aboutsummaryrefslogtreecommitdiffstats
path: root/manual/command-reference-manual.tex
blob: 425d89b67d52a823b11bd6d8a823eedf7cffeab8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
pre { line-height: 125%; margin: 0; }
td.linenos pre { color: #000000; background-color: #f0f0f0; padding: 0 5px 0 5px; }
span.linenos { color: #000000; background-color: #f0f0f0; padding: 0 5px 0 5px; }
td.linenos pre.special { color: #000000; background-color: #ffffc0; padding: 0 5px 0 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding: 0 5px 0 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight { background: #ffffff; }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008800 } /* Keyword.Pseudo */
.highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */
.highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */
.highlight .na { color: #336699 } /* Name.Attribute */
.highlight .nb { color: #003388 } /* Name.Builtin */
.highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */
.highlight .no { color: #003366; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555555 } /* Name.Decorator */
.highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */
.highlight .nl { color: #336699; font-style: italic } /* Name.Label */
.highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */
.highlight .py { color: #336699; font-weight: bold } /* Name.Property */
.highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #336699 } /* Name.Variable */
.highlight .ow { color: #008800 } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */
.highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */
.highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */
.highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */
.highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */
.highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */
.highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */
.highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */
.highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */
.highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */
.highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */
.highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */
.highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */
.highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */
.highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */
.highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */
.highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */
.highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */
.highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */
.highlight .vc { color: #336699 } /* Name.Variable.Class */
.highlight .vg { color: #dd7700 } /* Name.Variable.Global */
.highlight .vi { color: #3333bb } /* Name.Variable.Instance */
.highlight .vm { color: #336699 } /* Name.Variable.Magic */
.highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
--  Operations synthesis.
--  Copyright (C) 2019 Tristan Gingold
--
--  This file is part of GHDL.
--
--  This program is free software; you can redistribute it and/or modify
--  it under the terms of the GNU General Public License as published by
--  the Free Software Foundation; either version 2 of the License, or
--  (at your option) any later version.
--
--  This program is distributed in the hope that it will be useful,
--  but WITHOUT ANY WARRANTY; without even the implied warranty of
--  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
--  GNU General Public License for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with this program; if not, write to the Free Software
--  Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
--  MA 02110-1301, USA.

with Types; use Types;
with Types_Utils; use Types_Utils;
with Mutils;

with Vhdl.Ieee.Std_Logic_1164; use Vhdl.Ieee.Std_Logic_1164;
with Vhdl.Errors; use Vhdl.Errors;
with Vhdl.Utils; use Vhdl.Utils;

with Areapools;

with Netlists; use Netlists;
with Netlists.Gates; use Netlists.Gates;
with Netlists.Builders; use Netlists.Builders;
with Netlists.Folds; use Netlists.Folds;
with Netlists.Utils;

with Synth.Errors; use Synth.Errors;
with Synth.Stmts; use Synth.Stmts;
with Synth.Expr; use Synth.Expr;
with Synth.Source;
with Synth.Static_Oper; use Synth.Static_Oper;

package body Synth.Oper is
   procedure Set_Location (N : Net; Loc : Node)
     renames Synth.Source.Set_Location;

   function Synth_Uresize
     (Ctxt : Context_Acc; N : Net; W : Width; Loc : Node) return Net is
   begin
      return Build2_Uresize (Ctxt, N, W, Get_Location (Loc));
   end Synth_Uresize;

   function Synth_Uresize
     (Ctxt : Context_Acc; Val : Valtyp; W : Width; Loc : Node) return Net
   is
      Res : Net;
   begin
      if Is_Static (Val.Val) and then Val.Typ.Kind = Type_Discrete then
         if Val.Typ.Drange.Is_Signed and then Read_Discrete (Val) < 0 then
            --  TODO.
            raise Internal_Error;
         else
            Res := Build2_Const_Uns
              (Ctxt, To_Uns64 (Read_Discrete (Val)), W);
         end if;
         Set_Location (Res, Loc);
         return Res;
      end if;
      return Synth_Uresize (Ctxt, Get_Net (Ctxt, Val), W, Loc);
   end Synth_Uresize;

   function Synth_Sresize
     (Ctxt : Context_Acc; Val : Valtyp; W : Width; Loc : Node) return Net
   is
      Res : Net;
   begin
      if Is_Static (Val.Val) and then Val.Typ.Kind = Type_Discrete then
         if Val.Typ.Drange.Is_Signed then
            Res := Build2_Const_Int (Ctxt, Read_Discrete (Val), W);
         else
            --  TODO.
            raise Internal_Error;
         end if;
         Set_Location (Res, Loc);
         return Res;
      end if;
      return Build2_Sresize (Ctxt, Get_Net (Ctxt, Val), W,
                             Get_Location (Loc));
   end Synth_Sresize;

   function Synth_Bit_Eq_Const
     (Ctxt : Context_Acc; Cst : Valtyp; Expr : Valtyp; Loc : Node)
     return Valtyp
   is
      Val : Uns32;
      Zx : Uns32;
      N : Net;
   begin
      if Is_Static (Expr.Val) then
         return Create_Value_Discrete
           (Boolean'Pos (Read_Discrete (Cst) = Read_Discrete (Expr)),
            Boolean_Type);
      end if;

      To_Logic (Read_Discrete (Cst), Cst.Typ, Val, Zx);
      if Zx /= 0 then
         --  Equal unknown -> return X
         N := Build_Const_UL32 (Ctxt, 0, 1, 1);
         Set_Location (N, Loc);
         return Create_Value_Net (N, Boolean_Type);
      elsif Val = 1 then
         --  The result type is a boolean; convert if needed.
         if Expr.Typ.Kind = Type_Logic then
            return Create_Value_Net (Get_Net (Ctxt, Expr), Boolean_Type);
         else
            pragma Assert (Expr.Typ.Kind = Type_Bit);
            return Expr;
         end if;
      else
         pragma Assert (Val = 0);
         N := Build_Monadic (Ctxt, Id_Not, Get_Net (Ctxt, Expr));
         Set_Location (N, Loc);
         return Create_Value_Net (N, Boolean_Type);
      end if;
   end Synth_Bit_Eq_Const;

   --  Create the result range of an operator.  According to the ieee standard,
   --  the range is LEN-1 downto 0.
   function Create_Res_Bound (Prev : Valtyp) return Type_Acc
   is
      Res : Type_Acc;
   begin
      Res := Prev.Typ;

      case Res.Kind is
         when Type_Vector =>
            if Res.Vbound.Dir = Dir_Downto
              and then Res.Vbound.Right = 0
            then
               --  Normalized range
               return Res;
            end if;
            return Create_Vec_Type_By_Length (Res.W, Res.Vec_El);

         when Type_Slice =>
            return Create_Vec_Type_By_Length (Res.W, Res.Slice_El);

         when Type_Unbounded_Vector =>
            raise Internal_Error;

         when others =>
            raise Internal_Error;
      end case;
   end Create_Res_Bound;

   function Create_Bounds_From_Length
     (Syn_Inst : Synth_Instance_Acc; Atype : Iir; Len : Iir_Index32)
     return Bound_Type
   is
      Res : Bound_Type;
      Index_Bounds : Discrete_Range_Type;
   begin
      Synth_Discrete_Range (Syn_Inst, Atype, Index_Bounds);

      Res := (Left => Int32 (Index_Bounds.Left),
              Right => 0,
              Dir => Index_Bounds.Dir,
              Len => Uns32 (Len));

      if Len = 0 then
         --  Special case.
         Res.Right := Res.Left;
         case Index_Bounds.Dir is
            when Dir_To =>
               Res.Left := Res.Right + 1;
            when Dir_Downto =>
               Res.Left := Res.Right - 1;
         end case;
      else
         case Index_Bounds.Dir is
            when Dir_To =>
               Res.Right := Res.Left + Int32 (Len - 1);
            when Dir_Downto =>
               Res.Right := Res.Left - Int32 (Len - 1);
         end case;
      end if;
      return Res;
   end Create_Bounds_From_Length;

   --  Do a match comparison between CST and OPER.
   --  Return No_Net if CST has incorrect value.
   function Synth_Match (Ctxt : Context_Acc;
                         Cst : Valtyp;
                         Oper : Valtyp;
                         Expr : Node;
                         Op : Compare_Module_Id := Id_Eq) return Net
   is
      Wd : constant Width := Cst.Typ.W;
      pragma Assert (Wd > 0);
      Nwords : constant Natural := Natural ((Wd + 31) / 32);
      Mask : Uns32_Arr_Acc;
      Vals : Uns32_Arr_Acc;
      Boff : Natural;
      Woff : Natural;
      B : Uns32;
      M : Uns32;
      Nv : Net;
      Nm : Net;
      Res : Net;
   begin
      --  Flatten 0/1 DC.
      Mask := new Uns32_Arr'(0 .. Nwords - 1 => 0);
      Vals := new Uns32_Arr'(0 .. Nwords - 1 => 0);

      Boff := 0;
      Woff := 0;
      for I in reverse 1 .. Vec_Length (Cst.Typ) loop
         case Read_U8 (Cst.Val.Mem + Size_Type (I - 1)) is
            when Std_Logic_0_Pos
              |  Std_Logic_L_Pos =>
               B := 0;
               M := 1;
            when Std_Logic_1_Pos
              |  Std_Logic_H_Pos =>
               B := 1;
               M := 1;
            when Std_Logic_U_Pos
              |  Std_Logic_X_Pos
              |  Std_Logic_Z_Pos
              |  Std_Logic_W_Pos =>
               --  Never match
               --  FIXME: warning ?
               Unchecked_Deallocate (Mask);
               Unchecked_Deallocate (Vals);
               return No_Net;
            when Std_Logic_D_Pos =>
               B := 0;
               M := 0;
            when others =>
               raise Internal_Error;
         end case;
         Mask (Woff) := Mask (Woff) or Shift_Left (M, Boff);
         Vals (Woff) := Vals (Woff) or Shift_Left (B, Boff);
         Boff := Boff + 1;
         if Boff = 32 then
            Boff := 0;
            Woff := Woff + 1;
         end if;
      end loop;

      --  Generate and + eq
      Nv := Build2_Const_Vec (Ctxt, Wd, Vals.all);
      Set_Location (Nv, Expr);
      Unchecked_Deallocate (Vals);
      Nm := Build2_Const_Vec (Ctxt, Wd, Mask.all);
      Set_Location (Nm, Expr);
      Unchecked_Deallocate (Mask);
      Res := Build_Dyadic (Ctxt, Id_And, Get_Net (Ctxt, Oper), Nm);
      Set_Location (Res, Expr);
      Res := Build_Compare (Ctxt, Op, Res, Nv);
      Set_Location (Res, Expr);

      return Res;
   end Synth_Match;

   --  Note: LEFT or RIGHT can be a single bit.
   function Synth_Dyadic_Uns_Uns (Ctxt : Context_Acc;
                                  Id : Dyadic_Module_Id;
                                  Left, Right : Valtyp;
                                  Expr : Node) return Valtyp
   is
      W : constant Width := Width'Max (Left.Typ.W, Right.Typ.W);
      El_Typ : Type_Acc;
      Rtype : Type_Acc;
      L1, R1 : Net;
      N : Net;
   begin
      if Left.Typ.Kind = Type_Vector then
         El_Typ := Left.Typ.Vec_El;
      elsif Right.Typ.Kind = Type_Vector then
         El_Typ := Right.Typ.Vec_El;
      else
         raise Internal_Error;
      end if;
      Rtype := Create_Vec_Type_By_Length (W, El_Typ);
      L1 := Synth_Uresize (Ctxt, Left, W, Expr);
      R1 := Synth_Uresize (Ctxt, Right, W, Expr);
      N := Build_Dyadic (Ctxt, Id, L1, R1);
      Set_Location (N, Expr);
      return Create_Value_Net (N, Rtype);
   end Synth_Dyadic_Uns_Uns;

   function Synth_Dyadic_Uns_Nat (Ctxt : Context_Acc;
                                  Id : Dyadic_Module_Id;
                                  Left, Right : Valtyp;
                                  Expr : Node) return Valtyp
   is
      L : constant Net := Get_Net (Ctxt, Left);
      R1 : Net;
      N : Net;
   begin
      R1 := Synth_Uresize (Ctxt, Right, Left.Typ.W, Expr);
      N := Build_Dyadic (Ctxt, Id, L, R1);
      Set_Location (N, Expr);
      return Create_Value_Net (N, Create_Res_Bound (Left));
   end Synth_Dyadic_Uns_Nat;

   function Synth_Dyadic_Nat_Uns (Ctxt : Context_Acc;
                                  Id : Dyadic_Module_Id;
                                  Left, Right : Valtyp;
                                  Expr : Node) return Valtyp
   is
      R : constant Net := Get_Net (Ctxt, Right);
      L1 : Net;
      N : Net;
   begin
      L1 := Synth_Uresize (Ctxt, Left, Right.Typ.W, Expr);
      N := Build_Dyadic (Ctxt, Id, L1, R);
      Set_Location (N, Expr);
      return Create_Value_Net (N, Create_Res_Bound (Right));
   end Synth_Dyadic_Nat_Uns;

   --  Note: LEFT or RIGHT can be a single bit.
   function Synth_Dyadic_Sgn_Sgn (Ctxt : Context_Acc;
                                  Id : Dyadic_Module_Id;
                                  Left, Right : Valtyp;
                                  Expr : Node) return Valtyp
   is
      W : constant Width := Width'Max (Left.Typ.W, Right.Typ.W);
      El_Typ : Type_Acc;
      Rtype : Type_Acc;
      L1, R1 : Net;
      N : Net;
   begin
      if Left.Typ.Kind = Type_Vector then
         El_Typ := Left.Typ.Vec_El;
      elsif Right.Typ.Kind = Type_Vector then
         El_Typ := Right.Typ.Vec_El;
      else
         raise Internal_Error;
      end if;
      Rtype := Create_Vec_Type_By_Length (W, El_Typ);
      L1 := Synth_Sresize (Ctxt, Left, W, Expr);
      R1 := Synth_Sresize (Ctxt, Right, W, Expr);
      N := Build_Dyadic (Ctxt, Id, L1, R1);
      Set_Location (N, Expr);
      return Create_Value_Net (N, Rtype);
   end Synth_Dyadic_Sgn_Sgn;

   function Synth_Dyadic_Sgn_Int (Ctxt : Context_Acc;
                                  Id : Dyadic_Module_Id;
                                  Left, Right : Valtyp;
                                  Expr : Node) return Valtyp
   is
      L : constant Net := Get_Net (Ctxt, Left);
      R1 : Net;
      N : Net;
   begin
      R1 := Synth_Sresize (Ctxt, Right, Left.Typ.W, Expr);
      N := Build_Dyadic (Ctxt, Id, L, R1);
      Set_Location (N, Expr);
      return Create_Value_Net (N, Create_Res_Bound (Left));
   end Synth_Dyadic_Sgn_Int;

   function Synth_Dyadic_Int_Sgn (Ctxt : Context_Acc;
                                  Id : Dyadic_Module_Id;
                                  Left, Right : Valtyp;
                                  Expr : Node) return Valtyp
   is
      R : constant Net := Get_Net (Ctxt, Right);
      L1 : Net;
      N : Net;
   begin
      L1 := Synth_Sresize (Ctxt, Left, Right.Typ.W, Expr);
      N := Build_Dyadic (Ctxt, Id, R, L1);
      Set_Location (N, Expr);
      return Create_Value_Net (N, Create_Res_Bound (Right));
   end Synth_Dyadic_Int_Sgn;

