aboutsummaryrefslogtreecommitdiffstats
path: root/backends/verilog/verilog_backend.cc
blob: 83d83f488090eb81e94726d14b354ae379820557 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
pre { line-height: 125%; margin: 0; }
td.linenos pre { color: #000000; background-color: #f0f0f0; padding: 0 5px 0 5px; }
span.linenos { color: #000000; background-color: #f0f0f0; padding: 0 5px 0 5px; }
td.linenos pre.special { color: #000000; background-color: #ffffc0; padding: 0 5px 0 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding: 0 5px 0 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight { background: #ffffff; }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008800 } /* Keyword.Pseudo */
.highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */
.highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */
.highlight .na { color: #336699 } /* Name.Attribute */
.highlight .nb { color: #003388 } /* Name.Builtin */
.highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */
.highlight .no { color: #003366; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555555 } /* Name.Decorator */
.highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */
.highlight .nl { color: #336699; font-style: italic } /* Name.Label */
.highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */
.highlight .py { color: #336699; font-weight: bold } /* Name.Property */
.highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #336699 } /* Name.Variable */
.highlight .ow { color: #008800 } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */
.highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */
.highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */
.highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */
.highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */
.highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */
.highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */
.highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */
.highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */
.highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */
.highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */
.highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */
.highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */
.highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */
.highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */
.highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */
.highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */
.highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */
.highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */
.highlight .vc { color: #336699 } /* Name.Variable.Class */
.highlight .vg { color: #dd7700 } /* Name.Variable.Global */
.highlight .vi { color: #3333bb } /* Name.Variable.Instance */
.highlight .vm { color: #336699 } /* Name.Variable.Magic */
.highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
/*
 * Copyright (C) 2014 Vincent Breitmoser <v.breitmoser@mugenguild.com>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

package org.sufficientlysecure.keychain.operations;

import org.junit.Assert;
import org.junit.Before;
import org.junit.BeforeClass;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.robolectric.RobolectricGradleTestRunner;
import org.robolectric.RuntimeEnvironment;
import org.robolectric.annotation.Config;
import org.robolectric.shadows.ShadowLog;
import org.spongycastle.bcpg.sig.KeyFlags;
import org.spongycastle.jce.provider.BouncyCastleProvider;
import org.sufficientlysecure.keychain.BuildConfig;
import org.sufficientlysecure.keychain.operations.results.ExportResult;
import org.sufficientlysecure.keychain.operations.results.OperationResult.OperationLog;
import org.sufficientlysecure.keychain.operations.results.PgpEditKeyResult;
import org.sufficientlysecure.keychain.pgp.PgpKeyOperation;
import org.sufficientlysecure.keychain.pgp.UncachedKeyRing;
import org.sufficientlysecure.keychain.pgp.UncachedKeyRing.IteratorWithIOThrow;
import org.sufficientlysecure.keychain.pgp.WrappedSignature;
import org.sufficientlysecure.keychain.provider.ProviderHelper;
import org.sufficientlysecure.keychain.service.SaveKeyringParcel;
import org.sufficientlysecure.keychain.service.SaveKeyringParcel.Algorithm;
import org.sufficientlysecure.keychain.service.SaveKeyringParcel.ChangeUnlockParcel;
import org.sufficientlysecure.keychain.util.Passphrase;
import org.sufficientlysecure.keychain.util.ProgressScaler;
import org.sufficientlysecure.keychain.util.TestingUtils;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.PrintStream;
import java.security.Security;
import java.util.Iterator;

@RunWith(RobolectricGradleTestRunner.class)
@Config(constants = BuildConfig.class, sdk = 21, manifest = "src/main/AndroidManifest.xml")
public class ExportTest {

    static Passphrase mPassphrase = TestingUtils.genPassphrase(true);

    static UncachedKeyRing mStaticRing1, mStaticRing2;
    static Passphrase mKeyPhrase1 = TestingUtils.genPassphrase(true);
    static Passphrase mKeyPhrase2 = TestingUtils.genPassphrase(true);

    static PrintStream oldShadowStream;

    @BeforeClass
    public static void setUpOnce() throws Exception {
        Security.insertProviderAt(new BouncyCastleProvider(), 1);
        oldShadowStream = ShadowLog.stream;
        // ShadowLog.stream = System.out;

        PgpKeyOperation op = new PgpKeyOperation(null);

        {
            SaveKeyringParcel parcel = new SaveKeyringParcel();
            parcel.mAddSubKeys.add(new SaveKeyringParcel.SubkeyAdd(
                    Algorithm.RSA, 1024, null, KeyFlags.CERTIFY_OTHER, 0L));
            parcel.mAddSubKeys.add(new SaveKeyringParcel.SubkeyAdd(
                    Algorithm.DSA, 1024, null, KeyFlags.SIGN_DATA, 0L));
            parcel.mAddSubKeys.add(new SaveKeyringParcel.SubkeyAdd(
                    Algorithm.ELGAMAL, 1024, null, KeyFlags.ENCRYPT_COMMS, 0L));
            parcel.mAddUserIds.add("snips");
            parcel.mNewUnlock = new ChangeUnlockParcel(mKeyPhrase1);

            PgpEditKeyResult result = op.createSecretKeyRing(parcel);
            Assert.assertTrue("initial test key creation must succeed", result.success());
            Assert.assertNotNull("initial test key creation must succeed", result.getRing());

            mStaticRing1 = result.getRing();
        }

        {
            SaveKeyringParcel parcel = new SaveKeyringParcel();
            parcel.mAddSubKeys.add(new SaveKeyringParcel.SubkeyAdd(
                    Algorithm.RSA, 1024, null, KeyFlags.CERTIFY_OTHER, 0L));
            parcel.mAddSubKeys.add(new SaveKeyringParcel.SubkeyAdd(
                    Algorithm.DSA, 1024, null, KeyFlags.SIGN_DATA, 0L));
            parcel.mAddSubKeys.add(new SaveKeyringParcel.SubkeyAdd(
                    Algorithm.ELGAMAL, 1024, null, KeyFlags.ENCRYPT_COMMS, 0L));
            parcel.mAddUserIds.add("snails");
            parcel.mNewUnlock = new ChangeUnlockParcel(null, new Passphrase("1234"));

            PgpEditKeyResult result = op.createSecretKeyRing(parcel);
            Assert.assertTrue("initial test key creation must succeed", result.success());
            Assert.assertNotNull("initial test key creation must succeed", result.getRing());

            mStaticRing2 = result.getRing();
        }

    }

    @Before
    public void setUp() {
        ProviderHelper providerHelper = new ProviderHelper(RuntimeEnvironment.application);

        // don't log verbosely here, we're not here to test imports
        ShadowLog.stream = oldShadowStream;

        providerHelper.saveSecretKeyRing(mStaticRing1, new ProgressScaler());
        providerHelper.saveSecretKeyRing(mStaticRing2, new ProgressScaler());

        // ok NOW log verbosely!
        ShadowLog.stream = System.out;
    }

    @Test
    public void testExportAll() throws Exception {
        ExportOperation op = new ExportOperation(RuntimeEnvironment.application,
                new ProviderHelper(RuntimeEnvironment.application), null);

        // make sure there is a local cert (so the later checks that there are none are meaningful)
        Assert.assertTrue("second keyring has local certification", checkForLocal(mStaticRing2));

        ByteArrayOutputStream out = new ByteArrayOutputStream();
        ExportResult result = op.exportKeyRings(new OperationLog(), null, false, out);

        Assert.assertTrue("export must be a success", result.success());

        long masterKeyId1, masterKeyId2;
        if (mStaticRing1.getMasterKeyId() < mStaticRing2.getMasterKeyId()) {
            masterKeyId1 = mStaticRing1.getMasterKeyId();
            masterKeyId2 = mStaticRing2.getMasterKeyId();
        } else {
            masterKeyId2 = mStaticRing1.getMasterKeyId();
            masterKeyId1 = mStaticRing2.getMasterKeyId();
        }

        IteratorWithIOThrow<UncachedKeyRing> unc =
                UncachedKeyRing.fromStream(new ByteArrayInputStream(out.toByteArray()));

        {
            Assert.assertTrue("export must have two keys (1/2)", unc.hasNext());
            UncachedKeyRing ring = unc.next();
            Assert.assertEquals("first exported key has correct masterkeyid",
                    masterKeyId1, ring.getMasterKeyId());
            Assert.assertFalse("first exported key must not be secret", ring.isSecret());
            Assert.assertFalse("there must be no local signatures in an exported keyring",
                    checkForLocal(ring));
        }

        {
            Assert.assertTrue("export must have two keys (2/2)", unc.hasNext());
            UncachedKeyRing ring = unc.next();
            Assert.assertEquals("second exported key has correct masterkeyid",
                    masterKeyId2, ring.getMasterKeyId());
            Assert.assertFalse("second exported key must not be secret", ring.isSecret());
            Assert.assertFalse("there must be no local signatures in an exported keyring",
                    checkForLocal(ring));
        }

        out = new ByteArrayOutputStream();
        result = op.exportKeyRings(new OperationLog(), null, true, out);

        Assert.assertTrue("export must be a success", result.success());

        unc = UncachedKeyRing.fromStream(new ByteArrayInputStream(out.toByteArray()));

        {
            Assert.assertTrue("export must have four keys (1/4)", unc.hasNext());
            UncachedKeyRing ring = unc.next();
            Assert.assertEquals("1/4 exported key has correct masterkeyid",
                    masterKeyId1, ring.getMasterKeyId());
            Assert.assertFalse("1/4 exported key must not be public", ring.isSecret());
            Assert.assertFalse("there must be no local signatures in an exported keyring",
                    checkForLocal(ring));

            Assert.assertTrue("export must have four keys (2/4)", unc.hasNext());
            ring = unc.next();
            Assert.assertEquals("2/4 exported key has correct masterkeyid",
                    masterKeyId1, ring.getMasterKeyId());
            Assert.assertTrue("2/4 exported key must be public", ring.isSecret());
            Assert.assertFalse("there must be no local signatures in an exported keyring",
                    checkForLocal(ring));
        }

