aboutsummaryrefslogtreecommitdiffstats
path: root/techlibs/xilinx/abc9_map.v
blob: af58e217cee54c08dbb58c2c2ccdb4968e177158 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
2
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2012  Clifford Wolf <clifford@clifford.at>
 *                2019  Eddie Hung    <eddie@fpgeh.com>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

// The following techmapping rules are intended to be run (with -max_iter 1)
//   before invoking the `abc9` pass in order to transform the design into
//   a format that it understands.

`ifdef DFF_MODE
// For example, (complex) flip-flops are expected to be described as an
//   combinatorial box (containing all control logic such as clock enable
//   or synchronous resets) followed by a basic D-Q flop.
// Yosys will automatically analyse the simulation model (described in
//   cells_sim.v) and detach any $_DFF_P_ or $_DFF_N_ cells present in
//   order to extract the combinatorial control logic left behind.
//   Specifically, a simulation model similar to the one below:
//
//                ++===================================++
//                ||                        Sim model  ||
//                ||      /\/\/\/\                     ||
//            D -->>-----<        >     +------+       ||
//            R -->>-----<  Comb. >     |$_DFF_|       ||
//           CE -->>-----<  logic >-----| [NP]_|---+---->>-- Q
//                ||  +--<        >     +------+   |   ||
//                ||  |   \/\/\/\/                 |   ||
//                ||  |                            |   ||
//                ||  +----------------------------+   ||
//                ||                                   ||
//                ++===================================++
//
//   is transformed into:
//
//                ++==================++
//                ||         Comb box ||
//                ||                  ||
//                ||      /\/\/\/\    ||
//           D  -->>-----<        >   ||
//           R  -->>-----<  Comb. >   ||        +-----------+
//          CE  -->>-----<  logic >--->>-- $Q --|$__ABC9_FF_|--+-->> Q
//   abc9_ff.Q +-->>-----<        >   ||        +-----------+  |
//             |  ||      \/\/\/\/    ||                       |
//             |  ||                  ||                       |
//             |  ++==================++                       |
//             |                                               |
//             +-----------------------------------------------+
//
// The purpose of the following FD* rules are to wrap the flop with:
// (a) a special $__ABC9_FF_ in front of the FD*'s output, indicating to abc9
//     the connectivity of its basic D-Q flop
// (b) an optional $__ABC9_ASYNC_ cell in front of $__ABC_FF_'s output to
//     capture asynchronous behaviour
// (c) a special abc9_ff.clock wire to capture its clock domain and polarity
//     (indicated to `abc9' so that it only performs sequential synthesis
//     (with reachability analysis) correctly on one domain at a time)
// (d) a special abc9_ff.init wire to encode the flop's initial state
//     NOTE: in order to perform sequential synthesis, `abc9' also requires
//     that the initial value of all flops be zero
// (e) a special _TECHMAP_REPLACE_.abc9_ff.Q wire that will be used for feedback
//     into the (combinatorial) FD* cell to facilitate clock-enable behaviour

module FDRE (output Q, input C, CE, D, R);
  parameter [0:0] INIT = 1'b0;
  parameter [0:0] IS_C_INVERTED = 1'b0;
  parameter [0:0] IS_D_INVERTED = 1'b0;
  parameter [0:0] IS_R_INVERTED = 1'b0;
  wire QQ, $Q;
  generate if (INIT == 1'b1) begin
    assign Q = ~QQ;
    FDSE #(
      .INIT(1'b0),
      .IS_C_INVERTED(IS_C_INVERTED),
      .IS_D_INVERTED(IS_D_INVERTED),
      .IS_S_INVERTED(IS_R_INVERTED)
    ) _TECHMAP_REPLACE_ (
      .D(~D), .Q($Q), .C(C), .CE(CE), .S(R)
    );
  end
  else begin
    assign Q = QQ;
    FDRE #(
      .INIT(1'b0),
      .IS_C_INVERTED(IS_C_INVERTED),
      .IS_D_INVERTED(IS_D_INVERTED),
      .IS_R_INVERTED(IS_R_INVERTED)
    ) _TECHMAP_REPLACE_ (
      .D(D), .Q($Q), .C(C), .CE(CE), .R(R)
    );
  end
  endgenerate
  $__ABC9_FF_ abc9_ff (.D($Q), .Q(QQ));