   function Synth_Dyadic_Operation (Syn_Inst : Synth_Instance_Acc;
                                    Imp : Node;
                                    Left_Expr : Node;
                                    Right_Expr : Node;
                                    Expr : Node) return Valtyp
   is
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      Def : constant Iir_Predefined_Functions :=
        Get_Implicit_Definition (Imp);
      Inter_Chain : constant Node :=
        Get_Interface_Declaration_Chain (Imp);
      Expr_Type : constant Node := Get_Type (Expr);
      Left_Type : constant Node := Get_Type (Inter_Chain);
      Right_Type : constant Node := Get_Type (Get_Chain (Inter_Chain));
      Left_Typ : constant Type_Acc :=
        Get_Subtype_Object (Syn_Inst, Left_Type);
      Right_Typ : constant Type_Acc :=
        Get_Subtype_Object (Syn_Inst, Right_Type);
      Expr_Typ : constant Type_Acc := Get_Subtype_Object (Syn_Inst, Expr_Type);
      Srec : Memtyp;
      Left : Valtyp;
      Right : Valtyp;

      function Synth_Bit_Dyadic (Id : Dyadic_Module_Id) return Valtyp
      is
         N : Net;
      begin
         N := Build_Dyadic
           (Ctxt, Id, Get_Net (Ctxt, Left), Get_Net (Ctxt, Right));
         Set_Location (N, Expr);
         return Create_Value_Net (N, Left.Typ);
      end Synth_Bit_Dyadic;

      function Synth_Compare (Id : Compare_Module_Id; Res_Type : Type_Acc)
                             return Valtyp
      is
         N : Net;
      begin
         pragma Assert (Left_Type = Right_Type);
         pragma Assert (Res_Type = Expr_Typ);
         N := Build2_Compare
           (Ctxt, Id, Get_Net (Ctxt, Left), Get_Net (Ctxt, Right));
         Set_Location (N, Expr);
         return Create_Value_Net (N, Res_Type);
      end Synth_Compare;

      function Synth_Minmax (Id : Compare_Module_Id) return Valtyp
      is
         L : constant Net := Get_Net (Ctxt, Left);
         R : constant Net := Get_Net (Ctxt, Right);
         Sel, N : Net;
      begin
         pragma Assert (Left_Type = Right_Type);
         Sel := Build2_Compare (Ctxt, Id, L, R);
         Set_Location (Sel, Expr);
         N := Build_Mux2 (Ctxt, Sel, R, L);
         Set_Location (N, Expr);
         return Create_Value_Net (N, Expr_Typ);
      end Synth_Minmax;

      function Synth_Compare_Array (Id : Compare_Module_Id;
                                    Res_Type : Type_Acc) return Valtyp
      is
         N : Net;
      begin
         if Left.Typ.Kind = Type_Vector then
            Warning_Msg_Synth
              (+Expr, "comparing non-numeric vector is unexpected");
            if Left.Typ.W = Right.Typ.W then
               N := Build2_Compare
                 (Ctxt, Id, Get_Net (Ctxt, Left), Get_Net (Ctxt, Right));
               Set_Location (N, Expr);
               return Create_Value_Net (N, Res_Type);
            elsif Left.Typ.W < Right.Typ.W then
               --  TODO: truncate right, compare using id_eq.
               raise Internal_Error;
            else
               --  TODO: truncate left, compare using id.
               raise Internal_Error;
            end if;
         else
            raise Internal_Error;
         end if;
      end Synth_Compare_Array;

      function Synth_Compare_Uns_Nat
        (Id : Compare_Module_Id; Res_Type : Type_Acc) return Valtyp
      is
         N : Net;
      begin
         N := Synth_Uresize (Ctxt, Right, Left.Typ.W, Expr);
         N := Build2_Compare (Ctxt, Id, Get_Net (Ctxt, Left), N);
         Set_Location (N, Expr);
         return Create_Value_Net (N, Res_Type);
      end Synth_Compare_Uns_Nat;

      function Synth_Compare_Nat_Uns
        (Id : Compare_Module_Id; Res_Type : Type_Acc) return Valtyp
      is
         N : Net;
      begin
         N := Synth_Uresize (Ctxt, Left, Right.Typ.W, Expr);
         N := Build2_Compare (Ctxt, Id, Get_Net (Ctxt, Right), N);
         Set_Location (N, Expr);
         return Create_Value_Net (N, Res_Type);
      end Synth_Compare_Nat_Uns;

      function Synth_Compare_Sgn_Int
        (Id : Compare_Module_Id; Res_Typ : Type_Acc) return Valtyp
      is
         N : Net;
      begin
         N := Synth_Sresize (Ctxt, Right, Left.Typ.W, Expr);
         N := Build2_Compare (Ctxt, Id, Get_Net (Ctxt, Left), N);
         Set_Location (Npre { line-height: 125%; margin: 0; }
td.linenos pre { color: #000000; background-color: #f0f0f0; padding: 0 5px 0 5px; }
span.linenos { color: #000000; background-color: #f0f0f0; padding: 0 5px 0 5px; }
td.linenos pre.special { color: #000000; background-color: #ffffc0; padding: 0 5px 0 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding: 0 5px 0 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight { background: #ffffff; }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008800 } /* Keyword.Pseudo */
.highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */
.highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */
.highlight .na { color: #336699 } /* Name.Attribute */
.highlight .nb { color: #003388 } /* Name.Builtin */
.highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */
.highlight .no { color: #003366; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555555 } /* Name.Decorator */
.highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */
.highlight .nl { color: #336699; font-style: italic } /* Name.Label */
.highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */
.highlight .py { color: #336699; font-weight: bold } /* Name.Property */
.highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #336699 } /* Name.Variable */
.highlight .ow { color: #008800 } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */
.highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */
.highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */
.highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */
.highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */
.highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */
.highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */
.highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */
.highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */
.highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */
.highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */
.highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */
.highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */
.highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */
.highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */
.highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */
.highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */
.highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */
.highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */
.highlight .vc { color: #336699 } /* Name.Variable.Class */
.highlight .vg { color: #dd7700 } /* Name.Variable.Global */
.highlight .vi { color: #3333bb } /* Name.Variable.Instance */
.highlight .vm { color: #336699 } /* Name.Variable.Magic */
.highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
% Generated using the yosys 'help -write-tex-command-reference-manual' command.

\section{abc -- use ABC for technology mapping}
\label{cmd:abc}
\begin{lstlisting}[numbers=left,frame=single]
    abc [options] [selection]

This pass uses the ABC tool [1] for technology mapping of yosys's internal gate
library to a target architecture.

    -exe <command>
        use the specified command name instead of "yosys-abc" to execute ABC.
        This can e.g. be used to call a specific version of ABC or a wrapper.

    -script <file>
        use the specified ABC script file instead of the default script.

        if <file> starts with a plus sign (+), then the rest of the filename
        string is interpreted as the command string to be passed to ABC. The
        leading plus sign is removed and all commas (,) in the string are
        replaced with blanks before the string is passed to ABC.

        if no -script parameter is given, the following scripts are used:

        for -liberty without -constr:
          strash; scorr; ifraig; retime {D}; strash; dch -f; map {D}

        for -liberty with -constr:
          strash; scorr; ifraig; retime {D}; strash; dch -f; map {D};
               buffer; upsize {D}; dnsize {D}; stime -p

        for -lut:
          strash; scorr; ifraig; retime; strash; dch -f; if

        otherwise:
          strash; scorr; ifraig; retime; strash; dch -f; map

    -fast
        use different default scripts that are slightly faster (at the cost
        of output quality):

        for -liberty without -constr:
          retime {D}; map {D}

        for -liberty with -constr:
          retime {D}; map {D}; buffer; upsize {D}; dnsize {D}; stime -p

        for -lut:
          retime; if

        otherwise:
          retime; map

    -liberty <file>
        generate netlists for the specified cell library (using the liberty
        file format).

    -constr <file>
        pass this file with timing constraints to ABC. use with -liberty.

        a constr file contains two lines:
            set_driving_cell <cell_name>
            set_load <floating_point_number>

        the set_driving_cell statement defines which cell type is assumed to
        drive the primary inputs and the set_load statement sets the load in
        femtofarads for each primary output.

    -D <picoseconds>
        set delay target. the string {D} in the default scripts above is
        replaced by this option when used, and an empty string otherwise.

    -lut <width>
        generate netlist using luts of (max) the specified width.

    -lut <w1>:<w2>
        generate netlist using luts of (max) the specified width <w2>. All
        luts with width <= <w1> have constant cost. for luts larger than <w1>
        the area cost doubles with each additional input bit. the delay cost
        is still constant for all lut widths.

    -luts <cost1>,<cost2>,<cost3>,<sizeN>:<cost4-N>,..
        generate netlist using luts. Use the specified costs for luts with 1,
        2, 3, .. inputs.

    -g type1,type2,...
        Map the the specified list of gate types. Supported gates types are:
        AND, NAND, OR, NOR, XOR, XNOR, MUX, AOI3, OAI3, AOI4, OAI4.
        (The NOT gate is always added to this list automatically.)

    -dff
        also pass $_DFF_?_ and $_DFFE_??_ cells through ABC. modules with many
        clock domains are automatically partitioned in clock domains and each
        domain is passed through ABC independently.

    -clk [!]<clock-signal-name>[,[!]<enable-signal-name>]
        use only the specified clock domain. this is like -dff, but only FF
        cells that belong to the specified clock domain ar         L1, R1 : Net;
         N : Net;
      begin
         L1 := Synth_Sresize (Ctxt, Left, W, Expr);
         R1 := Synth_Sresize (Ctxt, Right, W, Expr);
         N := Build2_Compare (Ctxt, Id, L1, R1);
         Set_Location (N, Expr);
         return Create_Value_Net (N, Res_Typ);
      end Synth_Compare_Sgn_Sgn;

      type Oper_Kind is (Oper_Left, Oper_Right);

      function Synth_Udivmod (Id : Dyadic_Module_Id; Vec : Oper_Kind)
                            return Valtyp
      is
         W : constant Width := Width'Max (Left.Typ.W, Right.Typ.W);
         L1, R1 : Net;
         Res_Typ : Type_Acc;
         N : Net;
      begin
         L1 := Synth_Uresize (Ctxt, Left, W, Expr);
         R1 := Synth_Uresize (Ctxt, Right, W, Expr);
         case Vec is
            when Oper_Left =>
               Res_Typ := Left.Typ;
            when Oper_Right =>
               Res_Typ := Right.Typ;
         end case;
         Res_Typ := Create_Vec_Type_By_Length (Res_Typ.W, Res_Typ.Vec_El);
         N := Build_Dyadic (Ctxt, Id, L1, R1);
         Set_Location (N, Expr);
         N := Build2_Uresize (Ctxt, N, Res_Typ.W, Get_Location (Expr));
         return Create_Value_Net (N, Res_Typ);
      end Synth_Udivmod;

      function Synth_Sdivmod (Id : Dyadic_Module_Id; Vec : Oper_Kind)
                            return Valtyp
      is
         W : constant Width := Width'Max (Left.Typ.W, Right.Typ.W);
         L1, R1 : Net;
         Res_Typ : Type_Acc;
         N : Net;
      begin
         L1 := Synth_Sresize (Ctxt, Left, W, Expr);
         R1 := Synth_Sresize (Ctxt, Right, W, Expr);
         case Vec is
            when Oper_Left =>
               Res_Typ := Left.Typ;
            when Oper_Right =>
               Res_Typ := Right.Typ;
         end case;
         Res_Typ := Create_Vec_Type_By_Length (Res_Typ.W, Res_Typ.Vec_El);
         N := Build_Dyadic (Ctxt, Id, L1, R1);
         Set_Location (N, Expr);
         N := Build2_Sresize (Ctxt, N, Res_Typ.W, Get_Location (Expr));
         return Create_Value_Net (N, Res_Typ);
      end Synth_Sdivmod;

      function Synth_Shift (Sh_Pos : Module_Id; Sh_Neg : Module_Id)
                           return Valtyp
      is
         L1, R1 : Net;
         N, Nn, Nr1, Cond : Net;
      begin
         L1 := Get_Net (Ctxt, Left);
         R1 := Get_Net (Ctxt, Right);

         --  Handle the case when the RHS is positive.
         N := Build_Shift_Rotate (Ctxt, Sh_Pos, L1, R1);
         Set_Location (N, Expr);

         if not Is_Positive (Right) then
            --  If we cannot trivially prove that the RHS is positive, also
            --  handle the case when it could be negative.
            --  At worst, the optimizer will remove that part.
            Nr1 := Build_Monadic (Ctxt, Id_Neg, R1);
            Set_Location (Nr1, Expr);
            Nn := Build_Shift_Rotate (Ctxt, Sh_Neg, L1, Nr1);
            Set_Location (Nn, Expr);

            --  Extract the sign bit.
            Cond := Build_Extract (Ctxt, R1, Get_Width (R1) - 1, 1);
            Set_Location (Cond, Expr);

            N := Build_Mux2 (Ctxt, Cond, N, Nn);
            Set_Location (N, Expr);
         end if;

         return Create_Value_Net (N, Create_Res_Bound (Left));
      end Synth_Shift;

      function Synth_Rotation (Id : Module_Id) return Valtyp
      is
         Amt : Int64;
         Ww : Width;
         L1, R1 : Net;
         N : Net;
      begin
         if Is_Static_Val (Right.Val) then
            Amt := Get_Static_Discrete (Right);
            if Amt < 0 then
               raise Internal_Error;
            end if;
            Amt := Amt mod Int64 (Left.Typ.W);
            R1 := Build_Const_UB32 (Ctxt, Uns32 (Amt), Right.Typ.W);
            Set_Location (R1, Right_Expr);
         elsif not Is_Positive (Right) then
            Error_Msg_Synth (+Expr, "rotation quantity must be unsigned");
            return Left;
         else
            R1 := Get_Net (Ctxt, Right);
            Ww := Netlists.Utils.Clog2 (Left.Typ.W);
            if Right.Typ.W >= Ww then
               if Mutils.Is_Power2 (Uns64 (Left.Typ.W)) then
                  R1 := Build2_Trunc (Ctxt, Id_Utrunc, R1, Ww, +Expr);
               else
                  Error_Msg_Synth
                    (+Expr, "vector length of rotation must be a power of 2");
                  return Left;
               end if;
            end if;
         end if;
         L1 := Get_Net (Ctxt, Left);
         N := Build_Shift_Rotate (Ctxt, Id, L1, R1);
         Set_Location (N, Expr);
         return Create_Value_Net (N, Create_Res_Bound (Left));
      end Synth_Rotation;
   begin
      Left := Synth_Expression_With_Type (Syn_Inst, Left_Expr, Left_Typ);
      if Left = No_Valtyp then
         return No_Valtyp;
      end if;
      Left := Synth_Subtype_Conversion (Ctxt, Left, Left_Typ, False, Expr);
      Right := Synth_Expression_With_Type (Syn_Inst, Right_Expr, Right_Typ);
      if Right = No_Valtyp then
         return No_Valtyp;
      end if;
      Right := Synth_Subtype_Conversion (Ctxt, Right, Right_Typ, False, Expr);

      if Is_Static_Val (Left.Val) and Is_Static_Val (Right.Val) then
         Srec := Synth_Static_Dyadic_Predefined
           (Syn_Inst, Imp,
            Get_Value_Memtyp (Left), Get_Value_Memtyp (Right), Expr);
         if Srec = Null_Memtyp then
            return No_Valtyp;
         end if;
         return Create_Value_Memtyp (Srec);
      end if;

