aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/hashlib.h
blob: a523afadd080db4ddfb6d0e3558252bf1cab068f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
pre { line-height: 125%; margin: 0; }
td.linenos pre { color: #000000; background-color: #f0f0f0; padding: 0 5px 0 5px; }
span.linenos { color: #000000; background-color: #f0f0f0; padding: 0 5px 0 5px; }
td.linenos pre.special { color: #000000; background-color: #ffffc0; padding: 0 5px 0 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding: 0 5px 0 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight { background: #ffffff; }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008800 } /* Keyword.Pseudo */
.highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */
.highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */
.highlight .na { color: #336699 } /* Name.Attribute */
.highlight .nb { color: #003388 } /* Name.Builtin */
.highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */
.highlight .no { color: #003366; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555555 } /* Name.Decorator */
.highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */
.highlight .nl { color: #336699; font-style: italic } /* Name.Label */
.highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */
.highlight .py { color: #336699; font-weight: bold } /* Name.Property */
.highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #336699 } /* Name.Variable */
.highlight .ow { color: #008800 } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */
.highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */
.highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */
.highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */
.highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */
.highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */
.highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */
.highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */
.highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */
.highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */
.highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */
.highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */
.highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */
.highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */
.highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */
.highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */
.highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */
.highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */
.highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */
.highlight .vc { color: #336699 } /* Name.Variable.Class */
.highlight .vg { color: #dd7700 } /* Name.Variable.Global */
.highlight .vi { color: #3333bb } /* Name.Variable.Instance */
.highlight .vm { color: #336699 } /* Name.Variable.Magic */
.highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
/* @(#)pmap_clnt.h	2.1 88/07/29 4.0 RPCSRC; from 1.11 88/02/08 SMI */
/*
 * Sun RPC is a product of Sun Microsystems, Inc. and is provided for
 * unrestricted use provided that this legend is included on all tape
 * media and as a part of the software program in whole or part.  Users
 * may copy or modify Sun RPC without charge, but are not authorized
 * to license or distribute it to anyone else except as part of a product or
 * program developed by the user.
 *
 * SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE
 * WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
 *
 * Sun RPC is provided with no support and without any obligation on the
 * part of Sun Microsystems, Inc. to assist in its use, correction,
 * modification or enhancement.
 *
 * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
 * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC
 * OR ANY PART THEREOF.
 *
 * In no event will Sun Microsystems, Inc. be liable for any lost revenue
 * or profits or other special, indirect and consequential damages, even if
 * Sun has been advised of the possibility of such damages.
 *
 * Sun Microsystems, Inc.
 * 2550 Garcia Avenue
 * Mountain View, California  94043
 */

/*
 * pmap_clnt.h
 * Supplies C routines to get to portmap services.
 *
 * Copyright (C) 1984, Sun Microsystems, Inc.
 */

#ifndef _RPC_PMAP_CLNT_H
#define _RPC_PMAP_CLNT_H	1

#include <features.h>
#include <rpc/types.h>
#include <rpc/xdr.h>
#include <rpc/clnt.h>

__BEGIN_DECLS

typedef bool_t (*resultproc_t) (caddr_t resp, struct sockaddr_in *raddr);

/*
 * Usage:
 *	success = pmap_set(program, version, protocol, port);
 *	success = pmap_unset(program, version);
 *	port = pmap_getport(address, program, version, protocol);
 *	head = pmap_getmaps(address);
 *	clnt_stat = pmap_rmtcall(address, program, version, procedure,
 *		xdrargs, argsp, xdrres, resp, tout, port_ptr)
 *		(works for udp only.)
 * 	clnt_stat = clnt_broadcast(program, version, procedure,
 *		xdrargs, argsp,	xdrres, resp, eachresult)
 *		(like pmap_rmtcall, except the call is broadcasted to all
 *		locally connected nets.  For each valid response received,
 *		the procedure eachresult is called.  Its form is:
 *	done = eachresult(resp, raddr)
 *		bool_t done;
 *		caddr_t resp;
 *		struct sockaddr_in raddr;
 *		where resp points to the results of the call and raddr is the
 *		address if the responder to the broadcast.
 */

extern bool_t pmap_set (__const u_long __program, __const u_long __vers,
			int __protocol, u_short __port) __THROW;
extern bool_t pmap_unset (__const u_long __program, __const u_long __vers)
     __THROW;
extern struct pmaplist *pmap_getmaps (struct sockaddr_in *__address) __THROW;
extern enum clnt_stat pmap_rmtcall (struct sockaddr_in *__addr,
				    __const u_long __prog,
				    __const u_long __vers,
				    __const u_long __proc,
				    xdrproc_t __xdrargs,
				    caddr_t __argsp, xdrproc_t __xdrres,
				    caddr_t __resp, struct timeval __tout,
				    u_long *__port_ptr) __THROW;
extern enum clnt_stat clnt_broadcast (__const u_long __prog,
				      __const u_long __vers,
				      __const u_long __proc, xdrproc_t __xargs,
				      caddr_t __argsp, xdrproc_t __xresults,
				      caddr_t __resultsp,
				      resultproc_t __eachresult) __THROW;
extern u_short pmap_getport (struct sockaddr_in *__address,
			     __const u_long __program,
			     __const u_long __version, u_int __protocol)
     __THROW;