        {
            Assert.assertTrue("export must have four keys (3/4)", unc.hasNext());
            UncachedKeyRing ring = unc.next();
            Assert.assertEquals("3/4 exported key has correct masterkeyid",
                    masterKeyId2, ring.getMasterKeyId());
            Assert.assertFalse("3/4 exported key must not be public", ring.isSecret());
            Assert.assertFalse("there must be no local signatures in an exported keyring",
                    checkForLocal(ring));

            Assert.assertTrue("export must have four keys (4/4)", unc.hasNext());
            ring = unc.next();
            Assert.assertEquals("4/4 exported key has correct masterkeyid",
                    masterKeyId2, ring.getMasterKeyId());
            Assert.assertTrue("4/4 exported key must be public", ring.isSecret());
            Assert.assertFalse("there must be no local signatures in an exported keyring",
                    checkForLocal(ring));
        }

    }

    /** This function checks whether or not there are any local signatures in a keyring. */
    private boolean checkForLocal(UncachedKeyRing ring) {
        Iterator<WrappedSignature> sigs = ring.getPublicKey().getSignatures();
        while (sigs.hasNext()) {
            if (sigs.next().isLocal()) {
                return true;
            }
        }
        return false;
    }

}
58 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2012  Clifford Wolf <clifford@clifford.at>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 *  ---
 *
 *  A simple and straightforward Verilog backend.
 *
 */

#include "kernel/register.h"
#include "kernel/celltypes.h"
#include "kernel/log.h"
#include "kernel/sigtools.h"
#include <string>
#include <sstream>
#include <set>
#include <map>

USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN

bool verbose, norename, noattr, attr2comment, noexpr, nodec, nohex, nostr, defparam, decimal, siminit;
int auto_name_counter, auto_name_offset, auto_name_digits;
std::map<RTLIL::IdString, int> auto_name_map;
std::set<RTLIL::IdString> reg_wires, reg_ct;
std::string auto_prefix;

RTLIL::Module *active_module;
dict<RTLIL::SigBit, RTLIL::State> active_initdata;
SigMap active_sigmap;

void reset_auto_counter_id(RTLIL::IdString id, bool may_rename)
{
	const char *str = id.c_str();

	if (*str == '$' && may_rename && !norename)
		auto_name_map[id] = auto_name_counter++;

	if (str[0] != '\\' || str[1] != '_' || str[2] == 0)
		return;

	for (int i = 2; str[i] != 0; i++) {
		if (str[i] == '_' && str[i+1] == 0)
			continue;
		if (str[i] < '0' || str[i] > '9')
			return;
	}

	int num = atoi(str+2);
	if (num >= auto_name_offset)
		auto_name_offset = num + 1;
}

void reset_auto_counter(RTLIL::Module *module)
{
	auto_name_map.clear();
	auto_name_counter = 0;
	auto_name_offset = 0;

	reset_auto_counter_id(module->name, false);

	for (auto it = module->wires_.begin(); it != module->wires_.end(); ++it)
		reset_auto_counter_id(it->second->name, true);

	for (auto it = module->cells_.begin(); it != module->cells_.end(); ++it) {
		reset_auto_counter_id(it->second->name, true);
		reset_auto_counter_id(it->second->type, false);
	}

	for (auto it = module->processes.begin(); it != module->processes.end(); ++it)
		reset_auto_counter_id(it->second->name, false);

	auto_name_digits = 1;
	for (size_t i = 10; i < auto_name_offset + auto_name_map.size(); i = i*10)
		auto_name_digits++;

	if (verbose)
		for (auto it = auto_name_map.begin(); it != auto_name_map.end(); ++it)
			log("  renaming `%s' to `%s_%0*d_'.\n", it->first.c_str(), auto_prefix.c_str(), auto_name_digits, auto_name_offset + it->second);
}

std::string next_auto_id()
{
	return stringf("%s_%0*d_", auto_prefix.c_str(), auto_name_digits, auto_name_offset + auto_name_counter++);
}

std::string id(RTLIL::IdString internal_id, bool may_rename = true)
{
	const char *str = internal_id.c_str();
	bool do_escape = false;

	if (may_rename && auto_name_map.count(internal_id) != 0)
		return stringf("%s_%0*d_", auto_prefix.c_str(), auto_name_digits, auto_name_offset + auto_name_map[internal_id]);

	if (*str == '\\')
		str++;

	if ('0' <= *str && *str <= '9')
		do_escape = true;

	for (int i = 0; str[i]; i++)
	{
		if ('0' <= str[i] && str[i] <= '9')
			continue;
		if ('a' <= str[i] && str[i] <= 'z')
			continue;
		if ('A' <= str[i] && str[i] <= 'Z')
			continue;
		if (str[i] == '_')
			continue;
		do_escape = true;
		break;
	}

	const pool<string> keywords = {
		// IEEE 1800-2017 Annex B
		"accept_on", "alias", "always", "always_comb", "always_ff", "always_latch", "and", "assert", "assign", "assume", "automatic", "before",
		"begin", "bind", "bins", "binsof", "bit", "break", "buf", "bufif0", "bufif1", "byte", "case", "casex", "casez", "cell", "chandle",
		"checker", "class", "clocking", "cmos", "config", "const", "constraint", "context", "continue", "cover", "covergroup", "coverpoint",
		"cross", "deassign", "default", "defparam", "design", "disable", "dist", "do", "edge", "else", "end", "endcase", "endchecker",
		"endclass", "endclocking", "endconfig", "endfunction", "endgenerate", "endgroup", "endinterface", "endmodule", "endpackage",
		"endprimitive", "endprogram", "endproperty", "endsequence", "endspecify", "endtable", "endtask", "enum", "event", "eventually",
		"expect", "export", "extends", "extern", "final", "first_match", "for", "force", "foreach", "forever", "fork", "forkjoin", "function",
		"generate", "genvar", "global", "highz0", "highz1", "if", "iff", "ifnone", "ignore_bins", "illegal_bins", "implements", "implies",
		"import", "incdir", "include", "initial", "inout", "input", "inside", "instance", "int", "integer", "interconnect", "interface",
		"intersect", "join", "join_any", "join_none", "large", "let", "liblist", "library", "local", "localparam", "logic", "longint",
		"macromodule", "matches", "medium", "modport", "module", "nand", "negedge", "nettype", "new", "nexttime", "nmos", "nor",
		"noshowcancelled", "not", "notif0", "notif1", "null", "or", "output", "package", "packed", "parameter", "pmos", "posedge", "primitive",
		"priority", "program", "property", "protected", "pull0", "pull1", "pulldown", "pullup", "pulsestyle_ondetect", "pulsestyle_onevent",
		"pure", "rand", "randc", "randcase", "randsequence", "rcmos", "real", "realtime", "ref", "reg", "reject_on", "release", "repeat",
		"restrict", "return", "rnmos", "rpmos", "rtran", "rtranif0", "rtranif1", "s_always", "s_eventually", "s_nexttime", "s_until",
		"s_until_with", "scalared", "sequence", "shortint", "shortreal", "showcancelled", "signed", "small", "soft", "solve", "specify",
		"specparam", "static", "string", "strong", "strong0", "strong1", "struct", "super", "supply0", "supply1", "sync_accept_on",
		"sync_reject_on", "table", "tagged", "task", "this", "throughout", "time", "timeprecision", "timeunit", "tran", "tranif0", "tranif1",
		"tri", "tri0", "tri1", "triand", "trior", "trireg", "type", "typedef", "union", "unique", "unique0", "unsigned", "until", "until_with",
		"untyped", "use", "uwire", "var", "vectored", "virtual", "void", "wait", "wait_order", "wand", "weak", "weak0", "weak1", "while",
		"wildcard", "wire", "with", "within", "wor", "xnor", "xor",
	};
	if (keywords.count(str))
		do_escape = true;

	if (do_escape)
		return "\\" + std::string(str) + " ";
	return std::string(str);
}

bool is_reg_wire(RTLIL::SigSpec sig, std::string &reg_name)
{
	if (!sig.is_chunk() || sig.as_chunk().wire == NULL)
		return false;

	RTLIL::SigChunk chunk = sig.as_chunk();

	if (reg_wires.count(chunk.wire->name) == 0)
		return false;

	reg_name = id(chunk.wire->name);
	if (sig.size() != chunk.wire->width) {
		if (sig.size() == 1)
			reg_name += stringf("[%d]", chunk.wire->start_offset +  chunk.offset);
		else if (chunk.wire->upto)
			reg_name += stringf("[%d:%d]", (chunk.wire->width - (chunk.offset + chunk.width - 1) - 1) + chunk.wire->start_offset,
					(chunk.wire->width - chunk.offset - 1) + chunk.wire->start_offset);
		else
			reg_name += stringf("[%d:%d]", chunk.wire->start_offset +  chunk.offset + chunk.width - 1,
					chunk.wire->start_offset +  chunk.offset);
	}