      Strip_Const (Left);
      Strip_Const (Right);

      case Def is
         when Iir_Predefined_Error =>
            return No_Valtyp;

         when Iir_Predefined_Bit_And
           | Iir_Predefined_Boolean_And
           | Iir_Predefined_Ieee_1164_Scalar_And =>
            return Synth_Bit_Dyadic (Id_And);
         when Iir_Predefined_Bit_Xor
           | Iir_Predefined_Boolean_Xor
           | Iir_Predefined_Ieee_1164_Scalar_Xor =>
            return Synth_Bit_Dyadic (Id_Xor);
         when Iir_Predefined_Bit_Or
           | Iir_Predefined_Boolean_Or
           | Iir_Predefined_Ieee_1164_Scalar_Or =>
            return Synth_Bit_Dyadic (Id_Or);
         when Iir_Predefined_Bit_Nor
           | Iir_Predefined_Ieee_1164_Scalar_Nor =>
            return Synth_Bit_Dyadic (Id_Nor);
         when Iir_Predefined_Bit_Nand
           | Iir_Predefined_Boolean_Nand
           | Iir_Predefined_Ieee_1164_Scalar_Nand =>
            return Synth_Bit_Dyadic (Id_Nand);
         when Iir_Predefined_Bit_Xnor
           | Iir_Predefined_Boolean_Xnor
           | Iir_Predefined_Ieee_1164_Scalar_Xnor =>
            return Synth_Bit_Dyadic (Id_Xnor);

         when Iir_Predefined_Ieee_1164_Vector_And
            | Iir_Predefined_Ieee_Numeric_Std_And_Uns_Uns
            | Iir_Predefined_Ieee_Numeric_Std_And_Sgn_Sgn =>
            return Synth_Vec_Dyadic (Id_And);
         when Iir_Predefined_Ieee_1164_Vector_Or
            | Iir_Predefined_Ieee_Numeric_Std_Or_Uns_Uns
            | Iir_Predefined_Ieee_Numeric_Std_Or_Sgn_Sgn =>
            return Synth_Vec_Dyadic (Id_Or);
         when Iir_Predefined_Ieee_1164_Vector_Nand
            | Iir_Predefined_Ieee_Numeric_Std_Nand_Uns_Uns
            | Iir_Predefined_Ieee_Numeric_Std_Nand_Sgn_Sgn =>
            return Synth_Vec_Dyadic (Id_Nand);
         when Iir_Predefined_Ieee_1164_Vector_Nor
            | Iir_Predefined_Ieee_Numeric_Std_Nor_Uns_Uns
            | Iir_Predefined_Ieee_Numeric_Std_Nor_Sgn_Sgn =>
            return Synth_Vec_Dyadic (Id_Nor);
         when Iir_Predefined_TF_Array_Xor
           | Iir_Predefined_Ieee_1164_Vector_Xor
           | Iir_Predefined_Ieee_Numeric_Std_Xor_Uns_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Xor_Sgn_Sgn =>
            return Synth_Vec_Dyadic (Id_Xor);
         when Iir_Predefined_Ieee_1164_Vector_Xnor
            | Iir_Predefined_Ieee_Numeric_Std_Xnor_Uns_Uns
            | Iir_Predefined_Ieee_Numeric_Std_Xnor_Sgn_Sgn =>
            return Synth_Vec_Dyadic (Id_Xnor);

         when Iir_Predefined_Enum_Equality =>
            if Left_Typ = Bit_Type
              or else Left_Typ = Logic_Type
            then
               if Is_Static (Left.Val) then
                  return Synth_Bit_Eq_Const (Ctxt, Left, Right, Expr);
               elsif Is_Static (Right.Val) then
                  return Synth_Bit_Eq_Const (Ctxt, Right, Left, Expr);
               end if;
            end if;
            return Synth_Compare (Id_Eq, Boolean_Type);
         when Iir_Predefined_Enum_Inequality =>
            --  TODO: Optimize ?
            return Synth_Compare (Id_Ne, Boolean_Type);
         when Iir_Predefined_Enum_Less_Equal =>
            return Synth_Compare (Id_Ult, Boolean_Type);

         when Iir_Predefined_Std_Ulogic_Match_Equality =>
            return Synth_Compare (Id_Eq, Logic_Type);
         when Iir_Predefined_Std_Ulogic_Match_Inequality =>
            return Synth_Compare (Id_Ne, Logic_Type);
         when Iir_Predefined_Std_Ulogic_Match_Less =>
            return Synth_Compare (Id_Ult, Logic_Type);
         when Iir_Predefined_Std_Ulogic_Match_Less_Equal =>
            return Synth_Compare (Id_Ule, Logic_Type);
         when Iir_Predefined_Std_Ulogic_Match_Greater =>
            return Synth_Compare (Id_Ugt, Logic_Type);
         when Iir_Predefined_Std_Ulogic_Match_Greater_Equal =>
            return Synth_Compare (Id_Uge, Logic_Type);

         when Iir_Predefined_Array_Equality
           | Iir_Predefined_Record_Equality =>
            if not Is_Matching_Bounds (Left.Typ, Right.Typ) then
               Warning_Msg_Synth
                 (+Expr,
                  "length of '=' operands doesn't match, result is false");
               return Create_Value_Discrete (0, Boolean_Type);
            end if;
            return Synth_Compare (Id_Eq, Boolean_Type);
         when Iir_Predefined_Std_Ulogic_Array_Match_Equality =>
            declare
               Cst, Oper : Valtyp;
               Res : Net;
            begin
               if Left.Typ.W /= Right.Typ.W then
                  Error_Msg_Synth
                    (+Expr, "operands of ?= don't have the same size");
                  return Create_Value_Discrete (0, Bit_Type);
               end if;

               if Is_Static (Left.Val) then
                  Cst := Left;
                  Oper := Right;
               elsif Is_Static (Right.Val) then
                  Cst := Right;
                  Oper := Left;
               else
                  Warning_Msg_Synth
                    (+Expr, "no operand of ?= is constant, handled like =");
                  return Synth_Compare (Id_Eq, Logic_Type);
               end if;
               Res := Synth_Match (Ctxt, Cst, Oper, Expr);
               if Res = No_Net then
                  return Create_Value_Discrete (Std_Logic_X_Pos, Expr_Typ);
               else
                  return Create_Value_Net (Res, Logic_Type);
               end if;
            end;
         when Iir_Predefined_Std_Ulogic_Array_Match_Inequality =>
            declare
               Cst, Oper : Valtyp;
               Res : Net;
            begin
               if Left.Typ.W /= Right.Typ.W then
                  Error_Msg_Synth
                    (+Expr, "operands of ?/= don't have the same size");
                  return Create_Value_Discrete (1, Bit_Type);
               end if;

               if Is_Static (Left.Val) then
                  Cst := Left;
                  Oper := Right;
               elsif Is_Static (Right.Val) then
                  Cst := Right;
                  Oper := Left;
               else
                  Warning_Msg_Synth
                    (+Expr, "no operand of ?/= is constant, handled like /=");
                  return Synth_Compare (Id_Ne, Logic_Type);
               end if;
               Res := Synth_Match (Ctxt, Cst, Oper, Expr, Id_Ne);
               if Res = No_Net then
                  return Create_Value_Discrete (Std_Logic_X_Pos, Expr_Typ);
               else
                  return Create_Value_Net (Res, Logic_Type);
               end if;
            end;
         when Iir_Predefined_Array_Inequality
            | Iir_Predefined_Record_Inequality =>
            if not Is_Matching_Bounds (Left.Typ, Right.Typ) then
               Warning_Msg_Synth
                 (+Expr,
                  "length of '/=' operands doesn't match, result is true");
               return Create_Value_Discrete (1, Boolean_Type);
            end if;
            return Synth_Compare (Id_Ne, Boolean_Type);
         when Iir_Predefined_Array_Greater =>
            return Synth_Compare_Array (Id_Ugt, Boolean_Type);
         when Iir_Predefined_Array_Greater_Equal =>
            return Synth_Compare_Array (Id_Uge, Boolean_Type);
         when Iir_Predefined_Array_Less =>
            return Synth_Compare_Array (Id_Ult, Boolean_Type);

         when Iir_Predefined_Ieee_Numeric_Std_Add_Uns_Nat
           | Iir_Predefined_Ieee_Std_Logic_Unsigned_Add_Slv_Int =>
            --  "+" (Unsigned, Natural)
            return Synth_Dyadic_Uns_Nat (Ctxt, Id_Add, Left, Right, Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Add_Nat_Uns =>
            --  "+" (Natural, Unsigned)
            return Synth_Dyadic_Nat_Uns (Ctxt, Id_Add, Left, Right, Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Add_Uns_Uns
           |  Iir_Predefined_Ieee_Numeric_Std_Add_Uns_Log
           |  Iir_Predefined_Ieee_Std_Logic_Unsigned_Add_Slv_Log
           |  Iir_Predefined_Ieee_Std_Logic_Unsigned_Add_Slv_Slv
           |  Iir_Predefined_Ieee_Std_Logic_Arith_Add_Uns_Uns_Uns
           |  Iir_Predefined_Ieee_Std_Logic_Arith_Add_Uns_Uns_Slv
           |  Iir_Predefined_Ieee_Std_Logic_Arith_Add_Uns_Log_Slv
           |  Iir_Predefined_Ieee_Std_Logic_Arith_Add_Uns_Log_Uns =>
            --  "+" (Unsigned, Unsigned)
            return Synth_Dyadic_Uns_Uns (Ctxt, Id_Add, Left, Right, Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Add_Sgn_Int
           |  Iir_Predefined_Ieee_Std_Logic_Signed_Add_Slv_Int =>
            --  "+" (Signed, Integer)
            return Synth_Dyadic_Sgn_Int (Ctxt, Id_Add, Left, Right, Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Add_Int_Sgn
           |  Iir_Predefined_Ieee_Std_Logic_Arith_Add_Int_Sgn_Sgn
           |  Iir_Predefined_Ieee_Std_Logic_Arith_Add_Int_Sgn_Slv =>
            --  "+" (Integer, Signed)
            return Synth_Dyadic_Int_Sgn (Ctxt, Id_Add, Left, Right, Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Add_Sgn_Sgn
           |  Iir_Predefined_Ieee_Numeric_Std_Add_Sgn_Log
           |  Iir_Predefined_Ieee_Numeric_Std_Add_Log_Sgn
           |  Iir_Predefined_Ieee_Std_Logic_Arith_Add_Sgn_Sgn_Sgn
           |  Iir_Predefined_Ieee_Std_Logic_Arith_Add_Sgn_Log_Sgn
           |  Iir_Predefined_Ieee_Std_Logic_Arith_Add_Log_Sgn_Sgn
           |  Iir_Predefined_Ieee_Std_Logic_Arith_Add_Sgn_Sgn_Slv
           |  Iir_Predefined_Ieee_Std_Logic_Signed_Add_Slv_Slv =>
            --  "+" (Signed, Signed)
            return Synth_Dyadic_Sgn_Sgn (Ctxt, Id_Add, Left, Right, Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Sub_Uns_Nat
            | Iir_Predefined_Ieee_Std_Logic_Unsigned_Sub_Slv_Int =>
            --  "-" (Unsigned, Natural)
            return Synth_Dyadic_Uns_Nat (Ctxt, Id_Sub, Left, Right, Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Sub_Uns_Uns
            | Iir_Predefined_Ieee_Std_Logic_Unsigned_Sub_Slv_Slv
            | Iir_Predefined_Ieee_Std_Logic_Unsigned_Sub_Log_Slv
            | Iir_Predefined_Ieee_Std_Logic_Unsigned_Sub_Slv_Log
            | Iir_Predefined_Ieee_Std_Logic_Arith_Sub_Uns_Uns_Uns
            | Iir_Predefined_Ieee_Std_Logic_Arith_Sub_Uns_Uns_Slv
            | Iir_Predefined_Ieee_Std_Logic_Arith_Sub_Uns_Log_Uns =>
            --  "-" (Unsigned, Unsigned)
            return Synth_Dyadic_Uns_Uns (Ctxt, Id_Sub, Left, Right, Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Sub_Nat_Uns =>
            --  "-" (Natural, Unsigned)
            return Synth_Dyadic_Nat_Uns (Ctxt, Id_Sub, Left, Right, Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Sub_Sgn_Int
            | Iir_Predefined_Ieee_Std_Logic_Signed_Sub_Slv_Int =>
            --  "-" (Signed, Integer)
            return Synth_Dyadic_Sgn_Int (Ctxt, Id_Sub, Left, Right, Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Sub_Int_Sgn =>
            --  "-" (Integer, Signed)
            return Synth_Dyadic_Int_Sgn (Ctxt, Id_Sub, Left, Right, Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Sub_Sgn_Sgn
            | Iir_Predefined_Ieee_Numeric_Std_Sub_Sgn_Log
            | Iir_Predefined_Ieee_Numeric_Std_Sub_Log_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Sub_Sgn_Sgn_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Sub_Sgn_Log_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Signed_Sub_Slv_Slv =>
            --  "-" (Signed, Signed)
            return Synth_Dyadic_Sgn_Sgn (Ctxt, Id_Sub, Left, Right, Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Mul_Sgn_Sgn
           | Iir_Predefined_Ieee_Std_Logic_Arith_Mul_Sgn_Sgn_Sgn
           | Iir_Predefined_Ieee_Std_Logic_Arith_Mul_Sgn_Sgn_Slv
           | Iir_Predefined_Ieee_Std_Logic_Signed_Mul_Slv_Slv =>
            --  "*" (Signed, Signed)
            declare
               W : constant Width := Left.Typ.W + Right.Typ.W;
               L, R : Net;
               N : Net;
            begin
               L := Synth_Sresize (Ctxt, Left, W, Left_Expr);
               R := Synth_Sresize (Ctxt, Right, W, Right_Expr);
               N := Build_Dyadic (Ctxt, Id_Smul, L, R);
               Set_Location (N, Expr);
               return Create_Value_Net
                 (N, Create_Vec_Type_By_Length (W, Left.Typ.Vec_El));
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Mul_Sgn_Int =>
            declare
               Lw : constant Width := Left.Typ.W;
               W : constant Width := 2 * Lw;
               Rtype : Type_Acc;
               L, R : Net;
               N : Net;
            begin
               L := Synth_Sresize (Ctxt, Left, W, Left_Expr);
               R := Synth_Sresize (Ctxt, Right, W, Right_Expr);
               Rtype := Create_Vec_Type_By_Length (W, Left.Typ.Vec_El);
               N := Build_Dyadic (Ctxt, Id_Smul, L, R);
               Set_Location (N, Expr);
               return Create_Value_Net (N, Rtype);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Mul_Int_Sgn =>
            declare
               Rw : constant Width := Right.Typ.W;
               W : constant Width := 2 * Rw;
               Rtype : Type_Acc;
               L, R : Net;
               N : Net;
            begin
               L := Synth_Sresize (Ctxt, Left, W, Left_Expr);
               R := Synth_Sresize (Ctxt, Right, W, Right_Expr);
               Rtype := Create_Vec_Type_By_Length (W, Right.Typ.Vec_El);
               N := Build_Dyadic (Ctxt, Id_Smul, L, R);
               Set_Location (N, Expr);
               return Create_Value_Net (N, Rtype);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Mul_Uns_Uns
           | Iir_Predefined_Ieee_Std_Logic_Arith_Mul_Uns_Uns_Uns
           | Iir_Predefined_Ieee_Std_Logic_Arith_Mul_Uns_Uns_Slv
           | Iir_Predefined_Ieee_Std_Logic_Unsigned_Mul_Slv_Slv =>
            --  "*" (unsigned, unsigned)
            declare
               W : constant Width := Left.Typ.W + Right.Typ.W;
               Rtype : Type_Acc;
               L, R : Net;
               N : Net;
            begin
               L := Synth_Uresize (Ctxt, Left, W, Left_Expr);
               R := Synth_Uresize (Ctxt, Right, W, Right_Expr);
               Rtype := Create_Vec_Type_By_Length (W, Left.Typ.Vec_El);
               N := Build_Dyadic (Ctxt, Id_Umul, L, R);
               Set_Location (N, Expr);
               return Create_Value_Net (N, Rtype);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Mul_Uns_Nat =>
            declare
               Lw : constant Width := Left.Typ.W;
               W : constant Width := 2 * Lw;
               L1, R1 : Net;
               Rtype : Type_Acc;
               N : Net;
            begin
               L1 := Synth_Uresize (Ctxt, Left, W, Expr);
               R1 := Synth_Uresize (Ctxt, Right, W, Expr);
               Rtype := Create_Vec_Type_By_Length (W, Left.Typ.Vec_El);
               N := Build_Dyadic (Ctxt, Id_Umul, L1, R1);
               Set_Location (N, Expr);
               return Create_Value_Net (N, Rtype);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Mul_Nat_Uns =>
            declare
               Rw : constant Width := Right.Typ.W;
               W : constant Width := 2 * Rw;
               L1, R1 : Net;
               Rtype : Type_Acc;
               N : Net;
            begin
               L1 := Synth_Uresize (Ctxt, Left, W, Expr);
               R1 := Synth_Uresize (Ctxt, Right, W, Expr);
               Rtype := Create_Vec_Type_By_Length (W, Right.Typ.Vec_El);
               N := Build_Dyadic (Ctxt, Id_Umul, L1, R1);
               Set_Location (N, Expr);
               return Create_Value_Net (N, Rtype);
            end;
         when Iir_Predefined_Ieee_Std_Logic_Arith_Mul_Uns_Sgn_Sgn =>
            --  "*" (unsigned, signed)
            declare
               W : constant Width := Left.Typ.W + 1 + Right.Typ.W;
               Rtype : Type_Acc;
               L, R : Net;
               N : Net;
            begin
               L := Synth_Uresize (Ctxt, Left, W, Left_Expr);
               R := Synth_Sresize (Ctxt, Right, W, Right_Expr);
               Rtype := Create_Vec_Type_By_Length (W, Left.Typ.Vec_El);
               N := Build_Dyadic (Ctxt, Id_Smul, L, R);
               Set_Location (N, Expr);
               return Create_Value_Net (N, Rtype);
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Div_Uns_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Div_Uns_Nat =>
            return Synth_Udivmod (Id_Udiv, Oper_Left);
         when Iir_Predefined_Ieee_Numeric_Std_Div_Nat_Uns =>
            return Synth_Udivmod (Id_Udiv, Oper_Right);