__END_DECLS

#endif /* rpc/pmap_clnt.h */
a> 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
// This is free and unencumbered software released into the public domain.
//
// Anyone is free to copy, modify, publish, use, compile, sell, or
// distribute this software, either in source code form or as a compiled
// binary, for any purpose, commercial or non-commercial, and by any
// means.

// -------------------------------------------------------
// Written by Clifford Wolf <clifford@clifford.at> in 2014
// -------------------------------------------------------

#ifndef HASHLIB_H
#define HASHLIB_H

#include <stdexcept>
#include <algorithm>
#include <string>
#include <vector>

namespace hashlib {

const int hashtable_size_trigger = 2;
const int hashtable_size_factor = 3;

// The XOR version of DJB2
inline unsigned int mkhash(unsigned int a, unsigned int b) {
	return ((a << 5) + a) ^ b;
}

// traditionally 5381 is used as starting value for the djb2 hash
const unsigned int mkhash_init = 5381;

// The ADD version of DJB2
// (use this version for cache locality in b)
inline unsigned int mkhash_add(unsigned int a, unsigned int b) {
	return ((a << 5) + a) + b;
}

inline unsigned int mkhash_xorshift(unsigned int a) {
	if (sizeof(a) == 4) {
		a ^= a << 13;
		a ^= a >> 17;
		a ^= a << 5;
	} else if (sizeof(a) == 8) {
		a ^= a << 13;
		a ^= a >> 7;
		a ^= a << 17;
	} else
		throw std::runtime_error("mkhash_xorshift() only implemented for 32 bit and 64 bit ints");
	return a;
}

template<typename T> struct hash_ops {
	static inline bool cmp(const T &a, const T &b) {
		return a == b;
	}
	static inline unsigned int hash(const T &a) {
		return a.hash();
	}
};

struct hash_int_ops {
	template<typename T>
	static inline bool cmp(T a, T b) {
		return a == b;
	}
};

template<> struct hash_ops<int32_t> : hash_int_ops
{
	static inline unsigned int hash(int32_t a) {
		return a;
	}
};
template<> struct hash_ops<int64_t> : hash_int_ops
{
	static inline unsigned int hash(int64_t a) {
		return mkhash((unsigned int)(a), (unsigned int)(a >> 32));
	}
};

template<> struct hash_ops<std::string> {
	static inline bool cmp(const std::string &a, const std::string &b) {
		return a == b;
	}
	static inline unsigned int hash(const std::string &a) {
		unsigned int v = 0;
		for (auto c : a)
			v = mkhash(v, c);
		return v;
	}
};

template<typename P, typename Q> struct hash_ops<std::pair<P, Q>> {
	static inline bool cmp(std::pair<P, Q> a, std::pair<P, Q> b) {
		return a == b;
	}
	static inline unsigned int hash(std::pair<P, Q> a) {
		return mkhash(hash_ops<P>::hash(a.first), hash_ops<Q>::hash(a.second));
	}
};

template<typename... T> struct hash_ops<std::tuple<T...>> {
	static inline bool cmp(std::tuple<T...> a, std::tuple<T...> b) {
		return a == b;
	}
	template<size_t I = 0>
	static inline typename std::enable_if<I == sizeof...(T), unsigned int>::type hash(std::tuple<T...>) {
		return mkhash_init;
	}
	template<size_t I = 0>
	static inline typename std::enable_if<I != sizeof...(T), unsigned int>::type hash(std::tuple<T...> a) {
		typedef hash_ops<typename std::tuple_element<I, std::tuple<T...>>::type> element_ops_t;
		return mkhash(hash<I+1>(a), element_ops_t::hash(std::get<I>(a)));
	}
};

template<typename T> struct hash_ops<std::vector<T>> {
	static inline bool cmp(std::vector<T> a, std::vector<T> b) {
		return a == b;
	}
	static inline unsigned int hash(std::vector<T> a) {
		unsigned int h = mkhash_init;
		for (auto k : a)
			h = mkhash(h, hash_ops<T>::hash(k));
		return h;
	}
};