	return true;
}

void dump_const(std::ostream &f, const RTLIL::Const &data, int width = -1, int offset = 0, bool no_decimal = false, bool set_signed = false, bool escape_comment = false)
{
	if (width < 0)
		width = data.bits.size() - offset;
	if (nostr)
		goto dump_hex;
	if ((data.flags & RTLIL::CONST_FLAG_STRING) == 0 || width != (int)data.bits.size()) {
		if (width == 32 && !no_decimal && !nodec) {
			int32_t val = 0;
			for (int i = offset+width-1; i >= offset; i--) {
				log_assert(i < (int)data.bits.size());
				if (data.bits[i] != RTLIL::S0 && data.bits[i] != RTLIL::S1)
					goto dump_hex;
				if (data.bits[i] == RTLIL::S1)
					val |= 1 << (i - offset);
			}
			if (decimal)
				f << stringf("%d", val);
			else if (set_signed && val < 0)
				f << stringf("-32'sd%u", -val);
			else
				f << stringf("32'%sd%u", set_signed ? "s" : "", val);
		} else {
	dump_hex:
			if (nohex)
				goto dump_bin;
			vector<char> bin_digits, hex_digits;
			for (int i = offset; i < offset+width; i++) {
				log_assert(i < (int)data.bits.size());
				switch (data.bits[i]) {
				case RTLIL::S0: bin_digits.push_back('0'); break;
				case RTLIL::S1: bin_digits.push_back('1'); break;
				case RTLIL::Sx: bin_digits.push_back('x'); break;
				case RTLIL::Sz: bin_digits.push_back('z'); break;
				case RTLIL::Sa: bin_digits.push_back('z'); break;
				case RTLIL::Sm: log_error("Found marker state in final netlist.");
				}
			}
			if (GetSize(bin_digits) == 0)
				goto dump_bin;
			while (GetSize(bin_digits) % 4 != 0)
				if (bin_digits.back() == '1')
					bin_digits.push_back('0');
				else
					bin_digits.push_back(bin_digits.back());
			for (int i = 0; i < GetSize(bin_digits); i += 4)
			{
				char bit_3 = bin_digits[i+3];
				char bit_2 = bin_digits[i+2];
				char bit_1 = bin_digits[i+1];
				char bit_0 = bin_digits[i+0];
				if (bit_3 == 'x' || bit_2 == 'x' || bit_1 == 'x' || bit_0 == 'x') {
					if (bit_3 != 'x' || bit_2 != 'x' || bit_1 != 'x' || bit_0 != 'x')
						goto dump_bin;
					hex_digits.push_back('x');
					continue;
				}
				if (bit_3 == 'z' || bit_2 == 'z' || bit_1 == 'z' || bit_0 == 'z') {
					if (bit_3 != 'z' || bit_2 != 'z' || bit_1 != 'z' || bit_0 != 'z')
						goto dump_bin;
					hex_digits.push_back('z');
					continue;
				}
				int val = 8*(bit_3 - '0') + 4*(bit_2 - '0') + 2*(bit_1 - '0') + (bit_0 - '0');
				hex_digits.push_back(val < 10 ? '0' + val : 'a' + val - 10);
			}
			f << stringf("%d'%sh", width, set_signed ? "s" : "");
			for (int i = GetSize(hex_digits)-1; i >= 0; i--)
				f << hex_digits[i];
		}
		if (0) {
	dump_bin:
			f << stringf("%d'%sb", width, set_signed ? "s" : "");
			if (width == 0)
				f << stringf("0");
			for (int i = offset+width-1; i >= offset; i--) {
				log_assert(i < (int)data.bits.size());
				switch (data.bits[i]) {
				case RTLIL::S0: f << stringf("0"); break;
				case RTLIL::S1: f << stringf("1"); break;
				case RTLIL::Sx: f << stringf("x"); break;
				case RTLIL::Sz: f << stringf("z"); break;
				case RTLIL::Sa: f << stringf("z"); break;
				case RTLIL::Sm: log_error("Found marker state in final netlist.");
				}
			}
		}
	} else {
		f << stringf("\"");
		std::string str = data.decode_string();
		for (size_t i = 0; i < str.size(); i++) {
			if (str[i] == '\n')
				f << stringf("\\n");
			else if (str[i] == '\t')
				f << stringf("\\t");
			else if (str[i] < 32)
				f << stringf("\\%03o", str[i]);
			else if (str[i] == '"')
				f << stringf("\\\"");
			else if (str[i] == '\\')
				f << stringf("\\\\");
			else if (str[i] == '/' && escape_comment && i > 0 && str[i-1] == '*')
				f << stringf("\\/");
			else
				f << str[i];
		}
		f << stringf("\"");
	}
}

void dump_reg_init(std::ostream &f, SigSpec sig)
{
	Const initval;
	bool gotinit = false;

	for (auto bit : active_sigmap(sig)) {
		if (active_initdata.count(bit)) {
			initval.bits.push_back(active_initdata.at(bit));
			gotinit = true;
		} else {
			initval.bits.push_back(State::Sx);
		}
	}

	if (gotinit) {
		f << " = ";
		dump_const(f, initval);
	}
}

void dump_sigchunk(std::ostream &f, const RTLIL::SigChunk &chunk, bool no_decimal = false)
{
	if (chunk.wire == NULL) {
		dump_const(f, chunk.data, chunk.width, chunk.offset, no_decimal);
	} else {
		if (chunk.width == chunk.wire->width && chunk.offset == 0) {
			f << stringf("%s", id(chunk.wire->name).c_str());
		} else if (chunk.width == 1) {
			if (chunk.wire->upto)
				f << stringf("%s[%d]", id(chunk.wire->name).c_str(), (chunk.wire->width - chunk.offset - 1) + chunk.wire->start_offset);
			else
				f << stringf("%s[%d]", id(chunk.wire->name).c_str(), chunk.offset + chunk.wire->start_offset);
		} else {
			if (chunk.wire->upto)
				f << stringf("%s[%d:%d]", id(chunk.wire->name).c_str(),
						(chunk.wire->width - (chunk.offset + chunk.width - 1) - 1) + chunk.wire->start_offset,
						(chunk.wire->width - chunk.offset - 1) + chunk.wire->start_offset);
			else
				f << stringf("%s[%d:%d]", id(chunk.wire->name).c_str(),
						(chunk.offset + chunk.width - 1) + chunk.wire->start_offset,
						chunk.offset + chunk.wire->start_offset);
		}
	}
}

void dump_sigspec(std::ostream &f, const RTLIL::SigSpec &sig)
{
	if (sig.is_chunk()) {
		dump_sigchunk(f, sig.as_chunk());
	} else {
		f << stringf("{ ");
		for (auto it = sig.chunks().rbegin(); it != sig.chunks().rend(); ++it) {
			if (it != sig.chunks().rbegin())
				f << stringf(", ");
			dump_sigchunk(f, *it, true);
		}
		f << stringf(" }");
	}
}

void dump_attributes(std::ostream &f, std::string indent, dict<RTLIL::IdString, RTLIL::Const> &attributes, char term = '\n', bool modattr = false)
{
	if (noattr)
		return;
	for (auto it = attributes.begin(); it != attributes.end(); ++it) {
		f << stringf("%s" "%s %s", indent.c_str(), attr2comment ? "/*" : "(*", id(it->first).c_str());
		f << stringf(" = ");
		if (modattr && (it->second == Const(0, 1) || it->second == Const(0)))
			f << stringf(" 0 ");
		else if (modattr && (it->second == Const(1, 1) || it->second == Const(1)))
			f << stringf(" 1 ");
		else
			dump_const(f, it->second, -1, 0, false, false, attr2comment);
		f << stringf(" %s%c", attr2comment ? "*/" : "*)", term);
	}
}

void dump_wire(std::ostream &f, std::string indent, RTLIL::Wire *wire)
{
	dump_attributes(f, indent, wire->attributes);
#if 0
	if (wire->port_input && !wire->port_output)
		f << stringf("%s" "input %s", indent.c_str(), reg_wires.count(wire->name) ? "reg " : "");
	else if (!wire->port_input && wire->port_output)
		f << stringf("%s" "output %s", indent.c_str(), reg_wires.count(wire->name) ? "reg " : "");
	else if (wire->port_input && wire->port_output)
		f << stringf("%s" "inout %s", indent.c_str(), reg_wires.count(wire->name) ? "reg " : "");
	else
		f << stringf("%s" "%s ", indent.c_str(), reg_wires.count(wire->name) ? "reg" : "wire");
	if (wire->width != 1)
		f << stringf("[%d:%d] ", wire->width - 1 + wire->start_offset, wire->start_offset);
	f << stringf("%s;\n", id(wire->name).c_str());
#else
	// do not use Verilog-2k "output reg" syntax in Verilog export
	std::string range = "";
	if (wire->width != 1) {
		if (wire->upto)
			range = stringf(" [%d:%d]", wire->start_offset, wire->width - 1 + wire->start_offset);
		else
			range = stringf(" [%d:%d]", wire->width - 1 + wire->start_offset, wire->start_offset);
	}
	if (wire->port_input && !wire->port_output)
		f << stringf("%s" "input%s %s;\n", indent.c_str(), range.c_str(), id(wire->name).c_str());
	if (!wire->port_input && wire->port_output)
		f << stringf("%s" "output%s %s;\n", indent.c_str(), range.c_str(), id(wire->name).c_str());
	if (wire->port_input && wire->port_output)
		f << stringf("%s" "inout%s %s;\n", indent.c_str(), range.c_str(), id(wire->name).c_str());
	if (reg_wires.count(wire->name)) {
		f << stringf("%s" "reg%s %s", indent.c_str(), range.c_str(), id(wire->name).c_str());
		if (wire->attributes.count("\\init")) {
			f << stringf(" = ");
			dump_const(f, wire->attributes.at("\\init"));
		}
		f << stringf(";\n");
	} else if (!wire->port_input && !wire->port_output)
		f << stringf("%s" "wire%s %s;\n", indent.c_str(), range.c_str(), id(wire->name).c_str());
#endif
}

void dump_memory(std::ostream &f, std::string indent, RTLIL::Memory *memory)
{
	dump_attributes(f, indent, memory->attributes);
	f << stringf("%s" "reg [%d:0] %s [%d:%d];\n", indent.c_str(), memory->width-1, id(memory->name).c_str(), memory->size+memory->start_offset-1, memory->start_offset);
}

void dump_cell_expr_port(std::ostream &f, RTLIL::Cell *cell, std::string port, bool gen_signed = true)
{
	if (gen_signed && cell->parameters.count("\\" + port + "_SIGNED") > 0 && cell->parameters["\\" + port + "_SIGNED"].as_bool()) {
		f << stringf("$signed(");
		dump_sigspec(f, cell->getPort("\\" + port));
		f << stringf(")");
	} else
		dump_sigspec(f, cell->getPort("\\" + port));
}

std::string cellname(RTLIL::Cell *cell)
{
	if (!norename && cell->name[0] == '$' && reg_ct.count(cell->type) && cell->hasPort("\\Q"))
	{
		RTLIL::SigSpec sig = cell->getPort("\\Q");
		if (GetSize(sig) != 1 || sig.is_fully_const())
			goto no_special_reg_name;