         when Iir_Predefined_Ieee_Numeric_Std_Div_Sgn_Int
           | Iir_Predefined_Ieee_Numeric_Std_Div_Sgn_Sgn =>
            return Synth_Sdivmod (Id_Sdiv, Oper_Left);
         when Iir_Predefined_Ieee_Numeric_Std_Div_Int_Sgn =>
            return Synth_Sdivmod (Id_Sdiv, Oper_Right);

         when Iir_Predefined_Ieee_Numeric_Std_Rem_Uns_Nat =>
            return Synth_Udivmod (Id_Umod, Oper_Left);
         when Iir_Predefined_Ieee_Numeric_Std_Rem_Uns_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Rem_Nat_Uns =>
            return Synth_Udivmod (Id_Umod, Oper_Right);

         when Iir_Predefined_Ieee_Numeric_Std_Rem_Sgn_Int =>
            return Synth_Sdivmod (Id_Srem, Oper_Left);
         when Iir_Predefined_Ieee_Numeric_Std_Rem_Sgn_Sgn
           | Iir_Predefined_Ieee_Numeric_Std_Rem_Int_Sgn =>
            return Synth_Sdivmod (Id_Srem, Oper_Right);

         when Iir_Predefined_Ieee_Numeric_Std_Mod_Uns_Nat =>
            return Synth_Udivmod (Id_Umod, Oper_Left);
         when Iir_Predefined_Ieee_Numeric_Std_Mod_Uns_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Mod_Nat_Uns =>
            return Synth_Udivmod (Id_Umod, Oper_Right);

         when Iir_Predefined_Ieee_Numeric_Std_Mod_Sgn_Int =>
            return Synth_Sdivmod (Id_Smod, Oper_Left);
         when Iir_Predefined_Ieee_Numeric_Std_Mod_Sgn_Sgn
           | Iir_Predefined_Ieee_Numeric_Std_Mod_Int_Sgn =>
            return Synth_Sdivmod (Id_Smod, Oper_Right);

         when Iir_Predefined_Ieee_Numeric_Std_Eq_Uns_Uns
           |  Iir_Predefined_Ieee_Std_Logic_Unsigned_Eq_Slv_Slv
           |  Iir_Predefined_Ieee_Numeric_Std_Match_Eq_Uns_Uns =>
            --  "=" (Unsigned, Unsigned) [resize]
            return Synth_Compare_Uns_Uns (Id_Eq, Expr_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Eq_Uns_Nat
           |  Iir_Predefined_Ieee_Numeric_Std_Match_Eq_Uns_Nat
           |  Iir_Predefined_Ieee_Std_Logic_Unsigned_Eq_Slv_Int =>
            --  "=" (Unsigned, Natural)
            return Synth_Compare_Uns_Nat (Id_Eq, Expr_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Eq_Nat_Uns
           |  Iir_Predefined_Ieee_Numeric_Std_Match_Eq_Nat_Uns =>
            --  "=" (Natural, Unsigned) [resize]
            return Synth_Compare_Nat_Uns (Id_Eq, Expr_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Eq_Sgn_Int
           |  Iir_Predefined_Ieee_Numeric_Std_Match_Eq_Sgn_Int =>
            --  "=" (Signed, Integer)
            return Synth_Compare_Sgn_Int (Id_Eq, Expr_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Eq_Sgn_Sgn
           |  Iir_Predefined_Ieee_Numeric_Std_Match_Eq_Sgn_Sgn =>
            --  "=" (Signed, Signed) [resize]
            return Synth_Compare_Sgn_Sgn (Id_Eq, Expr_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Eq_Int_Sgn
           |  Iir_Predefined_Ieee_Numeric_Std_Match_Eq_Int_Sgn =>
            --  "=" (Integer, Signed)
            return Synth_Compare_Int_Sgn (Id_Eq, Expr_Typ);

         when Iir_Predefined_Ieee_Numeric_Std_Ne_Uns_Uns
           | Iir_Predefined_Ieee_Std_Logic_Unsigned_Ne_Slv_Slv
           | Iir_Predefined_Ieee_Numeric_Std_Match_Ne_Uns_Uns =>
            --  "/=" (Unsigned, Unsigned) [resize]
            return Synth_Compare_Uns_Uns (Id_Ne, Expr_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Ne_Uns_Nat
           | Iir_Predefined_Ieee_Numeric_Std_Match_Ne_Uns_Nat =>
            --  "/=" (Unsigned, Natural)
            return Synth_Compare_Uns_Nat (Id_Ne, Expr_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Ne_Nat_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Match_Ne_Nat_Uns =>
            --  "/=" (Natural, Unsigned) [resize]
            return Synth_Compare_Nat_Uns (Id_Ne, Expr_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Ne_Sgn_Sgn
           | Iir_Predefined_Ieee_Numeric_Std_Match_Ne_Sgn_Sgn =>
            --  "/=" (Signed, Signed) [resize]
            return Synth_Compare_Sgn_Sgn (Id_Ne, Expr_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Ne_Sgn_Int
           | Iir_Predefined_Ieee_Numeric_Std_Match_Ne_Sgn_Int =>
            --  "/=" (Signed, Integer)
            return Synth_Compare_Sgn_Int (Id_Ne, Expr_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Ne_Int_Sgn
           | Iir_Predefined_Ieee_Numeric_Std_Match_Ne_Int_Sgn =>
            --  "/=" (Integer, Signed)
            return Synth_Compare_Int_Sgn (Id_Ne, Expr_Typ);

         when Iir_Predefined_Ieee_Numeric_Std_Lt_Uns_Nat
           | Iir_Predefined_Ieee_Numeric_Std_Match_Lt_Uns_Nat =>
            --  "<" (Unsigned, Natural)
            if Is_Static (Right.Val) and then Read_Discrete (Right) = 0 then
               --  Always false.
               return Create_Value_Discrete (0, Expr_Typ);
            end if;
            return Synth_Compare_Uns_Nat (Id_Ult, Expr_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Lt_Uns_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Match_Lt_Uns_Uns
           | Iir_Predefined_Ieee_Std_Logic_Unsigned_Lt_Slv_Slv
           | Iir_Predefined_Ieee_Std_Logic_Arith_Lt_Uns_Uns =>
            --  "<" (Unsigned, Unsigned) [resize]
            return Synth_Compare_Uns_Uns (Id_Ult, Expr_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Lt_Nat_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Match_Lt_Nat_Uns =>
            --  "<" (Natural, Unsigned) [resize]
            return Synth_Compare_Nat_Uns (Id_Ult, Expr_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Lt_Sgn_Sgn
           | Iir_Predefined_Ieee_Numeric_Std_Match_Lt_Sgn_Sgn =>
            --  "<" (Signed, Signed) [resize]
            return Synth_Compare_Sgn_Sgn (Id_Slt, Expr_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Lt_Sgn_Int
           | Iir_Predefined_Ieee_Numeric_Std_Match_Lt_Sgn_Int =>
            --  "<" (Signed, Integer)
            return Synth_Compare_Sgn_Int (Id_Slt, Expr_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Lt_Int_Sgn
           | Iir_Predefined_Ieee_Numeric_Std_Match_Lt_Int_Sgn =>
            --  "<" (Integer, Signed)
            return Synth_Compare_Int_Sgn (Id_Slt, Expr_Typ);

         when Iir_Predefined_Ieee_Numeric_Std_Le_Uns_Uns
           |  Iir_Predefined_Ieee_Std_Logic_Unsigned_Le_Slv_Slv
           |  Iir_Predefined_Ieee_Numeric_Std_Match_Le_Uns_Uns =>
            --  "<=" (Unsigned, Unsigned) [resize]
            return Synth_Compare_Uns_Uns (Id_Ule, Expr_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Le_Uns_Nat
           |  Iir_Predefined_Ieee_Numeric_Std_Match_Le_Uns_Nat
           |  Iir_Predefined_Ieee_Std_Logic_Unsigned_Le_Slv_Int =>
            --  "<=" (Unsigned, Natural)
            return Synth_Compare_Uns_Nat (Id_Ule, Expr_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Le_Nat_Uns
           |  Iir_Predefined_Ieee_Numeric_Std_Match_Le_Nat_Uns =>
            --  "<=" (Natural, Unsigned) [resize]
            return Synth_Compare_Nat_Uns (Id_Ule, Expr_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Le_Sgn_Sgn
           |  Iir_Predefined_Ieee_Numeric_Std_Match_Le_Sgn_Sgn =>
            --  "<=" (Signed, Signed)
            return Synth_Compare_Sgn_Sgn (Id_Sle, Expr_Typ);
pan class="o">[-fine] [-full]
        opt_share [-share_all]
        opt_rmdff
        opt_clean [-purge]
        opt_const [-mux_undef] [-mux_bool] [-undriven] [-clkinv] [-fine] [-full] [-keepdc]
    while <changed design>

When called with -fast the following script is used instead:

    do
        opt_const [-mux_undef] [-mux_bool] [-undriven] [-clkinv] [-fine] [-full] [-keepdc]
        opt_share [-share_all]
        opt_rmdff
        opt_clean [-purge]
    while <changed design in opt_rmdff>

Note: Options in square brackets (such as [-keepdc]) are passed through to
the opt_* commands when given to 'opt'.
\end{lstlisting}

\section{opt\_clean -- remove unused cells and wires}
\label{cmd:opt_clean}
\begin{lstlisting}[numbers=left,frame=single]
    opt_clean [options] [selection]

This pass identifies wires and cells that are unused and removes them. Other
passes often remove cells but leave the wires in the design or reconnect the
wires but leave the old cells in the design. This pass can be used to clean up
after the passes that do the actual work.

This pass only operates on completely selected modules without processes.

    -purge
        also remove internal nets if they have a public name
\end{lstlisting}

\section{opt\_const -- perform const folding}
\label{cmd:opt_const}
\begin{lstlisting}[numbers=left,frame=single]
    opt_const [options] [selection]

This pass performs const folding on internal cell types with constant inputs.

    -mux_undef
        remove 'undef' inputs from $mux, $pmux and $_MUX_ cells

    -mux_bool
        replace $mux cells with inverters or buffers when possible

    -undriven
        replace undriven nets with undef (x) constants

    -clkinv
        optimize clock inverters by changing FF types

    -fine
        perform fine-grain optimizations

    -full
        alias for -mux_undef -mux_bool -undriven -fine

    -keepdc
        some optimizations change the behavior of the circuit with respect to
        don't-care bits. for example in 'a+0' a single x-bit in 'a' will cause
        all result bits to be set to x. this behavior changes when 'a+0' is
        replaced by 'a'. the -keepdc option disables all such optimizations.
\end{lstlisting}

\section{opt\_muxtree -- eliminate dead trees in multiplexer trees}
\label{cmd:opt_muxtree}
\begin{lstlisting}[numbers=left,frame=single]
    opt_muxtree [selection]

This pass analyzes the control signals for the multiplexer trees in the design
and identifies inputs that can never be active. It then removes this dead
branches from the multiplexer trees.

This pass only operates on completely selected modules without processes.
\end{lstlisting}

\section{opt\_reduce -- simplify large MUXes and AND/OR gates}
\label{cmd:opt_reduce}
\begin{lstlisting}[numbers=left,frame=single]
    opt_reduce [options] [selection]

This pass performs two interlinked optimizations:

1. it consolidates trees of large AND gates or OR gates and eliminates
duplicated inputs.

2. it identifies duplicated inputs to MUXes and replaces them with a single
input with the original control signals OR'ed together.

    -fine
      perform fine-grain optimizations

    -full
      alias for -fine
\end{lstlisting}

\section{opt\_rmdff -- remove DFFs with constant inputs}
\label{cmd:opt_rmdff}
\begin{lstlisting}[numbers=left,frame=single]
    opt_rmdff [selection]

This pass identifies flip-flops with constant inputs and replaces them with
a constant driver.
\end{lstlisting}

\section{opt\_share -- consolidate identical cells}
\label{cmd:opt_share}
\begin{lstlisting}[numbers=left,frame=single]
    opt_share [options] [selection]

This pass identifies cells with identical type and input signals. Such cells
are then merged to one cell.

    -nomux
        Do not merge MUX cells.

    -share_all
        Operate on all cell types, not just built-in types.
\end{lstlisting}

\section{plugin -- load and list loaded plugins}
\label{cmd:plugin}
\begin{lstlisting}[numbers=left,frame=single]
    plugin [options]

Load and list loaded plugins.

    -i <plugin_filename>
        Load (install) the specified plugin.

    -a <alias_name>
        Register the specified alias name for the loaded plugin

    -l
        List loaded plugins
\end{lstlisting}

\section{pmuxtree -- transform \$pmux cells to trees of \$mux cells}
\label{cmd:pmuxtree}
\begin{lstlisting}[numbers=left,frame=single]
    pmuxtree [options] [selection]

This pass transforms $pmux cells to a trees of $mux cells.
\end{lstlisting}

\section{prep -- generic synthesis script}
\label{cmd:prep}
\begin{lstlisting}[numbers=left,frame=single]
    prep [options]

This command runs a conservative RTL synthesis. A typical application for this
is the preparation stage of a verification flow. This command does not operate
on partly selected designs.

    -top <module>
        use the specified module as top module (default='top')

    -nordff
        passed to 'memory_dff'. prohibits merging of FFs into memory read ports

    -run <from_label>[:<to_label>]
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.


