1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
|
from libyosys import *
from scipy.sparse import coo_matrix
from numpy import savetxt
from enum import Enum
class NodeType(Enum):
GRAPH_CELL = 0
GRAPH_PI = 1
GRAPH_PO = 2
GRAPH_CONST = 3
GRAPH_WIRE = 4
class NetlistElement:
def __init__(self, design, module, name):
self.design = design
self.module = module
self.name = name
class Bit(NetlistElement):
def __init__(self, bit, design, module, node, port, pos):
super().__init__(design, module, IdString("\\__BIT__"))
self.bit = bit
self.node = node
self.port = port
self.pos = pos
class Port(NetlistElement):
def __init__(self, name):
super().__init__(None, None, name)
self.input = False
self.output = False
self.bits = []
class Node(NetlistElement):
def __init__(self, design, module, name, nodeType):
super().__init__(design, module, name)
self.nodeType = nodeType
self.ports = []
def __lt__(self, other):
if isinstance(other, self.__class):
if self.type == other.type:
return self.name.str() < other.name.str()
return self.type < other.type
return False
class PyCell(Node):
def __init__(self, design, module, name, cell):
super().__init__(design, module, name, NodeType.GRAPH_CELL)
self.cell = cell
class PyWire(Node):
def __init__(self, design, module, name):
super().__init__(design, module, name, NodeType.GRAPH_WIRE)
class NetlistGraph:
def __init__(self, design, module = None):
self.design = design
if module != None:
self.module = module
else:
self.module = list(design.modules_.values())[0]
self.cells = []
self.wires = []
self.nodes = []
self.node_bits = []
self.wire_bits = []
self.node_index = {}
self.node_bit_index = {}
self.wire_bit_index = {}
self.incoming = None
self.outgoing = None
self.create()
def create(self):
log_header(self.design, "Creating abstract graph representation of "
+ "module " + self.module.name.str() + "\n")
log_push()
sigmap = SigMap(self.module)
log(" Creating const node\n")
const_node = Node(self.design, self.module, IdString("\\__CONST__"), NodeType.GRAPH_CONST)
const_port = Port(IdString("\\__CONST__"))
const_port.input = False
const_port.output = True
cb = SigBit(State.Sx)
const_bit = Bit(cb, self.design, self.module, const_node, const_port, 0)
const_node.ports.append(const_port)
const_port.bits.append(const_bit)
self.nodes.append(const_node)
self.wires.append(const_node)
log(" Creating cell nodes\n")
for cell in self.module.selected_cells():
c = PyCell(self.design, self.module, cell.name, cell)
for first, second in cell.connections_.items():
p = Port(first)
p.input = cell.input(p.name)
p.output = cell.output(p.name)
for bit in sigmap(second).to_sigbit_vector():
b = Bit(bit, self.design, self.module, c, p, len(p.bits))
p.bits.append(b)
c.ports.append(p)
self.cells.append(c)
log(" Creating wire nodes\n")
for wire in self.module.selected_wires():
node = PyWire(self.design, self.module, wire.name)
p = Port(IdString(""))
if wire.port_input:
node.nodeType = NodeType.GRAPH_PI
p.name = IdString("\\PI")
p.input = False
p.output = True
elif wire.port_output:
node.nodeType = NodeType.GRAPH_PO
p.name = IdString("\\PO")
p.input = True
p.output = False
for bit in sigmap(wire).to_sigbit_set():
b = Bit(bit, self.design, self.module, node, p, len(p.bits))
p.bits.append(b)
node.ports.append(p)