		RTLIL::Wire *wire = sig[0].wire;

		if (wire->name[0] != '\\')
			goto no_special_reg_name;

		std::string cell_name = wire->name.str();

		size_t pos = cell_name.find('[');
		if (pos != std::string::npos)
			cell_name = cell_name.substr(0, pos) + "_reg" + cell_name.substr(pos);
		else
			cell_name = cell_name + "_reg";

		if (wire->width != 1)
			cell_name += stringf("[%d]", wire->start_offset + sig[0].offset);

		if (active_module && active_module->count_id(cell_name) > 0)
				goto no_special_reg_name;

		return id(cell_name);
	}
	else
	{
no_special_reg_name:
		return id(cell->name).c_str();
	}
}

void dump_cell_expr_uniop(std::ostream &f, std::string indent, RTLIL::Cell *cell, std::string op)
{
	f << stringf("%s" "assign ", indent.c_str());
	dump_sigspec(f, cell->getPort("\\Y"));
	f << stringf(" = %s ", op.c_str());
	dump_attributes(f, "", cell->attributes, ' ');
	dump_cell_expr_port(f, cell, "A", true);
	f << stringf(";\n");
}

void dump_cell_expr_binop(std::ostream &f, std::string indent, RTLIL::Cell *cell, std::string op)
{
	f << stringf("%s" "assign ", indent.c_str());
	dump_sigspec(f, cell->getPort("\\Y"));
	f << stringf(" = ");
	dump_cell_expr_port(f, cell, "A", true);
	f << stringf(" %s ", op.c_str());
	dump_attributes(f, "", cell->attributes, ' ');
	dump_cell_expr_port(f, cell, "B", true);
	f << stringf(";\n");
}

bool dump_cell_expr(std::ostream &f, std::string indent, RTLIL::Cell *cell)
{
	if (cell->type == "$_NOT_") {
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort("\\Y"));
		f << stringf(" = ");
		f << stringf("~");
		dump_attributes(f, "", cell->attributes, ' ');
		dump_cell_expr_port(f, cell, "A", false);
		f << stringf(";\n");
		return true;
	}

	if (cell->type.in("$_AND_", "$_NAND_", "$_OR_", "$_NOR_", "$_XOR_", "$_XNOR_", "$_ANDNOT_", "$_ORNOT_")) {
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort("\\Y"));
		f << stringf(" = ");
		if (cell->type.in("$_NAND_", "$_NOR_", "$_XNOR_"))
			f << stringf("~(");
		dump_cell_expr_port(f, cell, "A", false);
		f << stringf(" ");
		if (cell->type.in("$_AND_", "$_NAND_", "$_ANDNOT_"))
			f << stringf("&");
		if (cell->type.in("$_OR_", "$_NOR_", "$_ORNOT_"))
			f << stringf("|");
		if (cell->type.in("$_XOR_", "$_XNOR_"))
			f << stringf("^");
		dump_attributes(f, "", cell->attributes, ' ');
		f << stringf(" ");
		if (cell->type.in("$_ANDNOT_", "$_ORNOT_"))
			f << stringf("~(");
		dump_cell_expr_port(f, cell, "B", false);
		if (cell->type.in("$_NAND_", "$_NOR_", "$_XNOR_", "$_ANDNOT_", "$_ORNOT_"))
			f << stringf(")");
		f << stringf(";\n");
		return true;
	}

	if (cell->type == "$_MUX_") {
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort("\\Y"));
		f << stringf(" = ");
		dump_cell_expr_port(f, cell, "S", false);
		f << stringf(" ? ");
		dump_attributes(f, "", cell->attributes, ' ');
		dump_cell_expr_port(f, cell, "B", false);
		f << stringf(" : ");
		dump_cell_expr_port(f, cell, "A", false);
		f << stringf(";\n");
		return true;
	}

	if (cell->type.in("$_AOI3_", "$_OAI3_")) {
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort("\\Y"));
		f << stringf(" = ~((");
		dump_cell_expr_port(f, cell, "A", false);
		f << stringf(cell->type == "$_AOI3_" ? " & " : " | ");
		dump_cell_expr_port(f, cell, "B", false);
		f << stringf(cell->type == "$_AOI3_" ? ") |" : ") &");
		dump_attributes(f, "", cell->attributes, ' ');
		f << stringf(" ");
		dump_cell_expr_port(f, cell, "C", false);
		f << stringf(");\n");
		return true;
	}

	if (cell->type.in("$_AOI4_", "$_OAI4_")) {
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort("\\Y"));
		f << stringf(" = ~((");
		dump_cell_expr_port(f, cell, "A", false);
		f << stringf(cell->type == "$_AOI4_" ? " & " : " | ");
		dump_cell_expr_port(f, cell, "B", false);
		f << stringf(cell->type == "$_AOI4_" ? ") |" : ") &");
		dump_attributes(f, "", cell->attributes, ' ');
		f << stringf(" (");
		dump_cell_expr_port(f, cell, "C", false);
		f << stringf(cell->type == "$_AOI4_" ? " & " : " | ");
		dump_cell_expr_port(f, cell, "D", false);
		f << stringf("));\n");
		return true;
	}

	if (cell->type.substr(0, 6) == "$_DFF_")
	{
		std::string reg_name = cellname(cell);
		bool out_is_reg_wire = is_reg_wire(cell->getPort("\\Q"), reg_name);

		if (!out_is_reg_wire) {
			f << stringf("%s" "reg %s", indent.c_str(), reg_name.c_str());
			dump_reg_init(f, cell->getPort("\\Q"));
			f << ";\n";
		}

		dump_attributes(f, indent, cell->attributes);
		f << stringf("%s" "always @(%sedge ", indent.c_str(), cell->type[6] == 'P' ? "pos" : "neg");
		dump_sigspec(f, cell->getPort("\\C"));
		if (cell->type[7] != '_') {
			f << stringf(" or %sedge ", cell->type[7] == 'P' ? "pos" : "neg");
			dump_sigspec(f, cell->getPort("\\R"));
		}
		f << stringf(")\n");

		if (cell->type[7] != '_') {
			f << stringf("%s" "  if (%s", indent.c_str(), cell->type[7] == 'P' ? "" : "!");
			dump_sigspec(f, cell->getPort("\\R"));
			f << stringf(")\n");
			f << stringf("%s" "    %s <= %c;\n", indent.c_str(), reg_name.c_str(), cell->type[8]);
			f << stringf("%s" "  else\n", indent.c_str());
		}

		f << stringf("%s" "    %s <= ", indent.c_str(), reg_name.c_str());
		dump_cell_expr_port(f, cell, "D", false);
		f << stringf(";\n");

		if (!out_is_reg_wire) {
			f << stringf("%s" "assign ", indent.c_str());
			dump_sigspec(f, cell->getPort("\\Q"));
			f << stringf(" = %s;\n", reg_name.c_str());
		}

		return true;
	}

	if (cell->type.substr(0, 8) == "$_DFFSR_")
	{
		char pol_c = cell->type[8], pol_s = cell->type[9], pol_r = cell->type[10];

		std::string reg_name = cellname(cell);
		bool out_is_reg_wire = is_reg_wire(cell->getPort("\\Q"), reg_name);

		if (!out_is_reg_wire) {
			f << stringf("%s" "reg %s", indent.c_str(), reg_name.c_str());
			dump_reg_init(f, cell->getPort("\\Q"));
			f << ";\n";
		}

		dump_attributes(f, indent, cell->attributes);
		f << stringf("%s" "always @(%sedge ", indent.c_str(), pol_c == 'P' ? "pos" : "neg");
		dump_sigspec(f, cell->getPort("\\C"));
		f << stringf(" or %sedge ", pol_s == 'P' ? "pos" : "neg");
		dump_sigspec(f, cell->getPort("\\S"));
		f << stringf(" or %sedge ", pol_r == 'P' ? "pos" : "neg");
		dump_sigspec(f, cell->getPort("\\R"));
		f << stringf(")\n");

		f << stringf("%s" "  if (%s", indent.c_str(), pol_r == 'P' ? "" : "!");
		dump_sigspec(f, cell->getPort("\\R"));
		f << stringf(")\n");
		f << stringf("%s" "    %s <= 0;\n", indent.c_str(), reg_name.c_str());

		f << stringf("%s" "  else if (%s", indent.c_str(), pol_s == 'P' ? "" : "!");
		dump_sigspec(f, cell->getPort("\\S"));
		f << stringf(")\n");
		f << stringf("%s" "    %s <= 1;\n", indent.c_str(), reg_name.c_str());

		f << stringf("%s" "  else\n", indent.c_str());
		f << stringf("%s" "    %s <= ", indent.c_str(), reg_name.c_str());
		dump_cell_expr_port(f, cell, "D", false);
		f << stringf(";\n");

		if (!out_is_reg_wire) {
			f << stringf("%s" "assign ", indent.c_str());
			dump_sigspec(f, cell->getPort("\\Q"));
			f << stringf(" = %s;\n", reg_name.c_str());
		}

		return true;
	}

#define HANDLE_UNIOP(_type, _operator) \
	if (cell->type ==_type) { dump_cell_expr_uniop(f, indent, cell, _operator); return true; }
#define HANDLE_BINOP(_type, _operator) \
	if (cell->type ==_type) { dump_cell_expr_binop(f, indent, cell, _operator); return true; }

	HANDLE_UNIOP("$not", "~")
	HANDLE_UNIOP("$pos", "+")
	HANDLE_UNIOP("$neg", "-")

	HANDLE_BINOP("$and",  "&")
	HANDLE_BINOP("$or",   "|")
	HANDLE_BINOP("$xor",  "^")
	HANDLE_BINOP("$xnor", "~^")

	HANDLE_UNIOP("$reduce_and",  "&")
	HANDLE_UNIOP("$reduce_or",   "|")
	HANDLE_UNIOP("$reduce_xor",  "^")
	HANDLE_UNIOP("$reduce_xnor", "~^")
	HANDLE_UNIOP("$reduce_bool", "|")

	HANDLE_BINOP("$shl",  "<<")
	HANDLE_BINOP("$shr",  ">>")
	HANDLE_BINOP("$sshl", "<<<")
	HANDLE_BINOP("$sshr", ">>>")

	HANDLE_BINOP("$lt",  "<")
	HANDLE_BINOP("$le",  "<=")
	HANDLE_BINOP("$eq",  "==")
	HANDLE_BINOP("$ne",  "!=")
	HANDLE_BINOP("$eqx", "===")
	HANDLE_BINOP("$nex", "!==")
	HANDLE_BINOP("$ge",  ">=")
	HANDLE_BINOP("$gt",  ">")

	HANDLE_BINOP("$add", "+")
	HANDLE_BINOP("$sub", "-")
	HANDLE_BINOP("$mul", "*")
	HANDLE_BINOP("$div", "/")
	HANDLE_BINOP("$mod", "%")
	HANDLE_BINOP("$pow", "**")

