-- VHDL PSL parser. -- Copyright (C) 2009 Tristan Gingold -- -- GHDL is free software; you can redistribute it and/or modify it under -- the terms of the GNU General Public License as published by the Free -- Software Foundation; either version 2, or (at your option) any later -- version. -- -- GHDL is distributed in the hope that it will be useful, but WITHOUT ANY -- WARRANTY; without even the implied warranty of MERCHANTABILITY or -- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- for more details. -- -- You should have received a copy of the GNU General Public License -- along with GHDL; see the file COPYING. If not, write to the Free -- Software Foundation, 59 Temple Place - Suite 330, Boston, MA -- 02111-1307, USA. with Types; use Types; with Tokens; use Tokens; package Parse_Psl is function Parse_Psl_Sequence (Full_Hdl_Expr : Boolean) return PSL_Node; function Parse_Psl_Property return PSL_Node; function Parse_Psl_Boolean return PSL_Node; function Parse_Psl_Declaration (Tok : Token_Type) return PSL_Node; -- True if endpoint declaration N is instantiated (ie has no parameters). function Is_Instantiated_Declaration (N : PSL_Node) return Boolean; end Parse_Psl; '/cgit/iCE40/yosys/about/'>aboutsummaryrefslogtreecommitdiffstats
path: root/libs/bigint/BigIntegerAlgorithms.hh
blob: b1dd9432274b77856efaf35706f39dced49f3663 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#ifndef BIGINTEGERALGORITHMS_H
#define BIGINTEGERALGORITHMS_H

#include "BigInteger.hh"

/* Some mathematical algorithms for big integers.
 * This code is new and, as such, experimental. */

// Returns the greatest common divisor of a and b.
BigUnsigned gcd(BigUnsigned a, BigUnsigned b);

/* Extended Euclidean algorithm.
 * Given m and n, finds gcd g and numbers r, s such that r*m + s*n == g. */
void extendedEuclidean(BigInteger m, BigInteger n,
		BigInteger &g, BigInteger &r, BigInteger &s);

/* Returns the multiplicative inverse of x modulo n, or throws an exception if
 * they have a common factor. */
BigUnsigned modinv(const BigInteger &x, const BigUnsigned &n);

// Returns (base ^ exponent) % modulus.
BigUnsigned modexp(const BigInteger &base, const BigUnsigned &exponent,
		const BigUnsigned &modulus);

#endif