self.wires.append(node)
self.nodes.extend(self.cells)
self.nodes.extend(wire for wire in self.wires if wire.nodeType in [NodeType.GRAPH_PI, NodeType.GRAPH_PO])
log(" Creating node index for fast lookup\n")
idx = 0
for node in self.nodes:
self.node_index[node.name] = idx
idx += 1
log(" Creating node bits (= const + cell + PI + PO)\n")
for node in self.nodes:
for port in node.ports:
for bit in port.bits:
self.node_bits.append(bit)
log(" Creating wire bits\n")
for wire in self.wires:
for port in wire.ports:
for bit in port.bits:
self.wire_bits.append(bit)
log(" Creating node bit index for fast lookup\n")
idx = 0
for bit in self.node_bits:
self.node_bit_index[bit] = idx
idx += 1
log(" Creating wire bit index for fast lookup\n")
idx = 0
for bit in self.wire_bits:
self.wire_bit_index[bit] = idx
idx += 1
log(" Mapping port.wire connections to wire bit index\n")
idx = 0
wbitmap = {}
for wbit in self.wire_bits:
wbitmap[wbit.bit] = idx
idx += 1
inputTriplets = []
outputTriplets = [(0,0,1)]
log(" Mapping node bits to wire bits\n")
idx = 0
for nbit in self.node_bits:
row = idx
idx += 1
col = 0
val = 1
def check_wire():
nonlocal nbit
try:
wire = nbit.bit.wire
return True
except:
return False
if check_wire() and not self.design.selected_member(self.module.name, self.module.wire(nbit.bit.wire.name).name):
continue
if check_wire():
col = wbitmap[nbit.bit]
triplet = (row, col, val)
if col == 0 and row != 0:
inputTriplets.append(triplet)
continue
if nbit.node.nodeType == NodeType.GRAPH_CELL:
cell = nbit.node
if check_wire() and self.design.selected_member(self.module.name, self.module.wire(nbit.bit.wire.name).name):
if cell.cell.input(nbit.port.name):
inputTriplets.append(triplet)
if cell.cell.output(nbit.port.name):
outputTriplets.append(triplet)
continue
if nbit.node.nodeType == NodeType.GRAPH_PI and self.design.selected_member(self.module.name, self.module.wire(nbit.bit.wire.name).name):
outputTriplets.append(triplet)
continue
if nbit.node.nodeType == NodeType.GRAPH_PO and self.design.selected_member(self.module.name, self.module.wire(nbit.bit.wire.name).name):
inputTriplets.append(triplet)
continue
log(" Creating port-to-wire incidence matrices\n")
sizeX = len(self.node_bits)
sizeY= len(self.wire_bits)
inputRows = [i[0] for i in inputTriplets]
inputCols = [i[1] for i in inputTriplets]
inputVals = [i[2] for i in inputTriplets]
self.incoming = coo_matrix((inputVals, (inputRows, inputCols)), shape=(sizeX, sizeY), dtype='int32')
outputRows = [i[0] for i in outputTriplets]
outputCols = [i[1] for i in outputTriplets]
outputVals = [i[2] for i in outputTriplets]
self.outgoing = coo_matrix((outputVals, (outputRows, outputCols)), shape=(sizeX, sizeY), dtype='int32')
def dot(self):
log_header(self.design, "Creating 'dot' bipartite module graph representation of module " + self.module.name.str() + "\n")
log_push()
bitmap = {}
ss = "digraph g{\n"
ss += " rankdir = LR\n"
nidx = 0
pidx = 0
bidx = 0
cells_wires = []
cells_wires.extend(self.cells)
cells_wires.extend(self.wires)
idx = 0
for node in cells_wires:
for port in node.ports:
for bit in port.bits:
bitmap[bit] = idx
idx += 1
for node in cells_wires:
ss += " subgraph cluster" + str(nidx) + " {\n"
ss += " style = \"setlinewidth(2)\";\n"
ss += " margin = .2;\n"