	HANDLE_UNIOP("$logic_not", "!")
	HANDLE_BINOP("$logic_and", "&&")
	HANDLE_BINOP("$logic_or",  "||")

#undef HANDLE_UNIOP
#undef HANDLE_BINOP

	if (cell->type == "$shift")
	{
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort("\\Y"));
		f << stringf(" = ");
		if (cell->getParam("\\B_SIGNED").as_bool())
		{
			f << stringf("$signed(");
			dump_sigspec(f, cell->getPort("\\B"));
			f << stringf(")");
			f << stringf(" < 0 ? ");
			dump_sigspec(f, cell->getPort("\\A"));
			f << stringf(" << - ");
			dump_sigspec(f, cell->getPort("\\B"));
			f << stringf(" : ");
			dump_sigspec(f, cell->getPort("\\A"));
			f << stringf(" >> ");
			dump_sigspec(f, cell->getPort("\\B"));
		}
		else
		{
			dump_sigspec(f, cell->getPort("\\A"));
			f << stringf(" >> ");
			dump_sigspec(f, cell->getPort("\\B"));
		}
		f << stringf(";\n");
		return true;
	}

	if (cell->type == "$shiftx")
	{
		std::string temp_id = next_auto_id();
		f << stringf("%s" "wire [%d:0] %s = ", indent.c_str(), GetSize(cell->getPort("\\A"))-1, temp_id.c_str());
		dump_sigspec(f, cell->getPort("\\A"));
		f << stringf(";\n");

		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort("\\Y"));
		f << stringf(" = %s[", temp_id.c_str());
		if (cell->getParam("\\B_SIGNED").as_bool())
			f << stringf("$signed(");
		dump_sigspec(f, cell->getPort("\\B"));
		if (cell->getParam("\\B_SIGNED").as_bool())
			f << stringf(")");
		f << stringf(" +: %d", cell->getParam("\\Y_WIDTH").as_int());
		f << stringf("];\n");
		return true;
	}

	if (cell->type == "$mux")
	{
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort("\\Y"));
		f << stringf(" = ");
		dump_sigspec(f, cell->getPort("\\S"));
		f << stringf(" ? ");
		dump_attributes(f, "", cell->attributes, ' ');
		dump_sigspec(f, cell->getPort("\\B"));
		f << stringf(" : ");
		dump_sigspec(f, cell->getPort("\\A"));
		f << stringf(";\n");
		return true;
	}

	if (cell->type == "$pmux" || cell->type == "$pmux_safe")
	{
		int width = cell->parameters["\\WIDTH"].as_int();
		int s_width = cell->getPort("\\S").size();
		std::string func_name = cellname(cell);

		f << stringf("%s" "function [%d:0] %s;\n", indent.c_str(), width-1, func_name.c_str());
		f << stringf("%s" "  input [%d:0] a;\n", indent.c_str(), width-1);
		f << stringf("%s" "  input [%d:0] b;\n", indent.c_str(), s_width*width-1);
		f << stringf("%s" "  input [%d:0] s;\n", indent.c_str(), s_width-1);

		dump_attributes(f, indent + "  ", cell->attributes);
		if (cell->type != "$pmux_safe" && !noattr)
			f << stringf("%s" "  (* parallel_case *)\n", indent.c_str());
		f << stringf("%s" "  casez (s)", indent.c_str());
		if (cell->type != "$pmux_safe")
			f << stringf(noattr ? " // synopsys parallel_case\n" : "\n");

		for (int i = 0; i < s_width; i++)
		{
			f << stringf("%s" "    %d'b", indent.c_str(), s_width);

			for (int j = s_width-1; j >= 0; j--)
				f << stringf("%c", j == i ? '1' : cell->type == "$pmux_safe" ? '0' : '?');

			f << stringf(":\n");
			f << stringf("%s" "      %s = b[%d:%d];\n", indent.c_str(), func_name.c_str(), (i+1)*width-1, i*width);
		}

		f << stringf("%s" "    default:\n", indent.c_str());
		f << stringf("%s" "      %s = a;\n", indent.c_str(), func_name.c_str());

		f << stringf("%s" "  endcase\n", indent.c_str());
		f << stringf("%s" "endfunction\n", indent.c_str());

		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort("\\Y"));
		f << stringf(" = %s(", func_name.c_str());
		dump_sigspec(f, cell->getPort("\\A"));
		f << stringf(", ");
		dump_sigspec(f, cell->getPort("\\B"));
		f << stringf(", ");
		dump_sigspec(f, cell->getPort("\\S"));
		f << stringf(");\n");
		return true;
	}

	if (cell->type == "$tribuf")
	{
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort("\\Y"));
		f << stringf(" = ");
		dump_sigspec(f, cell->getPort("\\EN"));
		f << stringf(" ? ");
		dump_sigspec(f, cell->getPort("\\A"));
		f << stringf(" : %d'bz;\n", cell->parameters.at("\\WIDTH").as_int());
		return true;
	}

	if (cell->type == "$slice")
	{
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort("\\Y"));
		f << stringf(" = ");
		dump_sigspec(f, cell->getPort("\\A"));
		f << stringf(" >> %d;\n", cell->parameters.at("\\OFFSET").as_int());
		return true;
	}

	if (cell->type == "$concat")
	{
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort("\\Y"));
		f << stringf(" = { ");
		dump_sigspec(f, cell->getPort("\\B"));
		f << stringf(" , ");
		dump_sigspec(f, cell->getPort("\\A"));
		f << stringf(" };\n");
		return true;
	}

	if (cell->type == "$lut")
	{
		f << stringf("%s" "assign ", indent.c_str());
		dump_sigspec(f, cell->getPort("\\Y"));
		f << stringf(" = ");
		dump_const(f, cell->parameters.at("\\LUT"));
		f << stringf(" >> ");
		dump_attributes(f, "", cell->attributes, ' ');
		dump_sigspec(f, cell->getPort("\\A"));
		f << stringf(";\n");
		return true;
	}

	if (cell->type == "$dffsr")
	{
		SigSpec sig_clk = cell->getPort("\\CLK");
		SigSpec sig_set = cell->getPort("\\SET");
		SigSpec sig_clr = cell->getPort("\\CLR");
		SigSpec sig_d = cell->getPort("\\D");
		SigSpec sig_q = cell->getPort("\\Q");

		int width = cell->parameters["\\WIDTH"].as_int();
		bool pol_clk = cell->parameters["\\CLK_POLARITY"].as_bool();
		bool pol_set = cell->parameters["\\SET_POLARITY"].as_bool();
		bool pol_clr = cell->parameters["\\CLR_POLARITY"].as_bool();

		std::string reg_name = cellname(cell);
		bool out_is_reg_wire = is_reg_wire(sig_q, reg_name);

		if (!out_is_reg_wire) {
			f << stringf("%s" "reg [%d:0] %s", indent.c_str(), width-1, reg_name.c_str());
			dump_reg_init(f, sig_q);
			f << ";\n";
		}

		for (int i = 0; i < width; i++) {
			f << stringf("%s" "always @(%sedge ", indent.c_str(), pol_clk ? "pos" : "neg");
			dump_sigspec(f, sig_clk);
			f << stringf(", %sedge ", pol_set ? "pos" : "neg");
			dump_sigspec(f, sig_set);
			f << stringf(", %sedge ", pol_clr ? "pos" : "neg");
			dump_sigspec(f, sig_clr);
			f << stringf(")\n");

			f << stringf("%s" "  if (%s", indent.c_str(), pol_clr ? "" : "!");
			dump_sigspec(f, sig_clr);
			f << stringf(") %s[%d] <= 1'b0;\n", reg_name.c_str(), i);

			f << stringf("%s" "  else if (%s", indent.c_str(), pol_set ? "" : "!");
			dump_sigspec(f, sig_set);
			f << stringf(") %s[%d] <= 1'b1;\n", reg_name.c_str(), i);

			f << stringf("%s" "  else  %s[%d] <= ", indent.c_str(), reg_name.c_str(), i);
			dump_sigspec(f, sig_d[i]);
			f << stringf(";\n");
		}

		if (!out_is_reg_wire) {
			f << stringf("%s" "assign ", indent.c_str());
			dump_sigspec(f, sig_q);
			f << stringf(" = %s;\n", reg_name.c_str());
		}

		return true;
	}

	if (cell->type == "$dff" || cell->type == "$adff" || cell->type == "$dffe")
	{
		RTLIL::SigSpec sig_clk, sig_arst, sig_en, val_arst;
		bool pol_clk, pol_arst = false, pol_en = false;

		sig_clk = cell->getPort("\\CLK");
		pol_clk = cell->parameters["\\CLK_POLARITY"].as_bool();

		if (cell->type == "$adff") {
			sig_arst = cell->getPort("\\ARST");
			pol_arst = cell->parameters["\\ARST_POLARITY"].as_bool();
			val_arst = RTLIL::SigSpec(cell->parameters["\\ARST_VALUE"]);
		}

		if (cell->type == "$dffe") {
			sig_en = cell->getPort("\\EN");
			pol_en = cell->parameters["\\EN_POLARITY"].as_bool();
		}

		std::string reg_name = cellname(cell);
		bool out_is_reg_wire = is_reg_wire(cell->getPort("\\Q"), reg_name);

		if (!out_is_reg_wire) {
			f << stringf("%s" "reg [%d:0] %s", indent.c_str(), cell->parameters["\\WIDTH"].as_int()-1, reg_name.c_str());
			dump_reg_init(f, cell->getPort("\\Q"));
			f << ";\n";
		}

		f << stringf("%s" "always @(%sedge ", indent.c_str(), pol_clk ? "pos" : "neg");
		dump_sigspec(f, sig_clk);
		if (cell->type == "$adff") {
			f << stringf(" or %sedge ", pol_arst ? "pos" : "neg");
			dump_sigspec(f, sig_arst);
		}
		f << stringf(")\n");

		if (cell->type == "$adff") {
			f << stringf("%s" "  if (%s", indent.c_str(), pol_arst ? "" : "!");
			dump_sigspec(f, sig_arst);
			f << stringf(")\n");
			f << stringf("%s" "    %s <= ", indent.c_str(), reg_name.c_str());
			dump_sigspec(f, val_arst);
			f << stringf(";\n");
			f << stringf("%s" "  else\n", indent.c_str());
		}