struct hash_cstr_ops {
	static inline bool cmp(const char *a, const char *b) {
		for (int i = 0; a[i] || b[i]; i++)
			if (a[i] != b[i])
				return false;
		return true;
	}
	static inline unsigned int hash(const char *a) {
		unsigned int hash = mkhash_init;
		while (*a)
			hash = mkhash(hash, *(a++));
		return hash;
	}
};

struct hash_ptr_ops {
	static inline bool cmp(const void *a, const void *b) {
		return a == b;
	}
	static inline unsigned int hash(const void *a) {
		return (uintptr_t)a;
	}
};

struct hash_obj_ops {
	static inline bool cmp(const void *a, const void *b) {
		return a == b;
	}
	template<typename T>
	static inline unsigned int hash(const T *a) {
		return a ? a->hash() : 0;
	}
};

template<typename T>
inline unsigned int mkhash(const T &v) {
	return hash_ops<T>().hash(v);
}

inline int hashtable_size(int min_size)
{
	static std::vector<int> zero_and_some_primes = {
		0, 23, 29, 37, 47, 59, 79, 101, 127, 163, 211, 269, 337, 431, 541, 677,
		853, 1069, 1361, 1709, 2137, 2677, 3347, 4201, 5261, 6577, 8231, 10289,
		12889, 16127, 20161, 25219, 31531, 39419, 49277, 61603, 77017, 96281,
		120371, 150473, 188107, 235159, 293957, 367453, 459317, 574157, 717697,
		897133, 1121423, 1401791, 1752239, 2190299, 2737937, 3422429, 4278037,
		5347553, 6684443, 8355563, 10444457, 13055587, 16319519, 20399411,
		25499291, 31874149, 39842687, 49803361, 62254207, 77817767, 97272239,
		121590311, 151987889, 189984863, 237481091, 296851369, 371064217
	};

	for (auto p : zero_and_some_primes)
		if (p >= min_size) return p;

	if (sizeof(int) == 4)
		throw std::length_error("hash table exceeded maximum size. use a ILP64 abi for larger tables.");

	for (auto p : zero_and_some_primes)
		if (100129 * p > min_size) return 100129 * p;

	throw std::length_error("hash table exceeded maximum size.");
}

template<typename K, typename T, typename OPS = hash_ops<K>> class dict;
template<typename K, int offset = 0, typename OPS = hash_ops<K>> class idict;
template<typename K, typename OPS = hash_ops<K>> class pool;
template<typename K, typename OPS = hash_ops<K>> class mfp;

template<typename K, typename T, typename OPS>
class dict
{
	struct entry_t
	{
		std::pair<K, T> udata;
		int next;

		entry_t() { }
		entry_t(const std::pair<K, T> &udata, int next) : udata(udata), next(next) { }
		entry_t(std::pair<K, T> &&udata, int next) : udata(std::move(udata)), next(next) { }
		bool operator<(const entry_t &other) const { return udata.first < other.udata.first; }
	};

	std::vector<int> hashtable;
	std::vector<entry_t> entries;
	OPS ops;

#ifdef NDEBUG
	static inline void do_assert(bool) { }
#else
	static inline void do_assert(bool cond) {
		if (!cond) throw std::runtime_error("dict<> assert failed.");
	}
#endif

	int do_hash(const K &key) const
	{
		unsigned int hash = 0;
		if (!hashtable.empty())
			hash = ops.hash(key) % (unsigned int)(hashtable.size());
		return hash;
	}

	void do_rehash()
	{
		hashtable.clear();
		hashtable.resize(hashtable_size(entries.capacity() * hashtable_size_factor), -1);

		for (int i = 0; i < int(entries.size()); i++) {
			do_assert(-1 <= entries[i].next && entries[i].next < int(entries.size()));
			int hash = do_hash(entries[i].udata.first);
			entries[i].next = hashtable[hash];
			hashtable[hash] = i;
		}
	}

	int do_erase(int index, int hash)
	{
		do_assert(index < int(entries.size()));
		if (hashtable.empty() || index < 0)
			return 0;

		int k = hashtable[hash];
		do_assert(0 <= k && k < int(entries.size()));

		if (k == index) {
			hashtable[hash] = entries[index].next;
		} else {
			while (entries[k].next != index) {
				k = entries[k].next;
				do_assert(0 <= k && k < int(entries.size()));
			}
			entries[k].next = entries[index].next;
		}

		int back_idx = entries.size()-1;

		if (index != back_idx)
		{
			int back_hash = do_hash(entries[back_idx].udata.first);

			k = hashtable[back_hash];
			do_assert(0 <= k && k < int(entries.size()));

			if (k == back_idx) {
				hashtable[back_hash] = index;
			} else {
				while (entries[k].next != back_idx) {
					k = entries[k].next;
					do_assert(0 <= k && k < int(entries.size()));
				}
				entries[k].next = index;
			}

			entries[index] = std::move(entries[back_idx]);
		}

		entries.pop_back();