ss += " n" + str(node.name.index_)
def s_cell():
nonlocal ss
ss += "[shape=ellipse,label=\"" + str(nidx) + ":"
ss += unescape_id(node.cell.type) + "\""
def s_pi():
nonlocal ss
ss += "[shape = box, label=\"" + str(nidx) + ":"
ss += unescape_id(node.name.str()) + "\""
def s_po():
nonlocal ss
ss += "[shape = diamond, label=\"" + str(nidx) + ":"
ss += unescape_id(node.name.str()) + "\""
def s_const():
nonlocal ss
ss += "[shape = octagon, label=\"" + str(nidx) + ":CO\""
def s_wire():
nonlocal ss
ss += "[shape = plaintext, label=\"" + str(nidx - len(self.cells)) + ":"
ss += unescape_id(node.name.str()) + "\""
switch = {
NodeType.GRAPH_CELL : s_cell,
NodeType.GRAPH_PI : s_pi,
NodeType.GRAPH_PO : s_po,
NodeType.GRAPH_CONST : s_const,
NodeType.GRAPH_WIRE : s_wire
}
switch[node.nodeType]()
ss += "];\n"
pidx = 0
for port in node.ports:
ss += " port_" + str(node.name.index_) + "_" + str(port.name.index_)
ss += "[shape=none,label=<\n"
ss += " <table border=\"0\" cellborder=\"1\" cellspacing=\"0\" cellpadding=\"4\" >\n"
ss += " <tr><td bgcolor=\"lightgray\" port=\"p" + str(node.name.index_) + "_"
ss += str(port.name.index_) + "\"> "
ss += unescape_id(port.name.str())
ss += "</td></tr>\n"
bidx = 0;
for bit in port.bits:
ss += " <tr><td bgcolor=\"white\" port=\"b" + str(node.name.index_) + "_" + str(port.name.index_) + "_" + str(bit.pos) + "\"> " + str(bitmap[bit]) + ":" + str(bidx) + "</td></tr>\n"
bidx += 1
ss += " </table>\n >];\n"
if node.nodeType == NodeType.GRAPH_CELL:
if node.cell.output(port.name):
ss += " n" + str(node.name.index_) + " -> " + "port_" + str(node.name.index_) + "_" + str(port.name.index_) + ":p" + str(node.name.index_) + "_" + str(port.name.index_) + ";\n"
else:
ss += " port_" + str(node.name.index_) + "_" + str(port.name.index_) + ":p" + str(node.name.index_) + "_" + str(port.name.index_) + " -> " + "n" + str(node.name.index_) + ";\n"
if node.nodeType == NodeType.GRAPH_PI or node.nodeType == NodeType.GRAPH_CONST:
ss += " n" + str(node.name.index_) + " -> " + "port_" + str(node.name.index_) + "_" + str(port.name.index_) + ":p" + str(node.name.index_) + "_" + str(port.name.index_) + ";\n"
if node.nodeType == NodeType.GRAPH_PO:
ss += " port_" + str(node.name.index_) + "_" + str(port.name.index_) + ":p" + str(node.name.index_) + "_" + str(port.name.index_) + " -> " + "n" + str(node.name.index_) + ";\n"
pidx += 1
ss += " }\n"
nidx += 1
for i in range(len(self.incoming.nonzero()[0])):
b1 = self.node_bits[self.incoming.nonzero()[0][i]]
b2 = self.wire_bits[self.incoming.nonzero()[1][i]]
if b1.node.nodeType == NodeType.GRAPH_PO or b1.node.nodeType == NodeType.GRAPH_CONST:
continue
ss += " "
ss += "port_" + str(b2.node.name.index_) + "_" + str(b2.port.name.index_) + ":"
ss += "b" + str(b2.node.name.index_) + "_" + str(b2.port.name.index_) + "_" + str(b2.pos)
ss += " -> "
ss += "port_" + str(b1.node.name.index_) + "_" + str(b1.port.name.index_) + ":"
ss += "b" + str(b1.node.name.index_) + "_" + str(b1.port.name.index_) + "_" + str(b1.pos)
ss += ";\n"
for i in range(len(self.outgoing.nonzero()[0])):
b1 = self.node_bits[self.outgoing.nonzero()[0][i]]
b2 = self.wire_bits[self.outgoing.nonzero()[1][i]]
if b1.node.nodeType == NodeType.GRAPH_PI:
continue
ss += " "