  // Special signals
  wire [1:0] abc9_ff.clock = {C, IS_C_INVERTED};
  wire [0:0] abc9_ff.init = 1'b0;
  wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = QQ;
endmodule
module FDRE_1 (output Q, input C, CE, D, R);
  parameter [0:0] INIT = 1'b0;
  wire QQ, $Q;
  generate if (INIT == 1'b1) begin
    assign Q = ~QQ;
    FDSE_1 #(
      .INIT(1'b0)
    ) _TECHMAP_REPLACE_ (
      .D(~D), .Q($Q), .C(C), .CE(CE), .S(R)
    );
  end
  else begin
    assign Q = QQ;
    FDRE_1 #(
      .INIT(1'b0)
    ) _TECHMAP_REPLACE_ (
      .D(D), .Q($Q), .C(C), .CE(CE), .R(R)
    );
  end
  endgenerate
  $__ABC9_FF_ abc9_ff (.D($Q), .Q(QQ));

  // Special signals
  wire [1:0] abc9_ff.clock = {C, 1'b1 /* IS_C_INVERTED */};
  wire [0:0] abc9_ff.init = 1'b0;
  wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = QQ;
endmodule

module FDSE (output Q, input C, CE, D, S);
  parameter [0:0] INIT = 1'b1;
  parameter [0:0] IS_C_INVERTED = 1'b0;
  parameter [0:0] IS_D_INVERTED = 1'b0;
  parameter [0:0] IS_S_INVERTED = 1'b0;
  wire QQ, $Q;
  generate if (INIT == 1'b1) begin
    assign Q = ~QQ;
    FDRE #(
      .INIT(1'b0),
      .IS_C_INVERTED(IS_C_INVERTED),
      .IS_D_INVERTED(IS_D_INVERTED),
      .IS_R_INVERTED(IS_S_INVERTED)
    ) _TECHMAP_REPLACE_ (
      .D(~D), .Q($Q), .C(C), .CE(CE), .R(S)
    );
  end
  else begin
    assign Q = QQ;
    FDSE #(
      .INIT(1'b0),
      .IS_C_INVERTED(IS_C_INVERTED),
      .IS_D_INVERTED(IS_D_INVERTED),
      .IS_S_INVERTED(IS_S_INVERTED)
    ) _TECHMAP_REPLACE_ (
      .D(D), .Q($Q), .C(C), .CE(CE), .S(S)
    );
  end endgenerate
  $__ABC9_FF_ abc9_ff (.D($Q), .Q(QQ));

  // Special signals
  wire [1:0] abc9_ff.clock = {C, IS_C_INVERTED};
  wire [0:0] abc9_ff.init = 1'b0;
  wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = QQ;
endmodule
module FDSE_1 (output Q, input C, CE, D, S);
  parameter [0:0] INIT = 1'b1;
  wire QQ, $Q;
  generate if (INIT == 1'b1) begin
    assign Q = ~QQ;
    FDRE_1 #(
      .INIT(1'b0)
    ) _TECHMAP_REPLACE_ (
      .D(~D), .Q($Q), .C(C), .CE(CE), .R(S)
    );
  end
  else begin
    assign Q = QQ;
    FDSE_1 #(
      .INIT(1'b0)
    ) _TECHMAP_REPLACE_ (
      .D(D), .Q($Q), .C(C), .CE(CE), .S(S)
    );
  end endgenerate
  $__ABC9_FF_ abc9_ff (.D($Q), .Q(QQ));