		if (entries.empty())
			hashtable.clear();

		return 1;
	}

	int do_lookup(const K &key, int &hash) const
	{
		if (hashtable.empty())
			return -1;

		if (entries.size() * hashtable_size_trigger > hashtable.size()) {
			((dict*)this)->do_rehash();
			hash = do_hash(key);
		}

		int index = hashtable[hash];

		while (index >= 0 && !ops.cmp(entries[index].udata.first, key)) {
			index = entries[index].next;
			do_assert(-1 <= index && index < int(entries.size()));
		}

		return index;
	}

	int do_insert(const K &key, int &hash)
	{
		if (hashtable.empty()) {
			entries.emplace_back(std::pair<K, T>(key, T()), -1);
			do_rehash();
			hash = do_hash(key);
		} else {
			entries.emplace_back(std::pair<K, T>(key, T()), hashtable[hash]);
			hashtable[hash] = entries.size() - 1;
		}
		return entries.size() - 1;
	}

	int do_insert(const std::pair<K, T> &value, int &hash)
	{
		if (hashtable.empty()) {
			entries.emplace_back(value, -1);
			do_rehash();
			hash = do_hash(value.first);
		} else {
			entries.emplace_back(value, hashtable[hash]);
			hashtable[hash] = entries.size() - 1;
		}
		return entries.size() - 1;
	}

	int do_insert(std::pair<K, T> &&rvalue, int &hash)
	{
		if (hashtable.empty()) {
			auto key = rvalue.first;
			entries.emplace_back(std::forward<std::pair<K, T>>(rvalue), -1);
			do_rehash();
			hash = do_hash(key);
		} else {
			entries.emplace_back(std::forward<std::pair<K, T>>(rvalue), hashtable[hash]);
			hashtable[hash] = entries.size() - 1;
		}
		return entries.size() - 1;
	}

public:
	class const_iterator : public std::iterator<std::forward_iterator_tag, std::pair<K, T>>
	{
		friend class dict;
	protected:
		const dict *ptr;
		int index;
		const_iterator(const dict *ptr, int index) : ptr(ptr), index(index) { }
	public:
		const_iterator() { }
		const_iterator operator++() { index--; return *this; }
		const_iterator operator+=(int amt) { index -= amt; return *this; }
		bool operator<(const const_iterator &other) const { return index > other.index; }
		bool operator==(const const_iterator &other) const { return index == other.index; }
		bool operator!=(const const_iterator &other) const { return index != other.index; }
		const std::pair<K, T> &operator*() const { return ptr->entries[index].udata; }
		const std::pair<K, T> *operator->() const { return &ptr->entries[index].udata; }
	};

	class iterator : public std::iterator<std::forward_iterator_tag, std::pair<K, T>>
	{
		friend class dict;
	protected:
		dict *ptr;
		int index;
		iterator(dict *ptr, int index) : ptr(ptr), index(index) { }
	public:
		iterator() { }
		iterator operator++() { index--; return *this; }
		iterator operator+=(int amt) { index -= amt; return *this; }
		bool operator<(const iterator &other) const { return index > other.index; }
		bool operator==(const iterator &other) const { return index == other.index; }
		bool operator!=(const iterator &other) const { return index != other.index; }
		std::pair<K, T> &operator*() { return ptr->entries[index].udata; }
		std::pair<K, T> *operator->() { return &ptr->entries[index].udata; }
		const std::pair<K, T> &operator*() const { return ptr->entries[index].udata; }
		const std::pair<K, T> *operator->() const { return &ptr->entries[index].udata; }
		operator const_iterator() const { return const_iterator(ptr, index); }
	};

	dict()
	{
	}

	dict(const dict &other)
	{
		entries = other.entries;
		do_rehash();
	}

	dict(dict &&other)
	{
		swap(other);
	}

	dict &operator=(const dict &other) {
		entries = other.entries;
		do_rehash();
		return *this;
	}

	dict &operator=(dict &&other) {
		clear();
		swap(other);
		return *this;
	}

	dict(const std::initializer_list<std::pair<K, T>> &list)
	{
		for (auto &it : list)
			insert(it);
	}

	template<class InputIterator>
	dict(InputIterator first, InputIterator last)
	{
		insert(first, last);
	}

	template<class InputIterator>
	void insert(InputIterator first, InputIterator last)
	{
		for (; first != last; ++first)
			insert(*first);
	}

	std::pair<iterator, bool> insert(const K &key)
	{
		int hash = do_hash(key);
		int i = do_lookup(key, hash);
		if (i >= 0)
			return std::pair<iterator, bool>(iterator(this, i), false);
		i = do_insert(key, hash);
		return std::pair<iterator, bool>(iterator(this, i), true);
	}