ss += "port_" + str(b1.node.name.index_) + "_" + str(b1.port.name.index_) + ":"
ss += "b" + str(b1.node.name.index_) + "_" + str(b1.port.name.index_) + "_" + str(b1.pos)
ss += " -> "
ss += "port_" + str(b2.node.name.index_) + "_" + str(b2.port.name.index_) + ":"
ss += "b" + str(b2.node.name.index_) + "_" + str(b2.port.name.index_) + "_" + str(b2.pos)
ss += ";\n"
ss += "}\n"
log_pop()
return ss
def save_dot(self, filename):
savetxt(filename, [self.dot()], fmt="%s")
def save_incoming(self, filename, delimiter = ","):
savetxt(filename, self.incoming.todense(), "%d", delimiter=delimiter)
def save_outgoing(self, filename, delimiter = ","):
savetxt(filename, self.outgoing.todense(), "%d", delimiter=delimiter)
def save_adjacency(self, filename, delimiter = ","):
savetxt(filename, (self.outgoing*self.incoming.transpose()).todense(), "%d", delimiter=delimiter)
p = None
class NetlistGraphPass(Pass):
def __init__(self):
super().__init__("netlist_graph", "Generates the Netlist-Graph of a module")
import argparse
self.parser = argparse.ArgumentParser()
self.parser.add_argument("-mod", nargs=1, metavar="MOD", help="The Netlist-Graph of the module with the id-string <module> will be generated. If this argument is not given, the first module will be used")
self.parser.add_argument("-dot", nargs=1, metavar="FILE", help="Write the Netlist-Graph to FILE in dot format")
self.parser.add_argument("-i","-incoming", nargs=1, metavar="FILE", help="Write the incoming incidence matrix to FILE in csv format")
self.parser.add_argument("-o","-outgoing", nargs=1, metavar="FILE", help="Write the outgoing incidence matrix to FILE in csv format")
self.parser.add_argument("-a","-adjacency", nargs=1, metavar="FILE", help="Write the adjacency matrix to FILE in csv format")
def py_help(self):
log("This pass generates the Netlist-Graph of a module\n")
log(self.parser.format_help())
def py_execute(self, args, des):
args = self.parser.parse_args(args[1:])
graph = None
if args.mod:
try:
graph = NetlistGraph(des, des.modules_[IdString(args.mod[0])])
except KeyError:
log("Module \"" + args.mod[0] + "\" not found!\n")
exit()
else:
graph = NetlistGraph(des, list(des.modules_.values())[0])
if args.dot:
graph.save_dot(args.dot[0])
if args.i:
graph.save_incoming(args.i[0])
if args.o:
graph.save_outgoing(args.o[0])
if args.a:
graph.save_adjacency(args.a[0])
def py_clear_flags(self):
log("Clear\n")
if __name__ == "__main__":
designs = {}
graphs = {}
testdir = "../../tests/simple/"
import os
for testcase in os.listdir(testdir):
if not testcase.endswith(".v"):
continue
designs[testcase] = Design()
run_pass("read_verilog " + testdir + testcase, designs[testcase])
run_pass("hierarchy -check -auto-top", designs[testcase])
run_pass("proc", designs[testcase])
run_pass("clean", designs[testcase])
run_pass("memory", designs[testcase])
run_pass("clean", designs[testcase])
run_pass("opt -full", designs[testcase])
run_pass("clean", designs[testcase])
graphs[testcase] = NetlistGraph(designs[testcase])
file_prefix = "out/" + testcase
graphs[testcase].save_dot(file_prefix + ".dot")
graphs[testcase].save_incoming(file_prefix + "_in.csv")
graphs[testcase].save_outgoing(file_prefix + "_out.csv")
graphs[testcase].save_adjacency(file_prefix + "_adjacency.csv")
else:
p = NetlistGraphPass()
|