_sel & op2[15], op2}; + + +// 17x17 signed multiplication +wire signed [33:0] product = op1_xp * op2_xp; + +// Accumulate +wire [32:0] result_nxt = {1'b0, result} + {1'b0, product[31:0]}; + + +// Next register values +assign reslo_nxt = result_nxt[15:0]; +assign reshi_nxt = result_nxt[31:16]; +assign sumext_s_nxt = sign_sel ? {2{result_nxt[31]}} : + {1'b0, result_nxt[32]}; + + +// Since the MAC is completed within 1 clock cycle, +// an early read can't happen. +assign early_read = 1'b0; + + +// 16x8 Multiplier (result computed in 2 clock cycles) +//----------------------------------------------------- +`else + +// Detect start of a multiplication +reg [1:0] cycle; +always @ (posedge mclk or posedge puc_rst) + if (puc_rst) cycle <= 2'b00; + else cycle <= {cycle[0], op2_wr}; + +assign result_wr = |cycle; + + +// Expand the operands to support signed & unsigned operations +wire signed [16:0] op1_xp = {sign_sel & op1[15], op1}; +wire signed [8:0] op2_hi_xp = {sign_sel & op2[15], op2[15:8]}; +wire signed [8:0] op2_lo_xp = { 1'b0, op2[7:0]}; +wire signed [8:0] op2_xp = cycle[0] ? op2_hi_xp : op2_lo_xp; + + +// 17x9 signed multiplication +wire signed [25:0] product = op1_xp * op2_xp; + +wire [31:0] product_xp = cycle[0] ? {product[23:0], 8'h00} : + {{8{sign_sel & product[23]}}, product[23:0]}; + +// Accumulate +wire [32:0] result_nxt = {1'b0, result} + {1'b0, product_xp[31:0]}; + + +// Next register values +assign reslo_nxt = result_nxt[15:0]; +assign reshi_nxt = result_nxt[31:16]; +assign sumext_s_nxt = sign_sel ? {2{result_nxt[31]}} : + {1'b0, result_nxt[32] | sumext_s[0]}; + +// Since the MAC is completed within 2 clock cycle, +// an early read can happen during the second cycle. +assign early_read = cycle[1]; + +`endif + + +endmodule // omsp_multiplier + +`ifdef OMSP_NO_INCLUDE +`else +`include "openMSP430_undefines.v" +`endif |