	std::pair<iterator, bool> insert(const std::pair<K, T> &value)
	{
		int hash = do_hash(value.first);
		int i = do_lookup(value.first, hash);
		if (i >= 0)
			return std::pair<iterator, bool>(iterator(this, i), false);
		i = do_insert(value, hash);
		return std::pair<iterator, bool>(iterator(this, i), true);
	}

	std::pair<iterator, bool> insert(std::pair<K, T> &&rvalue)
	{
		int hash = do_hash(rvalue.first);
		int i = do_lookup(rvalue.first, hash);
		if (i >= 0)
			return std::pair<iterator, bool>(iterator(this, i), false);
		i = do_insert(std::forward<std::pair<K, T>>(rvalue), hash);
		return std::pair<iterator, bool>(iterator(this, i), true);
	}

	std::pair<iterator, bool> emplace(K const &key, T const &value)
	{
		int hash = do_hash(key);
		int i = do_lookup(key, hash);
		if (i >= 0)
			return std::pair<iterator, bool>(iterator(this, i), false);
		i = do_insert(std::make_pair(key, value), hash);
		return std::pair<iterator, bool>(iterator(this, i), true);
	}

	std::pair<iterator, bool> emplace(K const &key, T &&rvalue)
	{
		int hash = do_hash(key);
		int i = do_lookup(key, hash);
		if (i >= 0)
			return std::pair<iterator, bool>(iterator(this, i), false);
		i = do_insert(std::make_pair(key, std::forward<T>(rvalue)), hash);
		return std::pair<iterator, bool>(iterator(this, i), true);
	}

	std::pair<iterator, bool> emplace(K &&rkey, T const &value)
	{
		int hash = do_hash(rkey);
		int i = do_lookup(rkey, hash);
		if (i >= 0)
			return std::pair<iterator, bool>(iterator(this, i), false);
		i = do_insert(std::make_pair(std::forward<K>(rkey), value), hash);
		return std::pair<iterator, bool>(iterator(this, i), true);
	}

	std::pair<iterator, bool> emplace(K &&rkey, T &&rvalue)
	{
		int hash = do_hash(rkey);
		int i = do_lookup(rkey, hash);
		if (i >= 0)
			return std::pair<iterator, bool>(iterator(this, i), false);
		i = do_insert(std::make_pair(std::forward<K>(rkey), std::forward<T>(rvalue)), hash);
		return std::pair<iterator, bool>(iterator(this, i), true);
	}

	int erase(const K &key)
	{
		int hash = do_hash(key);
		int index = do_lookup(key, hash);
		return do_erase(index, hash);
	}

	iterator erase(iterator it)
	{
		int hash = do_hash(it->first);
		do_erase(it.index, hash);
		return ++it;
	}

	int count(const K &key) const
	{
		int hash = do_hash(key);
		int i = do_lookup(key, hash);
		return i < 0 ? 0 : 1;
	}

	int count(const K &key, const_iterator it) const
	{
		int hash = do_hash(key);
		int i = do_lookup(key, hash);
		return i < 0 || i > it.index ? 0 : 1;
	}

	iterator find(const K &key)
	{
		int hash = do_hash(key);
		int i = do_lookup(key, hash);
		if (i < 0)
			return end();
		return iterator(this, i);
	}

	const_iterator find(const K &key) const
	{
		int hash = do_hash(key);
		int i = do_lookup(key, hash);
		if (i < 0)
			return end();
		return const_iterator(this, i);
	}

	T& at(const K &key)
	{
		int hash = do_hash(key);
		int i = do_lookup(key, hash);
		if (i < 0)
			throw std::out_of_range("dict::at()");
		return entries[i].udata.second;
	}

	const T& at(const K &key) const
	{
		int hash = do_hash(key);
		int i = do_lookup(key, hash);
		if (i < 0)
			throw std::out_of_range("dict::at()");
		return entries[i].udata.second;
	}

	const T& at(const K &key, const T &defval) const
	{
		int hash = do_hash(key);
		int i = do_lookup(key, hash);
		if (i < 0)
			return defval;
		return entries[i].udata.second;
	}

	T& operator[](const K &key)
	{
		int hash = do_hash(key);
		int i = do_lookup(key, hash);
		if (i < 0)
			i = do_insert(std::pair<K, T>(key, T()), hash);
		return entries[i].udata.second;
	}

	template<typename Compare = std::less<K>>
	void sort(Compare comp = Compare())
	{
		std::sort(entries.begin(), entries.end(), [comp](const entry_t &a, const entry_t &b){ return comp(b.udata.first, a.udata.first); });
		do_rehash();
	}

	void swap(dict &other)
	{
		hashtable.swap(other.hashtable);
		entries.swap(other.entries);
	}

	bool operator==(const dict &other) const {
		if (size() != other.size())
			return false;
		for (auto &it : entries) {
			auto oit = other.find(it.udata.first);
			if (oit == other.end() || !(oit->second == it.udata.second))
				return false;
		}
		return true;
	}