		if (cell->type == "$dffe") {
			f << stringf("%s" "  if (%s", indent.c_str(), pol_en ? "" : "!");
			dump_sigspec(f, sig_en);
			f << stringf(")\n");
		}

		f << stringf("%s" "    %s <= ", indent.c_str(), reg_name.c_str());
		dump_cell_expr_port(f, cell, "D", false);
		f << stringf(";\n");

		if (!out_is_reg_wire) {
			f << stringf("%s" "assign ", indent.c_str());
			dump_sigspec(f, cell->getPort("\\Q"));
			f << stringf(" = %s;\n", reg_name.c_str());
		}

		return true;
	}

	if (cell->type == "$dlatch")
	{
		RTLIL::SigSpec sig_en;
		bool pol_en = false;

		sig_en = cell->getPort("\\EN");
		pol_en = cell->parameters["\\EN_POLARITY"].as_bool();

		std::string reg_name = cellname(cell);
		bool out_is_reg_wire = is_reg_wire(cell->getPort("\\Q"), reg_name);

		if (!out_is_reg_wire) {
			f << stringf("%s" "reg [%d:0] %s", indent.c_str(), cell->parameters["\\WIDTH"].as_int()-1, reg_name.c_str());
			dump_reg_init(f, cell->getPort("\\Q"));
			f << ";\n";
		}

		f << stringf("%s" "always @*\n", indent.c_str());

		f << stringf("%s" "  if (%s", indent.c_str(), pol_en ? "" : "!");
		dump_sigspec(f, sig_en);
		f << stringf(")\n");

		f << stringf("%s" "    %s = ", indent.c_str(), reg_name.c_str());
		dump_cell_expr_port(f, cell, "D", false);
		f << stringf(";\n");

		if (!out_is_reg_wire) {
			f << stringf("%s" "assign ", indent.c_str());
			dump_sigspec(f, cell->getPort("\\Q"));
			f << stringf(" = %s;\n", reg_name.c_str());
		}

		return true;
	}

	if (cell->type == "$mem")
	{
		RTLIL::IdString memid = cell->parameters["\\MEMID"].decode_string();
		std::string mem_id = id(cell->parameters["\\MEMID"].decode_string());
		int abits = cell->parameters["\\ABITS"].as_int();
		int size = cell->parameters["\\SIZE"].as_int();
		int offset = cell->parameters["\\OFFSET"].as_int();
		int width = cell->parameters["\\WIDTH"].as_int();
		bool use_init = !(RTLIL::SigSpec(cell->parameters["\\INIT"]).is_fully_undef());

		// for memory block make something like:
		//  reg [7:0] memid [3:0];
		//  initial begin
		//    memid[0] = ...
		//  end
		f << stringf("%s" "reg [%d:%d] %s [%d:%d];\n", indent.c_str(), width-1, 0, mem_id.c_str(), size+offset-1, offset);
		if (use_init)
		{
			f << stringf("%s" "initial begin\n", indent.c_str());
			for (int i=0; i<size; i++)
			{
				f << stringf("%s" "  %s[%d] = ", indent.c_str(), mem_id.c_str(), i);
				dump_const(f, cell->parameters["\\INIT"].extract(i*width, width));
				f << stringf(";\n");
			}
			f << stringf("%s" "end\n", indent.c_str());
		}

		// create a map : "edge clk" -> expressions within that clock domain
		dict<std::string, std::vector<std::string>> clk_to_lof_body;
		clk_to_lof_body[""] = std::vector<std::string>();
		std::string clk_domain_str;
		// create a list of reg declarations
		std::vector<std::string> lof_reg_declarations;

		int nread_ports = cell->parameters["\\RD_PORTS"].as_int();
		RTLIL::SigSpec sig_rd_clk, sig_rd_en, sig_rd_data, sig_rd_addr;
		bool use_rd_clk, rd_clk_posedge, rd_transparent;
		// read ports
		for (int i=0; i < nread_ports; i++)
		{
			sig_rd_clk = cell->getPort("\\RD_CLK").extract(i);
			sig_rd_en = cell->getPort("\\RD_EN").extract(i);
			sig_rd_data = cell->getPort("\\RD_DATA").extract(i*width, width);
			sig_rd_addr = cell->getPort("\\RD_ADDR").extract(i*abits, abits);
			use_rd_clk = cell->parameters["\\RD_CLK_ENABLE"].extract(i).as_bool();
			rd_clk_posedge = cell->parameters["\\RD_CLK_POLARITY"].extract(i).as_bool();
			rd_transparent = cell->parameters["\\RD_TRANSPARENT"].extract(i).as_bool();
			if (use_rd_clk)
			{
				{
					std::ostringstream os;
					dump_sigspec(os, sig_rd_clk);
					clk_domain_str = stringf("%sedge %s", rd_clk_posedge ? "pos" : "neg", os.str().c_str());
					if( clk_to_lof_body.count(clk_domain_str) == 0 )
						clk_to_lof_body[clk_domain_str] = std::vector<std::string>();
				}
				if (!rd_transparent)
				{
					// for clocked read ports make something like:
					//   reg [..] temp_id;
					//   always @(posedge clk)
					//      if (rd_en) temp_id <= array_reg[r_addr];
					//   assign r_data = temp_id;
					std::string temp_id = next_auto_id();
					lof_reg_declarations.push_back( stringf("reg [%d:0] %s;\n", sig_rd_data.size() - 1, temp_id.c_str()) );
					{
						std::ostringstream os;
						if (sig_rd_en != RTLIL::SigBit(true))
						{
							os << stringf("if (");
							dump_sigspec(os, sig_rd_en);
							os << stringf(") ");
						}
						os << stringf("%s <= %s[", temp_id.c_str(), mem_id.c_str());
						dump_sigspec(os, sig_rd_addr);
						os << stringf("];\n");
						clk_to_lof_body[clk_domain_str].push_back(os.str());
					}
					{
						std::ostringstream os;
						dump_sigspec(os, sig_rd_data);
						std::string line = stringf("assign %s = %s;\n", os.str().c_str(), temp_id.c_str());
						clk_to_lof_body[""].push_back(line);
					}
				}
				else
				{
					// for rd-transparent read-ports make something like:
					//   reg [..] temp_id;
					//   always @(posedge clk)
					//     temp_id <= r_addr;
					//   assign r_data = array_reg[temp_id];
					std::string temp_id = next_auto_id();
					lof_reg_declarations.push_back( stringf("reg [%d:0] %s;\n", sig_rd_addr.size() - 1, temp_id.c_str()) );
					{
						std::ostringstream os;
						dump_sigspec(os, sig_rd_addr);
						std::string line = stringf("%s <= %s;\n", temp_id.c_str(), os.str().c_str());
						clk_to_lof_body[clk_domain_str].push_back(line);
					}
					{
						std::ostringstream os;
						dump_sigspec(os, sig_rd_data);
						std::string line = stringf("assign %s = %s[%s];\n", os.str().c_str(), mem_id.c_str(), temp_id.c_str());
						clk_to_lof_body[""].push_back(line);
					}
				}
			} else {
				// for non-clocked read-ports make something like:
				//   assign r_data = array_reg[r_addr];
				std::ostringstream os, os2;
				dump_sigspec(os, sig_rd_data);
				dump_sigspec(os2, sig_rd_addr);
				std::string line = stringf("assign %s = %s[%s];\n", os.str().c_str(), mem_id.c_str(), os2.str().c_str());
				clk_to_lof_body[""].push_back(line);
			}
		}

		int nwrite_ports = cell->parameters["\\WR_PORTS"].as_int();
		RTLIL::SigSpec sig_wr_clk, sig_wr_data, sig_wr_addr, sig_wr_en;
		bool wr_clk_posedge;

		// write ports
		for (int i=0; i < nwrite_ports; i++)
		{
			sig_wr_clk = cell->getPort("\\WR_CLK").extract(i);
			sig_wr_data = cell->getPort("\\WR_DATA").extract(i*width, width);
			sig_wr_addr = cell->getPort("\\WR_ADDR").extract(i*abits, abits);
			sig_wr_en = cell->getPort("\\WR_EN").extract(i*width, width);
			wr_clk_posedge = cell->parameters["\\WR_CLK_POLARITY"].extract(i).as_bool();
			{
				std::ostringstream os;
				dump_sigspec(os, sig_wr_clk);
				clk_domain_str = stringf("%sedge %s", wr_clk_posedge ? "pos" : "neg", os.str().c_str());
				if( clk_to_lof_body.count(clk_domain_str) == 0 )
					clk_to_lof_body[clk_domain_str] = std::vector<std::string>();
			}
			//   make something like:
			//   always @(posedge clk)
			//      if (wr_en_bit) memid[w_addr][??] <= w_data[??];
			//   ...
			for (int i = 0; i < GetSize(sig_wr_en); i++)
			{
				int start_i = i, width = 1;
				SigBit wen_bit = sig_wr_en[i];

				while (i+1 < GetSize(sig_wr_en) && active_sigmap(sig_wr_en[i+1]) == active_sigmap(wen_bit))
					i++, width++;

				if (wen_bit == State::S0)
					continue;

				std::ostringstream os;
				if (wen_bit != State::S1)
				{
					os << stringf("if (");
					dump_sigspec(os, wen_bit);
					os << stringf(") ");
				}
				os << stringf("%s[", mem_id.c_str());
				dump_sigspec(os, sig_wr_addr);
				if (width == GetSize(sig_wr_en))
					os << stringf("] <= ");
				else
					os << stringf("][%d:%d] <= ", i, start_i);
				dump_sigspec(os, sig_wr_data.extract(start_i, width));
				os << stringf(";\n");
				clk_to_lof_body[clk_domain_str].push_back(os.str());
			}
		}
		// Output Verilog that looks something like this:
		// reg [..] _3_;
		// always @(posedge CLK2) begin
		//   _3_ <= memory[D1ADDR];
		//   if (A1EN)
		//     memory[A1ADDR] <= A1DATA;
		//   if (A2EN)
		//     memory[A2ADDR] <= A2DATA;
		//   ...
		// end
		// always @(negedge CLK1) begin
		//   if (C1EN)
		//     memory[C1ADDR] <= C1DATA;
		// end
		// ...
		// assign D1DATA = _3_;
		// assign D2DATA <= memory[D2ADDR];