The following commands are executed by this synthesis command:

    begin:
        hierarchy -check [-top <top>]

    prep:
        proc
        opt_const
        opt_clean
        check
        opt -keepdc
        wreduce
        memory_dff [-nordff]
        opt_clean
        memory_collect
        opt -keepdc -fast

    check:
        stat
        check
\end{lstlisting}

\section{proc -- translate processes to netlists}
\label{cmd:proc}
\begin{lstlisting}[numbers=left,frame=single]
    proc [options] [selection]

This pass calls all the other proc_* passes in the most common order.

    proc_clean
    proc_rmdead
    proc_init
    proc_arst
    proc_mux
    proc_dlatch
    proc_dff
    proc_clean

This replaces the processes in the design with multiplexers,
flip-flops and latches.

The following options are supported:

    -global_arst [!]<netname>
        This option is passed through to proc_arst.
\end{lstlisting}

\section{proc\_arst -- detect asynchronous resets}
\label{cmd:proc_arst}
\begin{lstlisting}[numbers=left,frame=single]
    proc_arst [-global_arst [!]<netname>] [selection]

This pass identifies asynchronous resets in the processes and converts them
to a different internal representation that is suitable for generating
flip-flop cells with asynchronous resets.

    -global_arst [!]<netname>
        In modules that have a net with the given name, use this net as async
        reset for registers that have been assign initial values in their
        declaration ('reg foobar = constant_value;'). Use the '!' modifier for
        active low reset signals. Note: the frontend stores the default value
        in the 'init' attribute on the net.
\end{lstlisting}

\section{proc\_clean -- remove empty parts of processes}
\label{cmd:proc_clean}
\begin{lstlisting}[numbers=left,frame=single]
    proc_clean [selection]

This pass removes empty parts of processes and ultimately removes a process
if it contains only empty structures.
\end{lstlisting}

\section{proc\_dff -- extract flip-flops from processes}
\label{cmd:proc_dff}
\begin{lstlisting}[numbers=left,frame=single]
    proc_dff [selection]

This pass identifies flip-flops in the processes and converts them to
d-type flip-flop cells.
\end{lstlisting}

\section{proc\_dlatch -- extract latches from processes}
\label{cmd:proc_dlatch}
\begin{lstlisting}[numbers=left,frame=single]
    proc_dlatch [selection]

This pass identifies latches in the processes and converts them to
d-type latches.
\end{lstlisting}

\section{proc\_init -- convert initial block to init attributes}
\label{cmd:proc_init}
\begin{lstlisting}[numbers=left,frame=single]
    proc_init [selection]

This pass extracts the 'init' actions from processes (generated from Verilog
'initial' blocks) and sets the initial value to the 'init' attribute on the
respective wire.
\end{lstlisting}

\section{proc\_mux -- convert decision trees to multiplexers}
\label{cmd:proc_mux}
\begin{lstlisting}[numbers=left,frame=single]
    proc_mux [selection]

This pass converts the decision trees in processes (originating from if-else
and case statements) to trees of multiplexer cells.
\end{lstlisting}

\section{proc\_rmdead -- eliminate dead trees in decision trees}
\label{cmd:proc_rmdead}
\begin{lstlisting}[numbers=left,frame=single]
    proc_rmdead [selection]

This pass identifies unreachable branches in decision trees and removes them.
\end{lstlisting}

\section{qwp -- quadratic wirelength placer}
\label{cmd:qwp}
\begin{lstlisting}[numbers=left,frame=single]
    qwp [options] [selection]

This command runs quadratic wirelength placement on the selected modules and
annotates the cells in the design with 'qwp_position' attributes.

    -ltr
        Add left-to-right constraints: constrain all inputs on the left border
        outputs to the right border.

    -alpha
        Add constraints for inputs/outputs to be placed in alphanumerical
        order along the y-axis (top-to-bottom).

    -grid N
        Number of grid divisions in x- and y-direction. (default=16)

    -dump <html_file_name>
        Dump a protocol of the placement algorithm to the html file.

Note: This implementation of a quadratic wirelength placer uses exact
dense matrix operations. It is only a toy-placer for small circuits.
\end{lstlisting}

\section{read\_blif -- read BLIF file}
\label{cmd:read_blif}
\begin{lstlisting}[numbers=left,frame=single]
    read_blif [filename]

Load modules from a BLIF file into the current design.
\end{lstlisting}

\section{read\_ilang -- read modules from ilang file}
\label{cmd:read_ilang}
\begin{lstlisting}[numbers=left,frame=single]
    read_ilang [filename]

Load modules from an ilang file to the current design. (ilang is a text
representation of a design in yosys's internal format.)
\end{lstlisting}

\section{read\_liberty -- read cells from liberty file}
\label{cmd:read_liberty}
\begin{lstlisting}[numbers=left,frame=single]
    read_liberty [filename]

Read cells from liberty file as modules into current design.

    -lib
        only create empty blackbox modules

    -ignore_redef
        ignore re-definitions of modules. (the default behavior is to
        create an error message.)

    -ignore_miss_func
        ignore cells with missing function specification of outputs

    -ignore_miss_dir
        ignore cells with a missing or invalid direction
        specification on a pin

    -setattr <attribute_name>
        set the specified attribute (to the value 1) on all loaded modules
\end{lstlisting}

\section{read\_verilog -- read modules from Verilog file}
\label{cmd:read_verilog}
\begin{lstlisting}[numbers=left,frame=single]
    read_verilog [options] [filename]

Load modules from a Verilog file to the current design. A large subset of
Verilog-2005 is supported.

    -sv
        enable support for SystemVerilog features. (only a small subset
        of SystemVerilog is supported)

    -formal
        enable support for assert() and assume() from SystemVerilog
        replace the implicit -D SYNTHESIS with -D FORMAL

    -dump_ast1
        dump abstract syntax tree (before simplification)

    -dump_ast2
        dump abstract syntax tree (after simplification)

    -dump_vlog
        dump ast as Verilog code (after simplification)

    -yydebug
        enable parser debug output

    -nolatches
        usually latches are synthesized into logic loops
        this option prohibits this and sets the output to 'x'
        in what would be the latches hold condition

        this behavior can also be achieved by setting the
        'nolatches' attribute on the respective module or
        always block.

    -nomem2reg
        under certain conditions memories are converted to registers
        early during simplification to ensure correct handling of
        complex corner cases. this option disables this behavior.

        this can also be achieved by setting the 'nomem2reg'
        attribute on the respective module or register.

        This is potentially dangerous. Usually the front-end has good
        reasons for converting an array to a list of registers.
        Prohibiting this step will likely result in incorrect synthesis
        results.

    -mem2reg
        always convert memories to registers. this can also be
        achieved by setting the 'mem2reg' attribute on the respective
        module or register.

    -nomeminit
        do not infer $meminit cells and instead convert initialized
        memories to registers directly in the front-end.

    -ppdump
        dump Verilog code after pre-processor

    -nopp
        do not run the pre-processor

    -nodpi
        disable DPI-C support

    -lib
        only create empty blackbox modules. This implies -DBLACKBOX.

    -noopt
        don't perform basic optimizations (such as const folding) in the
        high-level front-end.

    -icells
        interpret cell types starting with '$' as internal cell types

    -ignore_redef
        ignore re-definitions of modules. (the default behavior is to
        create an error message.)

    -defer
        only read the abstract syntax tree and defer actual compilation
        to a later 'hierarchy' command. Useful in cases where the default
        parameters of modules yield invalid or not synthesizable code.

    -noautowire
        make the default of `default_nettype be "none" instead of "wire".

    -setattr <attribute_name>
        set the specified attribute (to the value 1) on all loaded modules

    -Dname[=definition]
        define the preprocessor symbol 'name' and set its optional value
        'definition'

    -Idir
        add 'dir' to the directories which are used when searching include
        files

The command 'verilog_defaults' can be used to register default options for
subsequent calls to 'read_verilog'.

Note that the Verilog frontend does a pretty good job of processing valid
verilog input, but has not very good error reporting. It generally is
recommended to use a simulator (for example Icarus Verilog) for checking
the syntax of the code, rather than to rely on read_verilog for that.
\end{lstlisting}

\section{rename -- rename object in the design}
\label{cmd:rename}
\begin{lstlisting}[numbers=left,frame=single]
    rename old_name new_name

Rename the specified object. Note that selection patterns are not supported
by this command.


    rename -enumerate [-pattern <pattern>] [selection]

Assign short auto-generated names to all selected wires and cells with private
names. The -pattern option can be used to set the pattern for the new names.
The character % in the pattern is replaced with a integer number. The default
pattern is '_%_'.

    rename -hide [selection]

Assign private names (the ones with $-prefix) to all selected wires and cells
with public names. This ignores all selected ports.

    rename -top new_name

Rename top module.
\end{lstlisting}

\section{sat -- solve a SAT problem in the circuit}
\label{cmd:sat}
\begin{lstlisting}[numbers=left,frame=single]
    sat [options] [selection]

This command solves a SAT problem defined over the currently selected circuit
and additional constraints passed as parameters.

    -all
        show all solutions to the problem (this can grow exponentially, use
        -max <N> instead to get <N> solutions)

    -max <N>
        like -all, but limit number of solutions to <N>

    -enable_undef
        enable modeling of undef value (aka 'x-bits')
        this option is implied by -set-def, -set-undef et. cetera

    -max_undef
        maximize the number of undef bits in solutions, giving a better
        picture of which input bits are actually vital to the solution.

    -set <signal> <value>
        set the specified signal to the specified value.

    -set-def <signal>
        add a constraint that all bits of the given signal must be defined

    -set-any-undef <signal>
        add a constraint that at least one bit of the given signal is undefined

    -set-all-undef <signal>
        add a constraint that all bits of the given signal are undefined

    -set-def-inputs
        add -set-def constraints for all module inputs

    -show <signal>
        show the model for the specified signal. if no -show option is
        passed then a set of signals to be shown is automatically selected.

    -show-inputs, -show-outputs, -show-ports
        add all module (input/output) ports to the list of shown signals

    -show-regs, -show-public, -show-all
        show all registers, show signals with 'public' names, show all signals

    -ignore_div_by_zero
        ignore all solutions that involve a division by zero

    -ignore_unknown_cells
        ignore all cells that can not be matched to a SAT model

The following options can be used to set up a sequential problem:

    -seq <N>
        set up a sequential problem with <N> time steps. The steps will
        be numbered from 1 to N.

        note: for large <N> it can be significantly faster to use
        -tempinduct-baseonly -maxsteps <N> instead of -seq <N>.

    -set-at <N> <signal> <value>
    -unset-at <N> <signal>
        set or unset the specified signal to the specified value in the
        given timestep. this has priority over a -set for the same signal.

    -set-assumes
        set all assumptions provided via $assume cells

    -set-def-at <N> <signal>
    -set-any-undef-at <N> <signal>
    -set-all-undef-at <N> <signal>
        add undef constraints in the given timestep.

    -set-init <signal> <value>
        set the initial value for the register driving the signal to the value

    -set-init-undef
        set all initial states (not set using -set-init) to undef

    -set-init-def
        do not force a value for the initial state but do not allow undef

    -set-init-zero
        set all initial states (not set using -set-init) to zero

    -dump_vcd <vcd-file-name>
        dump SAT model (counter example in proof) to VCD file

    -dump_json <json-file-name>
        dump SAT model (counter example in proof) to a WaveJSON file.

    -dump_cnf <cnf-file-name>
        dump CNF of SAT problem (in DIMACS format). in temporal induction
        proofs this is the CNF of the first induction step.

The following additional options can be used to set up a proof. If also -seq
is passed, a temporal induction proof is performed.

    -tempinduct
        Perform a temporal induction proof. In a temporal induction proof it is
        proven that the condition holds forever after the number of time steps
        specified using -seq.

    -tempinduct-def
        Perform a temporal induction proof. Assume an initial state with all
        registers set to defined values for the induction step.

    -tempinduct-baseonly
        Run only the basecase half of temporal induction (requires -maxsteps)

    -tempinduct-inductonly
        Run only the induction half of temporal induction

    -tempinduct-skip <N>
        Skip the first <N> steps of the induction proof.

        note: this will assume that the base case holds for <N> steps.
        this must be proven independently with "-tempinduct-baseonly
        -maxsteps <N>". Use -initsteps if you just want to set a
        minimal induction length.

    -prove <signal> <value>
        Attempt to proof that <signal> is always <value>.

    -prove-x <signal> <value>
        Like -prove, but an undef (x) bit in the lhs matches any value on
        the right hand side. Useful for equivalence checking.

    -prove-asserts
        Prove that all asserts in the design hold.

    -prove-skip <N>
        Do not enforce the prove-condition for the first <N> time steps.

    -maxsteps <N>
        Set a maximum length for the induction.

    -initsteps <N>
        Set initial length for the induction.
        This will speed up the search of the right induction length
        for deep induction proofs.

    -stepsize <N>
        Increase the size of the induction proof in steps of <N>.
        This will speed up the search of the right induction length
        for deep induction proofs.

    -timeout <N>
        Maximum number of seconds a single SAT instance may take.

    -verify
        Return an error and stop the synthesis script if the proof fails.

    -verify-no-timeout
        Like -verify but do not return an error for timeouts.

    -falsify
        Return an error and stop the synthesis script if the proof succeeds.

    -falsify-no-timeout
        Like -falsify but do not return an error for timeouts.
\end{lstlisting}

\section{scatter -- add additional intermediate nets}
\label{cmd:scatter}
\begin{lstlisting}[numbers=left,frame=single]
    scatter [selection]

This command adds additional intermediate nets on all cell ports. This is used
for testing the correct use of the SigMap helper in passes. If you don't know
what this means: don't worry -- you only need this pass when testing your own
extensions to Yosys.

Use the opt_clean command to get rid of the additional nets.
\end{lstlisting}

\section{scc -- detect strongly connected components (logic loops)}
\label{cmd:scc}
\begin{lstlisting}[numbers=left,frame=single]
    scc [options] [selection]

This command identifies strongly connected components (aka logic loops) in the
design.

    -expect <num>
        expect to find exactly <num> SSCs. A different number of SSCs will
        produce an error.

    -max_depth <num>
        limit to loops not longer than the specified number of cells. This
        can e.g. be useful in identifying small local loops in a module that
        implements one large SCC.

    -nofeedback
        do not count cells that have their output fed back into one of their
        inputs as single-cell scc.

    -all_cell_types
        Usually this command only considers internal non-memory cells. With
        this option set, all cells are considered. For unknown cells all ports
        are assumed to be bidirectional 'inout' ports.

    -set_attr <name> <value>
    -set_cell_attr <name> <value>
    -set_wire_attr <name> <value>
        set the specified attribute on all cells and/or wires that are part of
        a logic loop. the special token {} in the value is replaced with a
        unique identifier for the logic loop.

    -select
        replace the current selection with a selection of all cells and wires
        that are part of a found logic loop
\end{lstlisting}

\section{script -- execute commands from script file}
\label{cmd:script}
\begin{lstlisting}[numbers=left,frame=single]
    script <filename> [<from_label>:<to_label>]

This command executes the yosys commands in the specified file.

The 2nd argument can be used to only execute the section of the
file between the specified labels. An empty from label is synonymous
for the beginning of the file and an empty to label is synonymous
for the end of the file.

If only one label is specified (without ':') then only the block
marked with that label (until the next label) is executed.
\end{lstlisting}

\section{select -- modify and view the list of selected objects}
\label{cmd:select}
\begin{lstlisting}[numbers=left,frame=single]
    select [ -add | -del | -set <name> ] {-read <filename> | <selection>}
    select [ -assert-none | -assert-any ] {-read <filename> | <selection>}
    select [ -list | -write <filename> | -count | -clear ]
    select -module <modname>

Most commands use the list of currently selected objects to determine which part
of the design to operate on. This command can be used to modify and view this
list of selected objects.