	bool operator!=(const dict &other) const {
		return !operator==(other);
	}

	unsigned int hash() const {
		unsigned int h = mkhash_init;
		for (auto &entry : entries) {
			h ^= hash_ops<K>::hash(entry.udata.first);
			h ^= hash_ops<T>::hash(entry.udata.second);
		}
		return h;
	}

	void reserve(size_t n) { entries.reserve(n); }
	size_t size() const { return entries.size(); }
	bool empty() const { return entries.empty(); }
	void clear() { hashtable.clear(); entries.clear(); }

	iterator begin() { return iterator(this, int(entries.size())-1); }
	iterator element(int n) { return iterator(this, int(entries.size())-1-n); }
	iterator end() { return iterator(nullptr, -1); }

	const_iterator begin() const { return const_iterator(this, int(entries.size())-1); }
	const_iterator element(int n) const { return const_iterator(this, int(entries.size())-1-n); }
	const_iterator end() const { return const_iterator(nullptr, -1); }
};

template<typename K, typename OPS>
class pool
{
	template<typename, int, typename> friend class idict;

protected:
	struct entry_t
	{
		K udata;
		int next;

		entry_t() { }
		entry_t(const K &udata, int next) : udata(udata), next(next) { }
		entry_t(K &&udata, int next) : udata(std::move(udata)), next(next) { }
	};

	std::vector<int> hashtable;
	std::vector<entry_t> entries;
	OPS ops;

#ifdef NDEBUG
	static inline void do_assert(bool) { }
#else
	static inline void do_assert(bool cond) {
		if (!cond) throw std::runtime_error("pool<> assert failed.");
	}
#endif

	int do_hash(const K &key) const
	{
		unsigned int hash = 0;
		if (!hashtable.empty())
			hash = ops.hash(key) % (unsigned int)(hashtable.size());
		return hash;
	}

	void do_rehash()
	{
		hashtable.clear();
		hashtable.resize(hashtable_size(entries.capacity() * hashtable_size_factor), -1);

		for (int i = 0; i < int(entries.size()); i++) {
			do_assert(-1 <= entries[i].next && entries[i].next < int(entries.size()));
			int hash = do_hash(entries[i].udata);
			entries[i].next = hashtable[hash];
			hashtable[hash] = i;
		}
	}

	int do_erase(int index, int hash)
	{
		do_assert(index < int(entries.size()));
		if (hashtable.empty() || index < 0)
			return 0;

		int k = hashtable[hash];
		if (k == index) {
			hashtable[hash] = entries[index].next;
		} else {
			while (entries[k].next != index) {
				k = entries[k].next;
				do_assert(0 <= k && k < int(entries.size()));
			}
			entries[k].next = entries[index].next;
		}

		int back_idx = entries.size()-1;

		if (index != back_idx)
		{
			int back_hash = do_hash(entries[back_idx].udata);

			k = hashtable[back_hash];
			if (k == back_idx) {
				hashtable[back_hash] = index;
			} else {
				while (entries[k].next != back_idx) {
					k = entries[k].next;
					do_assert(0 <= k && k < int(entries.size()));
				}
				entries[k].next = index;
			}

			entries[index] = std::move(entries[back_idx]);
		}

		entries.pop_back();

		if (entries.empty())
			hashtable.clear();

		return 1;
	}

	int do_lookup(const K &key, int &hash) const
	{
		if (hashtable.empty())
			return -1;

		if (entries.size() * hashtable_size_trigger > hashtable.size()) {
			((pool*)this)->do_rehash();
			hash = do_hash(key);
		}

		int index = hashtable[hash];

		while (index >= 0 && !ops.cmp(entries[index].udata, key)) {
			index = entries[index].next;
			do_assert(-1 <= index && index < int(entries.size()));
		}

		return index;
	}

	int do_insert(const K &value, int &hash)
	{
		if (hashtable.empty()) {
			entries.emplace_back(value, -1);
			do_rehash();
			hash = do_hash(value);
		} else {
			entries.emplace_back(value, hashtable[hash]);
			hashtable[hash] = entries.size() - 1;
		}
		return entries.size() - 1;
	}

	int do_insert(K &&rvalue, int &hash)
	{
		if (hashtable.empty()) {
			entries.emplace_back(std::forward<K>(rvalue), -1);
			do_rehash();
			hash = do_hash(rvalue);
		} else {
			entries.emplace_back(std::forward<K>(rvalue), hashtable[hash]);
			hashtable[hash] = entries.size() - 1;
		}
		return entries.size() - 1;
	}