		// the reg ... definitions
		for(auto &reg : lof_reg_declarations)
		{
			f << stringf("%s" "%s", indent.c_str(), reg.c_str());
		}
		// the block of expressions by clock domain
		for(auto &pair : clk_to_lof_body)
		{
			std::string clk_domain = pair.first;
			std::vector<std::string> lof_lines = pair.second;
			if( clk_domain != "")
			{
				f << stringf("%s" "always @(%s) begin\n", indent.c_str(), clk_domain.c_str());
				for(auto &line : lof_lines)
					f << stringf("%s%s" "%s", indent.c_str(), indent.c_str(), line.c_str());
				f << stringf("%s" "end\n", indent.c_str());
			}
			else
			{
				// the non-clocked assignments
				for(auto &line : lof_lines)
					f << stringf("%s" "%s", indent.c_str(), line.c_str());
			}
		}

		return true;
	}

	// FIXME: $_SR_[PN][PN]_, $_DLATCH_[PN]_, $_DLATCHSR_[PN][PN][PN]_
	// FIXME: $sr, $dlatch, $memrd, $memwr, $fsm

	return false;
}

void dump_cell(std::ostream &f, std::string indent, RTLIL::Cell *cell)
{
	if (cell->type[0] == '$' && !noexpr) {
		if (dump_cell_expr(f, indent, cell))
			return;
	}

	dump_attributes(f, indent, cell->attributes);
	f << stringf("%s" "%s", indent.c_str(), id(cell->type, false).c_str());

	if (!defparam && cell->parameters.size() > 0) {
		f << stringf(" #(");
		for (auto it = cell->parameters.begin(); it != cell->parameters.end(); ++it) {
			if (it != cell->parameters.begin())
				f << stringf(",");
			f << stringf("\n%s  .%s(", indent.c_str(), id(it->first).c_str());
			bool is_signed = (it->second.flags & RTLIL::CONST_FLAG_SIGNED) != 0;
			dump_const(f, it->second, -1, 0, false, is_signed);
			f << stringf(")");
		}
		f << stringf("\n%s" ")", indent.c_str());
	}

	std::string cell_name = cellname(cell);
	if (cell_name != id(cell->name))
		f << stringf(" %s /* %s */ (", cell_name.c_str(), id(cell->name).c_str());
	else
		f << stringf(" %s (", cell_name.c_str());

	bool first_arg = true;
	std::set<RTLIL::IdString> numbered_ports;
	for (int i = 1; true; i++) {
		char str[16];
		snprintf(str, 16, "$%d", i);
		for (auto it = cell->connections().begin(); it != cell->connections().end(); ++it) {
			if (it->first != str)
				continue;
			if (!first_arg)
				f << stringf(",");
			first_arg = false;
			f << stringf("\n%s  ", indent.c_str());
			dump_sigspec(f, it->second);
			numbered_ports.insert(it->first);
			goto found_numbered_port;
		}
		break;
	found_numbered_port:;
	}
	for (auto it = cell->connections().begin(); it != cell->connections().end(); ++it) {
		if (numbered_ports.count(it->first))
			continue;
		if (!first_arg)
			f << stringf(",");
		first_arg = false;
		f << stringf("\n%s  .%s(", indent.c_str(), id(it->first).c_str());
		if (it->second.size() > 0)
			dump_sigspec(f, it->second);
		f << stringf(")");
	}
	f << stringf("\n%s" ");\n", indent.c_str());

	if (defparam && cell->parameters.size() > 0) {
		for (auto it = cell->parameters.begin(); it != cell->parameters.end(); ++it) {
			f << stringf("%sdefparam %s.%s = ", indent.c_str(), cell_name.c_str(), id(it->first).c_str());
			bool is_signed = (it->second.flags & RTLIL::CONST_FLAG_SIGNED) != 0;
			dump_const(f, it->second, -1, 0, false, is_signed);
			f << stringf(";\n");
		}
	}

	if (siminit && reg_ct.count(cell->type) && cell->hasPort("\\Q")) {
		std::stringstream ss;
		dump_reg_init(ss, cell->getPort("\\Q"));
		if (!ss.str().empty()) {
			f << stringf("%sinitial %s.Q", indent.c_str(), cell_name.c_str());
			f << ss.str();
			f << ";\n";
		}
	}
}

void dump_conn(std::ostream &f, std::string indent, const RTLIL::SigSpec &left, const RTLIL::SigSpec &right)
{
	f << stringf("%s" "assign ", indent.c_str());
	dump_sigspec(f, left);
	f << stringf(" = ");
	dump_sigspec(f, right);
	f << stringf(";\n");
}

void dump_proc_switch(std::ostream &f, std::string indent, RTLIL::SwitchRule *sw);

void dump_case_body(std::ostream &f, std::string indent, RTLIL::CaseRule *cs, bool omit_trailing_begin = false)
{
	int number_of_stmts = cs->switches.size() + cs->actions.size();

	if (!omit_trailing_begin && number_of_stmts >= 2)
		f << stringf("%s" "begin\n", indent.c_str());

	for (auto it = cs->actions.begin(); it != cs->actions.end(); ++it) {
		if (it->first.size() == 0)
			continue;
		f << stringf("%s  ", indent.c_str());
		dump_sigspec(f, it->first);
		f << stringf(" = ");
		dump_sigspec(f, it->second);
		f << stringf(";\n");
	}

	for (auto it = cs->switches.begin(); it != cs->switches.end(); ++it)
		dump_proc_switch(f, indent + "  ", *it);

	if (!omit_trailing_begin && number_of_stmts == 0)
		f << stringf("%s  /* empty */;\n", indent.c_str());

	if (omit_trailing_begin || number_of_stmts >= 2)
		f << stringf("%s" "end\n", indent.c_str());
}

void dump_proc_switch(std::ostream &f, std::string indent, RTLIL::SwitchRule *sw)
{
	if (sw->signal.size() == 0) {
		f << stringf("%s" "begin\n", indent.c_str());
		for (auto it = sw->cases.begin(); it != sw->cases.end(); ++it) {
			if ((*it)->compare.size() == 0)
				dump_case_body(f, indent + "  ", *it);
		}
		f << stringf("%s" "end\n", indent.c_str());
		return;
	}

	f << stringf("%s" "casez (", indent.c_str());
	dump_sigspec(f, sw->signal);
	f << stringf(")\n");

	bool got_default = false;
	for (auto it = sw->cases.begin(); it != sw->cases.end(); ++it) {
		if ((*it)->compare.size() == 0) {
			if (got_default)
				continue;
			f << stringf("%s  default", indent.c_str());
			got_default = true;
		} else {
			f << stringf("%s  ", indent.c_str());
			for (size_t i = 0; i < (*it)->compare.size(); i++) {
				if (i > 0)
					f << stringf(", ");
				dump_sigspec(f, (*it)->compare[i]);
			}
		}
		f << stringf(":\n");
		dump_case_body(f, indent + "    ", *it);
	}

	f << stringf("%s" "endcase\n", indent.c_str());
}

void case_body_find_regs(RTLIL::CaseRule *cs)
{
	for (auto it = cs->switches.begin(); it != cs->switches.end(); ++it)
	for (auto it2 = (*it)->cases.begin(); it2 != (*it)->cases.end(); it2++)
		case_body_find_regs(*it2);

	for (auto it = cs->actions.begin(); it != cs->actions.end(); ++it) {
		for (auto &c : it->first.chunks())
			if (c.wire != NULL)
				reg_wires.insert(c.wire->name);
	}
}

void dump_process(std::ostream &f, std::string indent, RTLIL::Process *proc, bool find_regs = false)
{
	if (find_regs) {
		case_body_find_regs(&proc->root_case);
		for (auto it = proc->syncs.begin(); it != proc->syncs.end(); ++it)
		for (auto it2 = (*it)->actions.begin(); it2 != (*it)->actions.end(); it2++) {
			for (auto &c : it2->first.chunks())
				if (c.wire != NULL)
					reg_wires.insert(c.wire->name);
		}
		return;
	}

	f << stringf("%s" "always @* begin\n", indent.c_str());
	dump_case_body(f, indent, &proc->root_case, true);

	std::string backup_indent = indent;

	for (size_t i = 0; i < proc->syncs.size(); i++)
	{
		RTLIL::SyncRule *sync = proc->syncs[i];
		indent = backup_indent;

		if (sync->type == RTLIL::STa) {
			f << stringf("%s" "always @* begin\n", indent.c_str());
		} else if (sync->type == RTLIL::STi) {
			f << stringf("%s" "initial begin\n", indent.c_str());
		} else {
			f << stringf("%s" "always @(", indent.c_str());
			if (sync->type == RTLIL::STp || sync->type == RTLIL::ST1)
				f << stringf("posedge ");
			if (sync->type == RTLIL::STn || sync->type == RTLIL::ST0)
				f << stringf("negedge ");
			dump_sigspec(f, sync->signal);
			f << stringf(") begin\n");
		}
		std::string ends = indent + "end\n";
		indent += "  ";

		if (sync->type == RTLIL::ST0 || sync->type == RTLIL::ST1) {
			f << stringf("%s" "if (%s", indent.c_str(), sync->type == RTLIL::ST0 ? "!" : "");
			dump_sigspec(f, sync->signal);
			f << stringf(") begin\n");
			ends = indent + "end\n" + ends;
			indent += "  ";
		}

		if (sync->type == RTLIL::STp || sync->type == RTLIL::STn) {
			for (size_t j = 0; j < proc->syncs.size(); j++) {
				RTLIL::SyncRule *sync2 = proc->syncs[j];
				if (sync2->type == RTLIL::ST0 || sync2->type == RTLIL::ST1) {
					f << stringf("%s" "if (%s", indent.c_str(), sync2->type == RTLIL::ST1 ? "!" : "");
					dump_sigspec(f, sync2->signal);
					f << stringf(") begin\n");
					ends = indent + "end\n" + ends;
					indent += "  ";
				}
			}
		}

		for (auto it = sync->actions.begin(); it != sync->actions.end(); ++it) {
			if (it->first.size() == 0)
				continue;
			f << stringf("%s  ", indent.c_str());
			dump_sigspec(f, it->first);
			f << stringf(" <= ");
			dump_sigspec(f, it->second);
			f << stringf(";\n");
		}

		f << stringf("%s", ends.c_str());
	}
}

void dump_module(std::ostream &f, std::string indent, RTLIL::Module *module)
{
	reg_wires.clear();
	reset_auto_counter(module);
	active_module = module;
	active_sigmap.set(module);
	active_initdata.clear();

	for (auto wire : module->wires())
		if (wire->attributes.count("\\init")) {
			SigSpec sig = active_sigmap(wire);
			Const val = wire->attributes.at("\\init");
			for (int i = 0; i < GetSize(sig) && i < GetSize(val); i++)
				active_initdata[sig[i]] = val.bits.at(i);
		}

	if (!module->processes.empty())
		log_warning("Module %s contains unmapped RTLIL processes. RTLIL processes\n"
				"can't always be mapped directly to Verilog always blocks. Unintended\n"
				"changes in simulation behavior are possible! Use \"proc\" to convert\n"
				"processes to logic networks and registers.\n", log_id(module));

	f << stringf("\n");
	for (auto it = module->processes.begin(); it != module->processes.end(); ++it)
		dump_process(f, indent + "  ", it->second, true);

	if (!noexpr)
	{
		std::set<std::pair<RTLIL::Wire*,int>> reg_bits;
		for (auto &it : module->cells_)
		{
			RTLIL::Cell *cell = it.second;
			if (!reg_ct.count(cell->type) || !cell->hasPort("\\Q"))
				continue;