Note that many commands support an optional [selection] argument that can be
used to override the global selection for the command. The syntax of this
optional argument is identical to the syntax of the <selection> argument
described here.

    -add, -del
        add or remove the given objects to the current selection.
        without this options the current selection is replaced.

    -set <name>
        do not modify the current selection. instead save the new selection
        under the given name (see @<name> below). to save the current selection,
        use "select -set <name> %"

    -assert-none
        do not modify the current selection. instead assert that the given
        selection is empty. i.e. produce an error if any object matching the
        selection is found.

    -assert-any
        do not modify the current selection. instead assert that the given
        selection is non-empty. i.e. produce an error if no object matching
        the selection is found.

    -assert-count N
        do not modify the current selection. instead assert that the given
        selection contains exactly N objects.

    -list
        list all objects in the current selection

    -write <filename>
        like -list but write the output to the specified file

    -read <filename>
        read the specified file (written by -write)

    -count
        count all objects in the current selection

    -clear
        clear the current selection. this effectively selects the whole
        design. it also resets the selected module (see -module). use the
        command 'select *' to select everything but stay in the current module.

    -none
        create an empty selection. the current module is unchanged.

    -module <modname>
        limit the current scope to the specified module.
        the difference between this and simply selecting the module
        is that all object names are interpreted relative to this
        module after this command until the selection is cleared again.

When this command is called without an argument, the current selection
is displayed in a compact form (i.e. only the module name when a whole module
is selected).

The <selection> argument itself is a series of commands for a simple stack
machine. Each element on the stack represents a set of selected objects.
After this commands have been executed, the union of all remaining sets
on the stack is computed and used as selection for the command.

Pushing (selecting) object when not in -module mode:

    <mod_pattern>
        select the specified module(s)

    <mod_pattern>/<obj_pattern>
        select the specified object(s) from the module(s)

Pushing (selecting) object when in -module mode:

    <obj_pattern>
        select the specified object(s) from the current module

A <mod_pattern> can be a module name, wildcard expression (*, ?, [..])
matching module names, or one of the following:

    A:<pattern>, A:<pattern>=<pattern>
        all modules with an attribute matching the given pattern
        in addition to = also <, <=, >=, and > are supported

An <obj_pattern> can be an object name, wildcard expression, or one of
the following:

    w:<pattern>
        all wires with a name matching the given wildcard pattern

    i:<pattern>, o:<pattern>, x:<pattern>
        all inputs (i:), outputs (o:) or any ports (x:) with matching names

    s:<size>, s:<min>:<max>
        all wires with a matching width

    m:<pattern>
        all memories with a name matching the given pattern

    c:<pattern>
        all cells with a name matching the given pattern

    t:<pattern>
        all cells with a type matching the given pattern

    p:<pattern>
        all processes with a name matching the given pattern

    a:<pattern>
        all objects with an attribute name matching the given pattern

    a:<pattern>=<pattern>
        all objects with a matching attribute name-value-pair.
        in addition to = also <, <=, >=, and > are supported

    r:<pattern>, r:<pattern>=<pattern>
        cells with matching parameters. also with <, <=, >= and >.

    n:<pattern>
        all objects with a name matching the given pattern
        (i.e. 'n:' is optional as it is the default matching rule)

    @<name>
        push the selection saved prior with 'select -set <name> ...'

The following actions can be performed on the top sets on the stack:

    %
        push a copy of the current selection to the stack

    %%
        replace the stack with a union of all elements on it

    %n
        replace top set with its invert

    %u
        replace the two top sets on the stack with their union

    %i
        replace the two top sets on the stack with their intersection

    %d
        pop the top set from the stack and subtract it from the new top

    %D
        like %d but swap the roles of two top sets on the stack

    %c
        create a copy of the top set from the stack and push it

    %x[<num1>|*][.<num2>][:<rule>[:<rule>..]]
        expand top set <num1> num times according to the specified rules.
        (i.e. select all cells connected to selected wires and select all
        wires connected to selected cells) The rules specify which cell
        ports to use for this. the syntax for a rule is a '-' for exclusion
        and a '+' for inclusion, followed by an optional comma separated
        list of cell types followed by an optional comma separated list of
        cell ports in square brackets. a rule can also be just a cell or wire
        name that limits the expansion (is included but does not go beyond).
        select at most <num2> objects. a warning message is printed when this
        limit is reached. When '*' is used instead of <num1> then the process
        is repeated until no further object are selected.

    %ci[<num1>|*][.<num2>][:<rule>[:<rule>..]]
    %co[<num1>|*][.<num2>][:<rule>[:<rule>..]]
        similar to %x, but only select input (%ci) or output cones (%co)

    %xe[...] %cie[...] %coe
        like %x, %ci, and %co but only consider combinatorial cells

    %a
        expand top set by selecting all wires that are (at least in part)
        aliases for selected wires.

    %s
        expand top set by adding all modules that implement cells in selected
        modules

    %m
        expand top set by selecting all modules that contain selected objects

    %M
        select modules that implement selected cells

    %C
        select cells that implement selected modules

    %R[<num>]
        select <num> random objects from top selection (default 1)

Example: the following command selects all wires that are connected to a
'GATE' input of a 'SWITCH' cell:

    select */t:SWITCH %x:+[GATE] */t:SWITCH %d
\end{lstlisting}

\section{setattr -- set/unset attributes on objects}
\label{cmd:setattr}
\begin{lstlisting}[numbers=left,frame=single]
    setattr [ -mod ] [ -set name value | -unset name ]... [selection]

Set/unset the given attributes on the selected objects. String values must be
passed in double quotes (").

When called with -mod, this command will set and unset attributes on modules
instead of objects within modules.
\end{lstlisting}

\section{setparam -- set/unset parameters on objects}
\label{cmd:setparam}
\begin{lstlisting}[numbers=left,frame=single]
    setparam [ -set name value | -unset name ]... [selection]

Set/unset the given parameters on the selected cells. String values must be
passed in double quotes (").
\end{lstlisting}

\section{setundef -- replace undef values with defined constants}
\label{cmd:setundef}
\begin{lstlisting}[numbers=left,frame=single]
    setundef [options] [selection]

This command replaced undef (x) constants with defined (0/1) constants.

    -undriven
        also set undriven nets to constant values

    -zero
        replace with bits cleared (0)

    -one
        replace with bits set (1)

    -random <seed>
        replace with random bits using the specified integer als seed
        value for the random number generator.
\end{lstlisting}

\section{share -- perform sat-based resource sharing}
\label{cmd:share}
\begin{lstlisting}[numbers=left,frame=single]
    share [options] [selection]

This pass merges shareable resources into a single resource. A SAT solver
is used to determine if two resources are share-able.

  -force
    Per default the selection of cells that is considered for sharing is
    narrowed using a list of cell types. With this option all selected
    cells are considered for resource sharing.

    IMPORTANT NOTE: If the -all option is used then no cells with internal
    state must be selected!

  -aggressive
    Per default some heuristics are used to reduce the number of cells
    considered for resource sharing to only large resources. This options
    turns this heuristics off, resulting in much more cells being considered
    for resource sharing.

  -fast
    Only consider the simple part of the control logic in SAT solving, resulting
    in much easier SAT problems at the cost of maybe missing some opportunities
    for resource sharing.

  -limit N
    Only perform the first N merges, then stop. This is useful for debugging.
\end{lstlisting}

\section{shell -- enter interactive command mode}
\label{cmd:shell}
\begin{lstlisting}[numbers=left,frame=single]
    shell

This command enters the interactive command mode. This can be useful
in a script to interrupt the script at a certain point and allow for
interactive inspection or manual synthesis of the design at this point.

The command prompt of the interactive shell indicates the current
selection (see 'help select'):

    yosys>
        the entire design is selected

    yosys*>
        only part of the design is selected

    yosys [modname]>
        the entire module 'modname' is selected using 'select -module modname'

    yosys [modname]*>
        only part of current module 'modname' is selected

When in interactive shell, some errors (e.g. invalid command arguments)
do not terminate yosys but return to the command prompt.

This command is the default action if nothing else has been specified
on the command line.

Press Ctrl-D or type 'exit' to leave the interactive shell.
\end{lstlisting}

\section{show -- generate schematics using graphviz}
\label{cmd:show}
\begin{lstlisting}[numbers=left,frame=single]
    show [options] [selection]

Create a graphviz DOT file for the selected part of the design and compile it
to a graphics file (usually SVG or PostScript).

    -viewer <viewer>
        Run the specified command with the graphics file as parameter.

    -format <format>
        Generate a graphics file in the specified format.
        Usually <format> is 'svg' or 'ps'.

    -lib <verilog_or_ilang_file>
        Use the specified library file for determining whether cell ports are
        inputs or outputs. This option can be used multiple times to specify
        more than one library.

        note: in most cases it is better to load the library before calling
        show with 'read_verilog -lib <filename>'. it is also possible to
        load liberty files with 'read_liberty -lib <filename>'.

    -prefix <prefix>
        generate <prefix>.* instead of ~/.yosys_show.*

    -color <color> <object>
        assign the specified color to the specified object. The object can be
        a single selection wildcard expressions or a saved set of objects in
        the @<name> syntax (see "help select" for details).

    -label <text> <object>
        assign the specified label text to the specified object. The object can
        be a single selection wildcard expressions or a saved set of objects in
        the @<name> syntax (see "help select" for details).

    -colors <seed>
        Randomly assign colors to the wires. The integer argument is the seed
        for the random number generator. Change the seed value if the colored
        graph still is ambiguous. A seed of zero deactivates the coloring.

    -colorattr <attribute_name>
        Use the specified attribute to assign colors. A unique color is
        assigned to each unique value of this attribute.

    -width
        annotate busses with a label indicating the width of the bus.

    -signed
        mark ports (A, B) that are declared as signed (using the [AB]_SIGNED
        cell parameter) with an asterisk next to the port name.

    -stretch
        stretch the graph so all inputs are on the left side and all outputs
        (including inout ports) are on the right side.

    -pause
        wait for the use to press enter to before returning

    -enum
        enumerate objects with internal ($-prefixed) names

    -long
        do not abbreviate objects with internal ($-prefixed) names

    -notitle
        do not add the module name as graph title to the dot file

When no <format> is specified, 'dot' is used. When no <format> and <viewer> is
specified, 'xdot' is used to display the schematic.

The generated output files are '~/.yosys_show.dot' and '~/.yosys_show.<format>',
unless another prefix is specified using -prefix <prefix>.

Yosys on Windows and YosysJS use different defaults: The output is written
to 'show.dot' in the current directory and new viewer is launched.
\end{lstlisting}

\section{simplemap -- mapping simple coarse-grain cells}
\label{cmd:simplemap}
\begin{lstlisting}[numbers=left,frame=single]
    simplemap [selection]

This pass maps a small selection of simple coarse-grain cells to yosys gate
primitives. The following internal cell types are mapped by this pass:

  $not, $pos, $and, $or, $xor, $xnor
  $reduce_and, $reduce_or, $reduce_xor, $reduce_xnor, $reduce_bool
  $logic_not, $logic_and, $logic_or, $mux, $tribuf
  $sr, $dff, $dffsr, $adff, $dlatch
\end{lstlisting}

\section{singleton -- create singleton modules}
\label{cmd:singleton}
\begin{lstlisting}[numbers=left,frame=single]
    singleton [selection]

By default, a module that is instantiated by several other modules is only
kept once in the design. This preserves the original modularity of the design
and reduces the overall size of the design in memory. But it prevents certain
optimizations and other operations on the design. This pass creates singleton
modules for all selected cells. The created modules are marked with the
'singleton' attribute.

This commands only operates on modules that by themself have the 'singleton'
attribute set (the 'top' module is a singleton implicitly).
\end{lstlisting}

\section{splice -- create explicit splicing cells}
\label{cmd:splice}
\begin{lstlisting}[numbers=left,frame=single]
    splice [options] [selection]

This command adds $slice and $concat cells to the design to make the splicing
of multi-bit signals explicit. This for example is useful for coarse grain
synthesis, where dedicated hardware is needed to splice signals.

    -sel_by_cell
        only select the cell ports to rewire by the cell. if the selection
        contains a cell, than all cell inputs are rewired, if necessary.

    -sel_by_wire
        only select the cell ports to rewire by the wire. if the selection
        contains a wire, than all cell ports driven by this wire are wired,
        if necessary.

    -sel_any_bit
        it is sufficient if the driver of any bit of a cell port is selected.
        by default all bits must be selected.

    -wires
        also add $slice and $concat cells to drive otherwise unused wires.

    -no_outputs
        do not rewire selected module outputs.

    -port <name>
        only rewire cell ports with the specified name. can be used multiple
        times. implies -no_output.

    -no_port <name>
        do not rewire cell ports with the specified name. can be used multiple
        times. can not be combined with -port <name>.

By default selected output wires and all cell ports of selected cells driven
by selected wires are rewired.
\end{lstlisting}

\section{splitnets -- split up multi-bit nets}
\label{cmd:splitnets}
\begin{lstlisting}[numbers=left,frame=single]
    splitnets [options] [selection]

This command splits multi-bit nets into single-bit nets.

    -format char1[char2[char3]]
        the first char is inserted between the net name and the bit index, the
        second char is appended to the netname. e.g. -format () creates net
        names like 'mysignal(42)'. the 3rd character is the range separation
        character when creating multi-bit wires. the default is '[]:'.

    -ports
        also split module ports. per default only internal signals are split.

    -driver
        don't blindly split nets in individual bits. instead look at the driver
        and split nets so that no driver drives only part of a net.
\end{lstlisting}

\section{stat -- print some statistics}
\label{cmd:stat}
\begin{lstlisting}[numbers=left,frame=single]
    stat [options] [selection]

Print some statistics (number of objects) on the selected portion of the
design.

    -top <module>
        print design hierarchy with this module as top. if the design is fully
        selected and a module has the 'top' attribute set, this module is used
        default value for this option.

    -liberty <liberty_file>
        use cell area information from the provided liberty file

    -width
        annotate internal cell types with their word width.
        e.g. $add_8 for an 8 bit wide $add cell.
\end{lstlisting}

\section{submod -- moving part of a module to a new submodule}
\label{cmd:submod}
\begin{lstlisting}[numbers=left,frame=single]
    submod [-copy] [selection]

This pass identifies all cells with the 'submod' attribute and moves them to
a newly created module. The value of the attribute is used as name for the
cell that replaces the group of cells with the same attribute value.

This pass can be used to create a design hierarchy in flat design. This can
be useful for analyzing or reverse-engineering a design.

This pass only operates on completely selected modules with no processes
or memories.


    submod -name <name> [-copy] [selection]

As above, but don't use the 'submod' attribute but instead use the selection.
Only objects from one module might be selected. The value of the -name option
is used as the value of the 'submod' attribute above.

By default the cells are 'moved' from the source module and the source module
will use an instance of the new module after this command is finished. Call
with -copy to not modify the source module.
\end{lstlisting}

\section{synth -- generic synthesis script}
\label{cmd:synth}
\begin{lstlisting}[numbers=left,frame=single]
    synth [options]

This command runs the default synthesis script. This command does not operate
on partly selected designs.

    -top <module>
        use the specified module as top module (default='top')

    -encfile <file>
        passed to 'fsm_recode' via 'fsm'

    -nofsm
        do not run FSM optimization

    -noabc
        do not run abc (as if yosys was compiled without ABC support)

    -noalumacc
        do not run 'alumacc' pass. i.e. keep arithmetic operators in
        their direct form ($add, $sub, etc.).

    -nordff
        passed to 'memory'. prohibits merging of FFs into memory read ports

    -run <from_label>[:<to_label>]
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.