public:
	class const_iterator : public std::iterator<std::forward_iterator_tag, K>
	{
		friend class pool;
	protected:
		const pool *ptr;
		int index;
		const_iterator(const pool *ptr, int index) : ptr(ptr), index(index) { }
	public:
		const_iterator() { }
		const_iterator operator++() { index--; return *this; }
		bool operator==(const const_iterator &other) const { return index == other.index; }
		bool operator!=(const const_iterator &other) const { return index != other.index; }
		const K &operator*() const { return ptr->entries[index].udata; }
		const K *operator->() const { return &ptr->entries[index].udata; }
	};

	class iterator : public std::iterator<std::forward_iterator_tag, K>
	{
		friend class pool;
	protected:
		pool *ptr;
		int index;
		iterator(pool *ptr, int index) : ptr(ptr), index(index) { }
	public:
		iterator() { }
		iterator operator++() { index--; return *this; }
		bool operator==(const iterator &other) const { return index == other.index; }
		bool operator!=(const iterator &other) const { return index != other.index; }
		K &operator*() { return ptr->entries[index].udata; }
		K *operator->() { return &ptr->entries[index].udata; }
		const K &operator*() const { return ptr->entries[index].udata; }
		const K *operator->() const { return &ptr->entries[index].udata; }
		operator const_iterator() const { return const_iterator(ptr, index); }
	};

	pool()
	{
	}

	pool(const pool &other)
	{
		entries = other.entries;
		do_rehash();
	}

	pool(pool &&other)
	{
		swap(other);
	}

	pool &operator=(const pool &other) {
		entries = other.entries;
		do_rehash();
		return *this;
	}

	pool &operator=(pool &&other) {
		clear();
		swap(other);
		return *this;
	}

	pool(const std::initializer_list<K> &list)
	{
		for (auto &it : list)
			insert(it);
	}

	template<class InputIterator>
	pool(InputIterator first, InputIterator last)
	{
		insert(first, last);
	}

	template<class InputIterator>
	void insert(InputIterator first, InputIterator last)
	{
		for (; first != last; ++first)
			insert(*first);
	}

	std::pair<iterator, bool> insert(const K &value)
	{
		int hash = do_hash(value);
		int i = do_lookup(value, hash);
		if (i >= 0)
			return std::pair<iterator, bool>(iterator(this, i), false);
		i = do_insert(value, hash);
		return std::pair<iterator, bool>(iterator(this, i), true);
	}

	std::pair<iterator, bool> insert(K &&rvalue)
	{
		int hash = do_hash(rvalue);
		int i = do_lookup(rvalue, hash);
		if (i >= 0)
			return std::pair<iterator, bool>(iterator(this, i), false);
		i = do_insert(std::forward<K>(rvalue), hash);
		return std::pair<iterator, bool>(iterator(this, i), true);
	}

	template<typename... Args>
	std::pair<iterator, bool> emplace(Args&&... args)
	{
		return insert(K(std::forward<Args>(args)...));
	}

	int erase(const K &key)
	{
		int hash = do_hash(key);
		int index = do_lookup(key, hash);
		return do_erase(index, hash);
	}

	iterator erase(iterator it)
	{
		int hash = do_hash(*it);
		do_erase(it.index, hash);
		return ++it;
	}

	int count(const K &key) const
	{
		int hash = do_hash(key);
		int i = do_lookup(key, hash);
		return i < 0 ? 0 : 1;
	}

	int count(const K &key, const_iterator it) const
	{
		int hash = do_hash(key);
		int i = do_lookup(key, hash);
		return i < 0 || i > it.index ? 0 : 1;
	}

	iterator find(const K &key)
	{
		int hash = do_hash(key);
		int i = do_lookup(key, hash);
		if (i < 0)
			return end();
		return iterator(this, i);
	}

	const_iterator find(const K &key) const
	{
		int hash = do_hash(key);
		int i = do_lookup(key, hash);
		if (i < 0)
			return end();
		return const_iterator(this, i);
	}

	bool operator[](const K &key)
	{
		int hash = do_hash(key);
		int i = do_lookup(key, hash);
		return i >= 0;
	}

	template<typename Compare = std::less<K>>
	void sort(Compare comp = Compare())
	{
		std::sort(entries.begin(), entries.end(), [comp](const entry_t &a, const entry_t &b){ return comp(b.udata, a.udata); });
		do_rehash();
	}