			RTLIL::SigSpec sig = cell->getPort("\\Q");

			if (sig.is_chunk()) {
				RTLIL::SigChunk chunk = sig.as_chunk();
				if (chunk.wire != NULL)
					for (int i = 0; i < chunk.width; i++)
						reg_bits.insert(std::pair<RTLIL::Wire*,int>(chunk.wire, chunk.offset+i));
			}
		}
		for (auto &it : module->wires_)
		{
			RTLIL::Wire *wire = it.second;
			for (int i = 0; i < wire->width; i++)
				if (reg_bits.count(std::pair<RTLIL::Wire*,int>(wire, i)) == 0)
					goto this_wire_aint_reg;
			if (wire->width)
				reg_wires.insert(wire->name);
		this_wire_aint_reg:;
		}
	}

	dump_attributes(f, indent, module->attributes, '\n', true);
	f << stringf("%s" "module %s(", indent.c_str(), id(module->name, false).c_str());
	bool keep_running = true;
	for (int port_id = 1; keep_running; port_id++) {
		keep_running = false;
		for (auto it = module->wires_.begin(); it != module->wires_.end(); ++it) {
			RTLIL::Wire *wire = it->second;
			if (wire->port_id == port_id) {
				if (port_id != 1)
					f << stringf(", ");
				f << stringf("%s", id(wire->name).c_str());
				keep_running = true;
				continue;
			}
		}
	}
	f << stringf(");\n");

	for (auto it = module->wires_.begin(); it != module->wires_.end(); ++it)
		dump_wire(f, indent + "  ", it->second);

	for (auto it = module->memories.begin(); it != module->memories.end(); ++it)
		dump_memory(f, indent + "  ", it->second);

	for (auto it = module->cells_.begin(); it != module->cells_.end(); ++it)
		dump_cell(f, indent + "  ", it->second);

	for (auto it = module->processes.begin(); it != module->processes.end(); ++it)
		dump_process(f, indent + "  ", it->second);

	for (auto it = module->connections().begin(); it != module->connections().end(); ++it)
		dump_conn(f, indent + "  ", it->first, it->second);

	f << stringf("%s" "endmodule\n", indent.c_str());
	active_module = NULL;
	active_sigmap.clear();
	active_initdata.clear();
}

struct VerilogBackend : public Backend {
	VerilogBackend() : Backend("verilog", "write design to Verilog file") { }
	void help() YS_OVERRIDE
	{
		//   |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
		log("\n");
		log("    write_verilog [options] [filename]\n");
		log("\n");
		log("Write the current design to a Verilog file.\n");
		log("\n");
		log("    -norename\n");
		log("        without this option all internal object names (the ones with a dollar\n");
		log("        instead of a backslash prefix) are changed to short names in the\n");
		log("        format '_<number>_'.\n");
		log("\n");
		log("    -renameprefix <prefix>\n");
		log("        insert this prefix in front of auto-generated instance names\n");
		log("\n");
		log("    -noattr\n");
		log("        with this option no attributes are included in the output\n");
		log("\n");
		log("    -attr2comment\n");
		log("        with this option attributes are included as comments in the output\n");
		log("\n");
		log("    -noexpr\n");
		log("        without this option all internal cells are converted to Verilog\n");
		log("        expressions.\n");
		log("\n");
		log("    -siminit\n");
		log("        add initial statements with hierarchical refs to initialize FFs when\n");
		log("        in -noexpr mode.\n");
		log("\n");
		log("    -nodec\n");
		log("        32-bit constant values are by default dumped as decimal numbers,\n");
		log("        not bit pattern. This option deactivates this feature and instead\n");
		log("        will write out all constants in binary.\n");
		log("\n");
		log("    -decimal\n");
		log("        dump 32-bit constants in decimal and without size and radix\n");
		log("\n");
		log("    -nohex\n");
		log("        constant values that are compatible with hex output are usually\n");
		log("        dumped as hex values. This option deactivates this feature and\n");
		log("        instead will write out all constants in binary.\n");
		log("\n");
		log("    -nostr\n");
		log("        Parameters and attributes that are specified as strings in the\n");
		log("        original input will be output as strings by this back-end. This\n");
		log("        deactivates this feature and instead will write string constants\n");
		log("        as binary numbers.\n");
		log("\n");
		log("    -defparam\n");
		log("        Use 'defparam' statements instead of the Verilog-2001 syntax for\n");
		log("        cell parameters.\n");
		log("\n");
		log("    -blackboxes\n");
		log("        usually modules with the 'blackbox' attribute are ignored. with\n");
		log("        this option set only the modules with the 'blackbox' attribute\n");
		log("        are written to the output file.\n");
		log("\n");
		log("    -selected\n");
		log("        only write selected modules. modules must be selected entirely or\n");
		log("        not at all.\n");
		log("\n");
		log("    -v\n");
		log("        verbose output (print new names of all renamed wires and cells)\n");
		log("\n");
		log("Note that RTLIL processes can't always be mapped directly to Verilog\n");
		log("always blocks. This frontend should only be used to export an RTLIL\n");
		log("netlist, i.e. after the \"proc\" pass has been used to convert all\n");
		log("processes to logic networks and registers. A warning is generated when\n");
		log("this command is called on a design with RTLIL processes.\n");
		log("\n");
	}
	void execute(std::ostream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
	{
		log_header(design, "Executing Verilog backend.\n");

		verbose = false;
		norename = false;
		noattr = false;
		attr2comment = false;
		noexpr = false;
		nodec = false;
		nohex = false;
		nostr = false;
		defparam = false;
		decimal = false;
		siminit = false;
		auto_prefix = "";

		bool blackboxes = false;
		bool selected = false;

		auto_name_map.clear();
		reg_wires.clear();
		reg_ct.clear();

		reg_ct.insert("$dff");
		reg_ct.insert("$adff");
		reg_ct.insert("$dffe");
		reg_ct.insert("$dlatch");

		reg_ct.insert("$_DFF_N_");
		reg_ct.insert("$_DFF_P_");

		reg_ct.insert("$_DFF_NN0_");
		reg_ct.insert("$_DFF_NN1_");
		reg_ct.insert("$_DFF_NP0_");
		reg_ct.insert("$_DFF_NP1_");
		reg_ct.insert("$_DFF_PN0_");
		reg_ct.insert("$_DFF_PN1_");
		reg_ct.insert("$_DFF_PP0_");
		reg_ct.insert("$_DFF_PP1_");

		reg_ct.insert("$_DFFSR_NNN_");
		reg_ct.insert("$_DFFSR_NNP_");
		reg_ct.insert("$_DFFSR_NPN_");
		reg_ct.insert("$_DFFSR_NPP_");
		reg_ct.insert("$_DFFSR_PNN_");
		reg_ct.insert("$_DFFSR_PNP_");
		reg_ct.insert("$_DFFSR_PPN_");
		reg_ct.insert("$_DFFSR_PPP_");

		size_t argidx;
		for (argidx = 1; argidx < args.size(); argidx++) {
			std::string arg = args[argidx];
			if (arg == "-norename") {
				norename = true;
				continue;
			}
			if (arg == "-renameprefix" && argidx+1 < args.size()) {
				auto_prefix = args[++argidx];
				continue;
			}
			if (arg == "-noattr") {
				noattr = true;
				continue;
			}
			if (arg == "-attr2comment") {
				attr2comment = true;
				continue;
			}
			if (arg == "-noexpr") {
				noexpr = true;
				continue;
			}
			if (arg == "-nodec") {
				nodec = true;
				continue;
			}
			if (arg == "-nohex") {
				nohex = true;
				continue;
			}
			if (arg == "-nostr") {
				nostr = true;
				continue;
			}
			if (arg == "-defparam") {
				defparam = true;
				continue;
			}
			if (arg == "-decimal") {
				decimal = true;
				continue;
			}
			if (arg == "-siminit") {
				siminit = true;
				continue;
			}
			if (arg == "-blackboxes") {
				blackboxes = true;
				continue;
			}
			if (arg == "-selected") {
				selected = true;
				continue;
			}
			if (arg == "-v") {
				verbose = true;
				continue;
			}
			break;
		}
		extra_args(f, filename, args, argidx);

		design->sort();

		*f << stringf("/* Generated by %s */\n", yosys_version_str);
		for (auto it = design->modules_.begin(); it != design->modules_.end(); ++it) {
			if (it->second->get_bool_attribute("\\blackbox") != blackboxes)
				continue;
			if (selected && !design->selected_whole_module(it->first)) {
				if (design->selected_module(it->first))
					log_cmd_error("Can't handle partially selected module %s!\n", RTLIL::id2cstr(it->first));
				continue;
			}
			log("Dumping module `%s'.\n", it->first.c_str());
			dump_module(*f, "", it->second);
		}

		auto_name_map.clear();
		reg_wires.clear();
		reg_ct.clear();
	}
} VerilogBackend;

PRIVATE_NAMESPACE_END