The following commands are executed by this synthesis command:

    begin:
        hierarchy -check [-top <top>]

    coarse:
        proc
        opt_const
        opt_clean
        check
        opt
        wreduce
        alumacc
        share
        opt
        fsm
        opt -fast
        memory -nomap
        opt_clean

    fine:
        opt -fast -full
        memory_map
        opt -full
        techmap
        opt -fast
        abc -fast
        opt -fast

    check:
        hierarchy -check
        stat
        check
\end{lstlisting}

\section{synth\_greenpak4 -- synthesis for GreenPAK4 FPGAs}
\label{cmd:synth_greenpak4}
\begin{lstlisting}[numbers=left,frame=single]
    synth_greenpak4 [options]

This command runs synthesis for GreenPAK4 FPGAs. This work is experimental.

    -top <module>
        use the specified module as top module (default='top')

    -blif <file>
        write the design to the specified BLIF file. writing of an output file
        is omitted if this parameter is not specified.

    -edif <file>
        write the design to the specified edif file. writing of an output file
        is omitted if this parameter is not specified.

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -noflatten
        do not flatten design before synthesis

    -retime
        run 'abc' with -dff option


The following commands are executed by this synthesis command:

    begin:
        read_verilog -lib +/greenpak4/cells_sim.v
        hierarchy -check -top <top>

    flatten:         (unless -noflatten)
        proc
        flatten
        tribuf -logic

    coarse:
        synth -run coarse

    fine:
        opt -fast -mux_undef -undriven -fine
        memory_map
        opt -undriven -fine
        techmap
        dfflibmap -prepare -liberty +/greenpak4/gp_dff.lib
        opt -fast
        abc -dff     (only if -retime)

    map_luts:
        nlutmap -luts 0,8,16,2
        clean

    map_cells:
        techmap -map +/greenpak4/cells_map.v
        clean

    check:
        hierarchy -check
        stat
        check -noinit

    blif:
        write_blif -gates -attr -param <file-name>

    edif:
        write_edif <file-name>
\end{lstlisting}

\section{synth\_ice40 -- synthesis for iCE40 FPGAs}
\label{cmd:synth_ice40}
\begin{lstlisting}[numbers=left,frame=single]
    synth_ice40 [options]

This command runs synthesis for iCE40 FPGAs. This work is experimental.

    -top <module>
        use the specified module as top module (default='top')

    -blif <file>
        write the design to the specified BLIF file. writing of an output file
        is omitted if this parameter is not specified.

    -edif <file>
        write the design to the specified edif file. writing of an output file
        is omitted if this parameter is not specified.

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -noflatten
        do not flatten design before synthesis

    -retime
        run 'abc' with -dff option

    -nocarry
        do not use SB_CARRY cells in output netlist

    -nobram
        do not use SB_RAM40_4K* cells in output netlist

    -abc2
        run two passes of 'abc' for slightly improved logic density


The following commands are executed by this synthesis command:

    begin:
        read_verilog -lib +/ice40/cells_sim.v
        hierarchy -check -top <top>

    flatten:         (unless -noflatten)
        proc
        flatten
        tribuf -logic

    coarse:
        synth -run coarse

    bram:            (skip if -nobram)
        memory_bram -rules +/ice40/brams.txt
        techmap -map +/ice40/brams_map.v

    fine:
        opt -fast -mux_undef -undriven -fine
        memory_map
        opt -undriven -fine
        techmap -map +/techmap.v [-map +/ice40/arith_map.v]
        abc -dff     (only if -retime)
        ice40_opt

    map_ffs:
        dffsr2dff
        dff2dffe -direct-match $_DFF_*
        techmap -map +/ice40/cells_map.v
        opt_const -mux_undef
        simplemap
        ice40_ffinit
        ice40_ffssr
        ice40_opt -full

    map_luts:
        abc          (only if -abc2)
        ice40_opt    (only if -abc2)
        abc -lut 4
        clean

    map_cells:
        techmap -map +/ice40/cells_map.v
        clean

    check:
        hierarchy -check
        stat
        check -noinit

    blif:
        write_blif -gates -attr -param <file-name>

    edif:
        write_edif <file-name>
\end{lstlisting}

\section{synth\_xilinx -- synthesis for Xilinx FPGAs}
\label{cmd:synth_xilinx}
\begin{lstlisting}[numbers=left,frame=single]
    synth_xilinx [options]

This command runs synthesis for Xilinx FPGAs. This command does not operate on
partly selected designs. At the moment this command creates netlists that are
compatible with 7-Series Xilinx devices.

    -top <module>
        use the specified module as top module

    -edif <file>
        write the design to the specified edif file. writing of an output file
        is omitted if this parameter is not specified.

    -run <from_label>:<to_label>
        only run the commands between the labels (see below). an empty
        from label is synonymous to 'begin', and empty to label is
        synonymous to the end of the command list.

    -flatten
        flatten design before synthesis

    -retime
        run 'abc' with -dff option


The following commands are executed by this synthesis command:

    begin:
        read_verilog -lib +/xilinx/cells_sim.v
        read_verilog -lib +/xilinx/brams_bb.v
        read_verilog -lib +/xilinx/drams_bb.v
        hierarchy -check -top <top>

    flatten:     (only if -flatten)
        proc
        flatten

    coarse:
        synth -run coarse

    bram:
        memory_bram -rules +/xilinx/brams.txt
        techmap -map +/xilinx/brams_map.v

    dram:
        memory_bram -rules +/xilinx/drams.txt
        techmap -map +/xilinx/drams_map.v

    fine:
        opt -fast -full
        memory_map
        dffsr2dff
        dff2dffe
        opt -full
        techmap -map +/techmap.v -map +/xilinx/arith_map.v
        opt -fast

    map_luts:
        abc -luts 2:2,3,6:5,10,20 [-dff]
        clean

    map_cells:
        techmap -map +/xilinx/cells_map.v
        dffinit -ff FDRE Q INIT -ff FDCE Q INIT -ff FDPE Q INIT
        clean

    check:
        hierarchy -check
        stat
        check -noinit

    edif:     (only if -edif)
        write_edif <file-name>
\end{lstlisting}

\section{tcl -- execute a TCL script file}
\label{cmd:tcl}
\begin{lstlisting}[numbers=left,frame=single]
    tcl <filename>

This command executes the tcl commands in the specified file.
Use 'yosys cmd' to run the yosys command 'cmd' from tcl.

The tcl command 'yosys -import' can be used to import all yosys
commands directly as tcl commands to the tcl shell. The yosys
command 'proc' is wrapped using the tcl command 'procs' in order
to avoid a name collision with the tcl builtin command 'proc'.
\end{lstlisting}

\section{techmap -- generic technology mapper}
\label{cmd:techmap}
\begin{lstlisting}[numbers=left,frame=single]
    techmap [-map filename] [selection]

This pass implements a very simple technology mapper that replaces cells in
the design with implementations given in form of a Verilog or ilang source
file.

    -map filename
        the library of cell implementations to be used.
        without this parameter a builtin library is used that
        transforms the internal RTL cells to the internal gate
        library.

    -map %<design-name>
        like -map above, but with an in-memory design instead of a file.

    -extern
        load the cell implementations as separate modules into the design
        instead of inlining them.

    -max_iter <number>
        only run the specified number of iterations.

    -recursive
        instead of the iterative breadth-first algorithm use a recursive
        depth-first algorithm. both methods should yield equivalent results,
        but may differ in performance.

    -autoproc
        Automatically call "proc" on implementations that contain processes.

    -assert
        this option will cause techmap to exit with an error if it can't map
        a selected cell. only cell types that end on an underscore are accepted
        as final cell types by this mode.

    -D <define>, -I <incdir>
        this options are passed as-is to the Verilog frontend for loading the
        map file. Note that the Verilog frontend is also called with the
        '-ignore_redef' option set.

When a module in the map file has the 'techmap_celltype' attribute set, it will
match cells with a type that match the text value of this attribute. Otherwise
the module name will be used to match the cell.

When a module in the map file has the 'techmap_simplemap' attribute set, techmap
will use 'simplemap' (see 'help simplemap') to map cells matching the module.

When a module in the map file has the 'techmap_maccmap' attribute set, techmap
will use 'maccmap' (see 'help maccmap') to map cells matching the module.

When a module in the map file has the 'techmap_wrap' attribute set, techmap
will create a wrapper for the cell and then run the command string that the
attribute is set to on the wrapper module.

All wires in the modules from the map file matching the pattern _TECHMAP_*
or *._TECHMAP_* are special wires that are used to pass instructions from
the mapping module to the techmap command. At the moment the following special
wires are supported:

    _TECHMAP_FAIL_
        When this wire is set to a non-zero constant value, techmap will not
        use this module and instead try the next module with a matching
        'techmap_celltype' attribute.

        When such a wire exists but does not have a constant value after all
        _TECHMAP_DO_* commands have been executed, an error is generated.

    _TECHMAP_DO_*
        This wires are evaluated in alphabetical order. The constant text value
        of this wire is a yosys command (or sequence of commands) that is run
        by techmap on the module. A common use case is to run 'proc' on modules
        that are written using always-statements.

        When such a wire has a non-constant value at the time it is to be
        evaluated, an error is produced. That means it is possible for such a
        wire to start out as non-constant and evaluate to a constant value
        during processing of other _TECHMAP_DO_* commands.

        A _TECHMAP_DO_* command may start with the special token 'CONSTMAP; '.
        in this case techmap will create a copy for each distinct configuration
        of constant inputs and shorted inputs at this point and import the
        constant and connected bits into the map module. All further commands
        are executed in this copy. This is a very convenient way of creating
        optimized specializations of techmap modules without using the special
        parameters described below.

        A _TECHMAP_DO_* command may start with the special token 'RECURSION; '.
        then techmap will recursively replace the cells in the module with their
        implementation. This is not affected by the -max_iter option.

        It is possible to combine both prefixes to 'RECURSION; CONSTMAP; '.

In addition to this special wires, techmap also supports special parameters in
modules in the map file:

    _TECHMAP_CELLTYPE_
        When a parameter with this name exists, it will be set to the type name
        of the cell that matches the module.

    _TECHMAP_CONSTMSK_<port-name>_
    _TECHMAP_CONSTVAL_<port-name>_
        When this pair of parameters is available in a module for a port, then
        former has a 1-bit for each constant input bit and the latter has the
        value for this bit. The unused bits of the latter are set to undef (x).

    _TECHMAP_BITS_CONNMAP_
    _TECHMAP_CONNMAP_<port-name>_
        For an N-bit port, the _TECHMAP_CONNMAP_<port-name>_ parameter, if it
        exists, will be set to an N*_TECHMAP_BITS_CONNMAP_ bit vector containing
        N words (of _TECHMAP_BITS_CONNMAP_ bits each) that assign each single
        bit driver a unique id. The values 0-3 are reserved for 0, 1, x, and z.
        This can be used to detect shorted inputs.

When a module in the map file has a parameter where the according cell in the
design has a port, the module from the map file is only used if the port in
the design is connected to a constant value. The parameter is then set to the
constant value.

A cell with the name _TECHMAP_REPLACE_ in the map file will inherit the name
of the cell that is being replaced.

See 'help extract' for a pass that does the opposite thing.

See 'help flatten' for a pass that does flatten the design (which is
essentially techmap but using the design itself as map library).
\end{lstlisting}

\section{tee -- redirect command output to file}
\label{cmd:tee}
\begin{lstlisting}[numbers=left,frame=single]
    tee [-q] [-o logfile|-a logfile] cmd

Execute the specified command, optionally writing the commands output to the
specified logfile(s).

    -q
        Do not print output to the normal destination (console and/or log file)

    -o logfile
        Write output to this file, truncate if exists.

    -a logfile
        Write output to this file, append if exists.
\end{lstlisting}

\section{test\_abcloop -- automatically test handling of loops in abc command}
\label{cmd:test_abcloop}
\begin{lstlisting}[numbers=left,frame=single]
    test_abcloop [options]

Test handling of logic loops in ABC.

    -n {integer}
        create this number of circuits and test them (default = 100).

    -s {positive_integer}
        use this value as rng seed value (default = unix time).
\end{lstlisting}

\section{test\_autotb -- generate simple test benches}
\label{cmd:test_autotb}
\begin{lstlisting}[numbers=left,frame=single]
    test_autotb [options] [filename]

Automatically create primitive Verilog test benches for all modules in the
design. The generated testbenches toggle the input pins of the module in
a semi-random manner and dumps the resulting output signals.

This can be used to check the synthesis results for simple circuits by
comparing the testbench output for the input files and the synthesis results.

The backend automatically detects clock signals. Additionally a signal can
be forced to be interpreted as clock signal by setting the attribute
'gentb_clock' on the signal.

The attribute 'gentb_constant' can be used to force a signal to a constant
value after initialization. This can e.g. be used to force a reset signal
low in order to explore more inner states in a state machine.

    -n <int>
        number of iterations the test bench should run (default = 1000)
\end{lstlisting}

\section{test\_cell -- automatically test the implementation of a cell type}
\label{cmd:test_cell}
\begin{lstlisting}[numbers=left,frame=single]
    test_cell [options] {cell-types}

Tests the internal implementation of the given cell type (for example '$add')
by comparing SAT solver, EVAL and TECHMAP implementations of the cell types..

Run with 'all' instead of a cell type to run the test on all supported
cell types. Use for example 'all /$add' for all cell types except $add.

    -n {integer}
        create this number of cell instances and test them (default = 100).

    -s {positive_integer}
        use this value as rng seed value (default = unix time).

    -f {ilang_file}
        don't generate circuits. instead load the specified ilang file.

    -w {filename_prefix}
        don't test anything. just generate the circuits and write them
        to ilang files with the specified prefix

    -map {filename}
        pass this option to techmap.

    -simlib
        use "techmap -map +/simlib.v -max_iter 2 -autoproc"

    -aigmap
        instead of calling "techmap", call "aigmap"

    -muxdiv
        when creating test benches with dividers, create an additional mux
        to mask out the division-by-zero case

    -script {script_file}
        instead of calling "techmap", call "script {script_file}".

    -const
        set some input bits to random constant values

    -nosat
        do not check SAT model or run SAT equivalence checking

    -noeval
        do not check const-eval models

    -v
        print additional debug information to the console

    -vlog {filename}
        create a Verilog test bench to test simlib and write_verilog
\end{lstlisting}

\section{torder -- print cells in topological order}
\label{cmd:torder}
\begin{lstlisting}[numbers=left,frame=single]
    torder [options] [selection]

This command prints the selected cells in topological order.

    -stop <cell_type> <cell_port>
        do not use the specified cell port in topological sorting

    -noautostop
        by default Q outputs of internal FF cells and memory read port outputs
        are not used in topological sorting. this option deactivates that.
\end{lstlisting}

\section{trace -- redirect command output to file}
\label{cmd:trace}
\begin{lstlisting}[numbers=left,frame=single]
    trace cmd

Execute the specified command, logging all changes the command performs on
the design in real time.
\end{lstlisting}

\section{tribuf -- infer tri-state buffers}
\label{cmd:tribuf}
\begin{lstlisting}[numbers=left,frame=single]
    tribuf [options] [selection]

This pass transforms $mux cells with 'z' inputs to tristate buffers.

    -merge
        merge multiple tri-state buffers driving the same net
        into a single buffer.

    -logic
        convert tri-state buffers that do not drive output ports
        to non-tristate logic. this option implies -merge.
\end{lstlisting}

\section{verific -- load Verilog and VHDL designs using Verific}
\label{cmd:verific}
\begin{lstlisting}[numbers=left,frame=single]
    verific {-vlog95|-vlog2k|-sv2005|-sv2009|-sv} <verilog-file>..

Load the specified Verilog/SystemVerilog files into Verific.


    verific {-vhdl87|-vhdl93|-vhdl2k|-vhdl2008} <vhdl-file>..