	K pop()
	{
		iterator it = begin();
		K ret = *it;
		erase(it);
		return ret;
	}

	void swap(pool &other)
	{
		hashtable.swap(other.hashtable);
		entries.swap(other.entries);
	}

	bool operator==(const pool &other) const {
		if (size() != other.size())
			return false;
		for (auto &it : entries)
			if (!other.count(it.udata))
				return false;
		return true;
	}

	bool operator!=(const pool &other) const {
		return !operator==(other);
	}

	bool hash() const {
		unsigned int hashval = mkhash_init;
		for (auto &it : entries)
			hashval ^= ops.hash(it.udata);
		return hashval;
	}

	void reserve(size_t n) { entries.reserve(n); }
	size_t size() const { return entries.size(); }
	bool empty() const { return entries.empty(); }
	void clear() { hashtable.clear(); entries.clear(); }

	iterator begin() { return iterator(this, int(entries.size())-1); }
	iterator element(int n) { return iterator(this, int(entries.size())-1-n); }
	iterator end() { return iterator(nullptr, -1); }

	const_iterator begin() const { return const_iterator(this, int(entries.size())-1); }
	const_iterator element(int n) const { return const_iterator(this, int(entries.size())-1-n); }
	const_iterator end() const { return const_iterator(nullptr, -1); }
};

template<typename K, int offset, typename OPS>
class idict
{
	pool<K, OPS> database;

public:
	class const_iterator : public std::iterator<std::forward_iterator_tag, K>
	{
		friend class idict;
	protected:
		const idict &container;
		int index;
		const_iterator(const idict &container, int index) : container(container), index(index) { }
	public:
		const_iterator() { }
		const_iterator operator++() { index++; return *this; }
		bool operator==(const const_iterator &other) const { return index == other.index; }
		bool operator!=(const const_iterator &other) const { return index != other.index; }
		const K &operator*() const { return container[index]; }
		const K *operator->() const { return &container[index]; }
	};

	int operator()(const K &key)
	{
		int hash = database.do_hash(key);
		int i = database.do_lookup(key, hash);
		if (i < 0)
			i = database.do_insert(key, hash);
		return i + offset;
	}

	int at(const K &key) const
	{
		int hash = database.do_hash(key);
		int i = database.do_lookup(key, hash);
		if (i < 0)
			throw std::out_of_range("idict::at()");
		return i + offset;
	}

	int at(const K &key, int defval) const
	{
		int hash = database.do_hash(key);
		int i = database.do_lookup(key, hash);
		if (i < 0)
			return defval;
		return i + offset;
	}

	int count(const K &key) const
	{
		int hash = database.do_hash(key);
		int i = database.do_lookup(key, hash);
		return i < 0 ? 0 : 1;
	}

	void expect(const K &key, int i)
	{
		int j = (*this)(key);
		if (i != j)
			throw std::out_of_range("idict::expect()");
	}

	const K &operator[](int index) const
	{
		return database.entries.at(index - offset).udata;
	}

	void swap(idict &other)
	{
		database.swap(other.database);
	}

	void reserve(size_t n) { database.reserve(n); }
	size_t size() const { return database.size(); }
	bool empty() const { return database.empty(); }
	void clear() { database.clear(); }

	const_iterator begin() const { return const_iterator(*this, offset); }
	const_iterator element(int n) const { return const_iterator(*this, n); }
	const_iterator end() const { return const_iterator(*this, offset + size()); }
};

template<typename K, typename OPS>
class mfp
{
	mutable idict<K, 0, OPS> database;
	mutable std::vector<int> parents;

public:
	typedef typename idict<K, 0, OPS>::const_iterator const_iterator;

	int operator()(const K &key) const
	{
		int i = database(key);
		parents.resize(database.size(), -1);
		return i;
	}

	const K &operator[](int index) const
	{
		return database[index];
	}

	int ifind(int i) const
	{
		int p = i, k = i;

		while (parents[p] != -1)
			p = parents[p];

		while (k != p) {
			int next_k = parents[k];
			parents[k] = p;
			k = next_k;
		}

		return p;
	}

	void imerge(int i, int j)
	{
		i = ifind(i);
		j = ifind(j);

		if (i != j)
			parents[i] = j;
	}

	void ipromote(int i)
	{
		int k = i;

		while (k != -1) {
			int next_k = parents[k];
			parents[k] = i;
			k = next_k;
		}

		parents[i] = -1;
	}

	int lookup(const K &a) const
	{
		return ifind((*this)(a));
	}

	const K &find(const K &a) const
	{
		int i = database.at(a, -1);
		if (i < 0)
			return a;
		return (*this)[ifind(i)];
	}

	void merge(const K &a, const K &b)
	{
		imerge((*this)(a), (*this)(b));
	}

	void promote(const K &a)
	{
		int i = database.at(a, -1);
		if (i >= 0)
			ipromote(i);
	}

	void swap(mfp &other)
	{
		database.swap(other.database);
		parents.swap(other.parents);
	}

	void reserve(size_t n) { database.reserve(n); }
	size_t size() const { return database.size(); }
	bool empty() const { return database.empty(); }
	void clear() { database.clear(); parents.clear(); }

	const_iterator begin() const { return database.begin(); }
	const_iterator element(int n) const { return database.element(n); }
	const_iterator end() const { return database.end(); }
};

} /* namespace hashlib */

#endif