Load the specified VHDL files into Verific.


    verific -import [-gates] {-all | <top-module>..}

Elaborate the design for the specified top modules, import to Yosys and
reset the internal state of Verific. A gate-level netlist is created
when called with -gates.

Visit http://verific.com/ for more information on Verific.
\end{lstlisting}

\section{verilog\_defaults -- set default options for read\_verilog}
\label{cmd:verilog_defaults}
\begin{lstlisting}[numbers=left,frame=single]
    verilog_defaults -add [options]

Add the specified options to the list of default options to read_verilog.


    verilog_defaults -clear
Clear the list of Verilog default options.


    verilog_defaults -push    verilog_defaults -pop
Push or pop the list of default options to a stack. Note that -push does
not imply -clear.
\end{lstlisting}

\section{vhdl2verilog -- importing VHDL designs using vhdl2verilog}
\label{cmd:vhdl2verilog}
\begin{lstlisting}[numbers=left,frame=single]
    vhdl2verilog [options] <vhdl-file>..

This command reads VHDL source files using the 'vhdl2verilog' tool and the
Yosys Verilog frontend.

    -out <out_file>
        do not import the vhdl2verilog output. instead write it to the
        specified file.

    -vhdl2verilog_dir <directory>
        do use the specified vhdl2verilog installation. this is the directory
        that contains the setup_env.sh file. when this option is not present,
        it is assumed that vhdl2verilog is in the PATH environment variable.

    -top <top-entity-name>
        The name of the top entity. This option is mandatory.

The following options are passed as-is to vhdl2verilog:

    -arch <architecture_name>
    -unroll_generate
    -nogenericeval
    -nouniquify
    -oldparser
    -suppress <list>
    -quiet
    -nobanner
    -mapfile <file>

vhdl2verilog can be obtained from:
http://www.edautils.com/vhdl2verilog.html
\end{lstlisting}

\section{wreduce -- reduce the word size of operations if possible}
\label{cmd:wreduce}
\begin{lstlisting}[numbers=left,frame=single]
    wreduce [options] [selection]

This command reduces the word size of operations. For example it will replace
the 32 bit adders in the following code with adders of more appropriate widths:

    module test(input [3:0] a, b, c, output [7:0] y);
        assign y = a + b + c + 1;
    endmodule
\end{lstlisting}

\section{write\_blif -- write design to BLIF file}
\label{cmd:write_blif}
\begin{lstlisting}[numbers=left,frame=single]
    write_blif [options] [filename]

Write the current design to an BLIF file.

    -top top_module
        set the specified module as design top module

    -buf <cell-type> <in-port> <out-port>
        use cells of type <cell-type> with the specified port names for buffers

    -unbuf <cell-type> <in-port> <out-port>
        replace buffer cells with the specified name and port names with
        a .names statement that models a buffer

    -true <cell-type> <out-port>
    -false <cell-type> <out-port>
    -undef <cell-type> <out-port>
        use the specified cell types to drive nets that are constant 1, 0, or
        undefined. when '-' is used as <cell-type>, then <out-port> specifies
        the wire name to be used for the constant signal and no cell driving
        that wire is generated.

The following options can be useful when the generated file is not going to be
read by a BLIF parser but a custom tool. It is recommended to not name the output
file *.blif when any of this options is used.

    -icells
        do not translate Yosys's internal gates to generic BLIF logic
        functions. Instead create .subckt or .gate lines for all cells.

    -gates
        print .gate instead of .subckt lines for all cells that are not
        instantiations of other modules from this design.

    -conn
        do not generate buffers for connected wires. instead use the
        non-standard .conn statement.

    -attr
        use the non-standard .attr statement to write cell attributes

    -param
        use the non-standard .param statement to write cell parameters

    -cname
        use the non-standard .cname statement to write cell names

    -blackbox
        write blackbox cells with .blackbox statement.

    -impltf
        do not write definitions for the $true, $false and $undef wires.
\end{lstlisting}

\section{write\_btor -- write design to BTOR file}
\label{cmd:write_btor}
\begin{lstlisting}[numbers=left,frame=single]
    write_btor [filename]

Write the current design to an BTOR file.
\end{lstlisting}

\section{write\_edif -- write design to EDIF netlist file}
\label{cmd:write_edif}
\begin{lstlisting}[numbers=left,frame=single]
    write_edif [options] [filename]

Write the current design to an EDIF netlist file.

    -top top_module
        set the specified module as design top module

Unfortunately there are different "flavors" of the EDIF file format. This
command generates EDIF files for the Xilinx place&route tools. It might be
necessary to make small modifications to this command when a different tool
is targeted.
\end{lstlisting}

\section{write\_file -- write a text to a file}
\label{cmd:write_file}
\begin{lstlisting}[numbers=left,frame=single]
    write_file [options] output_file [input_file]

Write the text from the input file to the output file.

    -a
        Append to output file (instead of overwriting)


Inside a script the input file can also can a here-document:

    write_file hello.txt <<EOT
    Hello World!
    EOT
\end{lstlisting}

\section{write\_ilang -- write design to ilang file}
\label{cmd:write_ilang}
\begin{lstlisting}[numbers=left,frame=single]
    write_ilang [filename]

Write the current design to an 'ilang' file. (ilang is a text representation
of a design in yosys's internal format.)

    -selected
        only write selected parts of the design.
\end{lstlisting}

\section{write\_intersynth -- write design to InterSynth netlist file}
\label{cmd:write_intersynth}
\begin{lstlisting}[numbers=left,frame=single]
    write_intersynth [options] [filename]

Write the current design to an 'intersynth' netlist file. InterSynth is
a tool for Coarse-Grain Example-Driven Interconnect Synthesis.

    -notypes
        do not generate celltypes and conntypes commands. i.e. just output
        the netlists. this is used for postsilicon synthesis.

    -lib <verilog_or_ilang_file>
        Use the specified library file for determining whether cell ports are
        inputs or outputs. This option can be used multiple times to specify
        more than one library.

    -selected
        only write selected modules. modules must be selected entirely or
        not at all.

http://www.clifford.at/intersynth/
\end{lstlisting}

\section{write\_json -- write design to a JSON file}
\label{cmd:write_json}
\begin{lstlisting}[numbers=left,frame=single]
    write_json [options] [filename]

Write a JSON netlist of the current design.

    -aig
        include AIG models for the different gate types


The general syntax of the JSON output created by this command is as follows:

    {
      "modules": {
        <module_name>: {
          "ports": {
            <port_name>: <port_details>,
            ...
          },
          "cells": {
            <cell_name>: <cell_details>,
            ...
          },
          "netnames": {
            <net_name>: <net_details>,
            ...
          }
        }
      },
      "models": {
        ...
      },
    }

Where <port_details> is:

    {
      "direction": <"input" | "output" | "inout">,
      "bits": <bit_vector>
    }

And <cell_details> is:

    {
      "hide_name": <1 | 0>,
      "type": <cell_type>,
      "parameters": {
        <parameter_name>: <parameter_value>,
        ...
      },
      "attributes": {
        <attribute_name>: <attribute_value>,
        ...
      },
      "port_directions": {
        <port_name>: <"input" | "output" | "inout">,
        ...
      },
      "connections": {
        <port_name>: <bit_vector>,
        ...
      },
    }

And <net_details> is:

    {
      "hide_name": <1 | 0>,
      "bits": <bit_vector>
    }

The "hide_name" fields are set to 1 when the name of this cell or net is
automatically created and is likely not of interest for a regular user.

The "port_directions" section is only included for cells for which the
interface is known.

Module and cell ports and nets can be single bit wide or vectors of multiple
bits. Each individual signal bit is assigned a unique integer. The <bit_vector>
values referenced above are vectors of this integers. Signal bits that are
connected to a constant driver are denoted as string "0" or "1" instead of
a number.

For example the following Verilog code:

    module test(input x, y);
      (* keep *) foo #(.P(42), .Q(1337))
          foo_inst (.A({x, y}), .B({y, x}), .C({4'd10, {4{x}}}));
    endmodule

Translates to the following JSON output:

    {
      "modules": {
        "test": {
          "ports": {
            "x": {
              "direction": "input",
              "bits": [ 2 ]
            },
            "y": {
              "direction": "input",
              "bits": [ 3 ]
            }
          },
          "cells": {
            "foo_inst": {
              "hide_name": 0,
              "type": "foo",
              "parameters": {
                "Q": 1337,
                "P": 42
              },
              "attributes": {
                "keep": 1,
                "src": "test.v:2"
              },
              "connections": {
                "C": [ 2, 2, 2, 2, "0", "1", "0", "1" ],
                "B": [ 2, 3 ],
                "A": [ 3, 2 ]
              }
            }
          },
          "netnames": {
            "y": {
              "hide_name": 0,
              "bits": [ 3 ],
              "attributes": {
                "src": "test.v:1"
              }
            },
            "x": {
              "hide_name": 0,
              "bits": [ 2 ],
              "attributes": {
                "src": "test.v:1"
              }
            }
          }
        }
      }
    }

The models are given as And-Inverter-Graphs (AIGs) in the following form:

    "models": {
      <model_name>: [
        /*   0 */ [ <node-spec> ],
        /*   1 */ [ <node-spec> ],
        /*   2 */ [ <node-spec> ],
        ...
      ],
      ...
    },

The following node-types may be used:

    [ "port", <portname>, <bitindex>, <out-list> ]
      - the value of the specified input port bit

    [ "nport", <portname>, <bitindex>, <out-list> ]
      - the inverted value of the specified input port bit

    [ "and", <node-index>, <node-index>, <out-list> ]
      - the ANDed value of the specified nodes

    [ "nand", <node-index>, <node-index>, <out-list> ]
      - the inverted ANDed value of the specified nodes

    [ "true", <out-list> ]
      - the constant value 1

    [ "false", <out-list> ]
      - the constant value 0

All nodes appear in topological order. I.e. only nodes with smaller indices
are referenced by "and" and "nand" nodes.

The optional <out-list> at the end of a node specification is a list of
output portname and bitindex pairs, specifying the outputs driven by this node.

For example, the following is the model for a 3-input 3-output $reduce_and cell
inferred by the following code:

    module test(input [2:0] in, output [2:0] out);
      assign in = &out;
    endmodule

    "$reduce_and:3U:3": [
      /*   0 */ [ "port", "A", 0 ],
      /*   1 */ [ "port", "A", 1 ],
      /*   2 */ [ "and", 0, 1 ],
      /*   3 */ [ "port", "A", 2 ],
      /*   4 */ [ "and", 2, 3, "Y", 0 ],
      /*   5 */ [ "false", "Y", 1, "Y", 2 ]
    ]

Future version of Yosys might add support for additional fields in the JSON
format. A program processing this format must ignore all unknown fields.
\end{lstlisting}

\section{write\_smt2 -- write design to SMT-LIBv2 file}
\label{cmd:write_smt2}
\begin{lstlisting}[numbers=left,frame=single]
    write_smt2 [options] [filename]

Write a SMT-LIBv2 [1] description of the current design. For a module with name
'<mod>' this will declare the sort '<mod>_s' (state of the module) and the
functions operating on that state.

The '<mod>_s' sort represents a module state. Additional '<mod>_n' functions
are provided that can be used to access the values of the signals in the module.
Only ports, and signals with the 'keep' attribute set are made available via
such functions. Without the -bv option, multi-bit wires are exported as
separate functions of type Bool for the individual bits. With the -bv option
multi-bit wires are exported as single functions of type BitVec.

The '<mod>_t' function evaluates to 'true' when the given pair of states
describes a valid state transition.

The '<mod>_a' function evaluates to 'true' when the given state satisfies
the asserts in the module.

The '<mod>_u' function evaluates to 'true' when the given state satisfies
the assumptions in the module.

The '<mod>_i' function evaluates to 'true' when the given state conforms
to the initial state.

    -verbose
        this will print the recursive walk used to export the modules.

    -bv
        enable support for BitVec (FixedSizeBitVectors theory). with this
        option set multi-bit wires are represented using the BitVec sort and
        support for coarse grain cells (incl. arithmetic) is enabled.

    -mem
        enable support for memories (via ArraysEx theory). this option
        also implies -bv. only $mem cells without merged registers in
        read ports are supported. call "memory" with -nordff to make sure
        that no registers are merged into $mem read ports. '<mod>_m' functions
        will be generated for accessing the arrays that are used to represent
        memories.

    -regs
        also create '<mod>_n' functions for all registers.

    -wires
        also create '<mod>_n' functions for all public wires.

    -tpl <template_file>
        use the given template file. the line containing only the token '%%'
        is replaced with the regular output of this command.

[1] For more information on SMT-LIBv2 visit http://smt-lib.org/ or read David
R. Cok's tutorial: http://www.grammatech.com/resources/smt/SMTLIBTutorial.pdf

---------------------------------------------------------------------------

Example:

Consider the following module (test.v). We want to prove that the output can
never transition from a non-zero value to a zero value.

        module test(input clk, output reg [3:0] y);
          always @(posedge clk)
            y <= (y << 1) | ^y;
        endmodule

For this proof we create the following template (test.tpl).

        ; we need QF_UFBV for this poof
        (set-logic QF_UFBV)

        ; insert the auto-generated code here
        %%

        ; declare two state variables s1 and s2
        (declare-fun s1 () test_s)
        (declare-fun s2 () test_s)

        ; state s2 is the successor of state s1
        (assert (test_t s1 s2))

        ; we are looking for a model with y non-zero in s1
        (assert (distinct (|test_n y| s1) #b0000))

        ; we are looking for a model with y zero in s2
        (assert (= (|test_n y| s2) #b0000))

        ; is there such a model?
        (check-sat)

The following yosys script will create a 'test.smt2' file for our proof:

        read_verilog test.v
        hierarchy -check; proc; opt; check -assert
        write_smt2 -bv -tpl test.tpl test.smt2

Running 'cvc4 test.smt2' will print 'unsat' because y can never transition
from non-zero to zero in the test design.
\end{lstlisting}

\section{write\_smv -- write design to SMV file}
\label{cmd:write_smv}
\begin{lstlisting}[numbers=left,frame=single]
    write_smv [options] [filename]

Write an SMV description of the current design.

    -verbose
        this will print the recursive walk used to export the modules.

    -tpl <template_file>
        use the given template file. the line containing only the token '%%'
        is replaced with the regular output of this command.

THIS COMMAND IS UNDER CONSTRUCTION
\end{lstlisting}

\section{write\_spice -- write design to SPICE netlist file}
\label{cmd:write_spice}
\begin{lstlisting}[numbers=left,frame=single]
    write_spice [options] [filename]

Write the current design to an SPICE netlist file.

    -big_endian
        generate multi-bit ports in MSB first order
        (default is LSB first)

    -neg net_name
        set the net name for constant 0 (default: Vss)

    -pos net_name
        set the net name for constant 1 (default: Vdd)

    -nc_prefix
        prefix for not-connected nets (default: _NC)

    -top top_module
        set the specified module as design top module
\end{lstlisting}

\section{write\_verilog -- write design to Verilog file}
\label{cmd:write_verilog}
\begin{lstlisting}[numbers=left,frame=single]
    write_verilog [options] [filename]

Write the current design to a Verilog file.

    -norename
        without this option all internal object names (the ones with a dollar
        instead of a backslash prefix) are changed to short names in the
        format '_<number>_'.

    -noattr
        with this option no attributes are included in the output

    -attr2comment
        with this option attributes are included as comments in the output

    -noexpr
        without this option all internal cells are converted to Verilog
        expressions.

    -blackboxes
        usually modules with the 'blackbox' attribute are ignored. with
        this option set only the modules with the 'blackbox' attribute
        are written to the output file.

    -selected
        only write selected modules. modules must be selected entirely or
        not at all.
\end{lstlisting}