  // Special signals
  wire [1:0] abc9_ff.clock = {C, 1'b1 /* IS_C_INVERTED */};
  wire [0:0] abc9_ff.init = 1'b0;
  wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = QQ;
endmodule

module FDCE (output Q, input C, CE, D, CLR);
  parameter [0:0] INIT = 1'b0;
  parameter [0:0] IS_C_INVERTED = 1'b0;
  parameter [0:0] IS_D_INVERTED = 1'b0;
  parameter [0:0] IS_CLR_INVERTED = 1'b0;
  wire QQ, $Q, $QQ;
  generate if (INIT == 1'b1) begin
    assign Q = ~QQ;
    FDPE #(
      .INIT(1'b0),
      .IS_C_INVERTED(IS_C_INVERTED),
      .IS_D_INVERTED(IS_D_INVERTED),
      .IS_PRE_INVERTED(IS_CLR_INVERTED)
    ) _TECHMAP_REPLACE_ (
      .D(~D), .Q($Q), .C(C), .CE(CE), .PRE(CLR)
                                            // ^^^ Note that async
                                            //     control is not directly
                                            //     supported by abc9 but its
                                            //     behaviour is captured by
                                            //     $__ABC9_ASYNC1 below
    );
    // Since this is an async flop, async behaviour is dealt with here
    $__ABC9_ASYNC1 abc_async (.A($QQ), .S(CLR ^ IS_CLR_INVERTED), .Y(QQ));
  end
  else begin
    assign Q = QQ;
    FDCE #(
      .INIT(1'b0),
      .IS_C_INVERTED(IS_C_INVERTED),
      .IS_D_INVERTED(IS_D_INVERTED),
      .IS_CLR_INVERTED(IS_CLR_INVERTED)
    ) _TECHMAP_REPLACE_ (
      .D(D), .Q($Q), .C(C), .CE(CE), .CLR(CLR)
                                           // ^^^ Note that async
                                           //     control is not directly
                                           //     supported by abc9 but its
                                           //     behaviour is captured by
                                           //     $__ABC9_ASYNC0 below
    );
    // Since this is an async flop, async behaviour is dealt with here
    $__ABC9_ASYNC0 abc_async (.A($QQ), .S(CLR ^ IS_CLR_INVERTED), .Y(QQ));
  end endgenerate
  $__ABC9_FF_ abc9_ff (.D($Q), .Q($QQ));

  // Special signals
  wire [1:0] abc9_ff.clock = {C, IS_C_INVERTED};
  wire [0:0] abc9_ff.init = 1'b0;
  wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = $QQ;
endmodule
module FDCE_1 (output Q, input C, CE, D, CLR);
  parameter [0:0] INIT = 1'b0;
  wire QQ, $Q, $QQ;
  generate if (INIT == 1'b1) begin
    assign Q = ~QQ;
    FDPE_1 #(
      .INIT(1'b0)
    ) _TECHMAP_REPLACE_ (
      .D(~D), .Q($Q), .C(C), .CE(CE), .PRE(CLR)
                                            // ^^^ Note that async
                                            //     control is not directly
                                            //     supported by abc9 but its
                                            //     behaviour is captured by
                                            //     $__ABC9_ASYNC1 below
    );
    $__ABC9_ASYNC1 abc_async (.A($QQ), .S(CLR), .Y(QQ));
  end
  else begin
    assign Q = QQ;
    FDCE_1 #(
      .INIT(1'b0)
    ) _TECHMAP_REPLACE_ (
      .D(D), .Q($Q), .C(C), .CE(CE), .CLR(CLR)
                                           // ^^^ Note that async
                                           //     control is not directly
                                           //     supported by abc9 but its
                                           //     behaviour is captured by
                                           //     $__ABC9_ASYNC0 below
    );
    $__ABC9_ASYNC0 abc_async (.A($QQ), .S(CLR), .Y(QQ));
  end endgenerate
  $__ABC9_FF_ abc9_ff (.D($Q), .Q($QQ));

  // Special signals
  wire [1:0] abc9_ff.clock = {C, 1'b1 /* IS_C_INVERTED */};
  wire [0:0] abc9_ff.init = 1'b0;
  wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = $QQ;
endmodule

module FDPE (output Q, input C, CE, D, PRE);
  parameter [0:0] INIT = 1'b1;
  parameter [0:0] IS_C_INVERTED = 1'b0;
  parameter [0:0] IS_D_INVERTED = 1'b0;
  parameter [0:0] IS_PRE_INVERTED = 1'b0;
  wire QQ, $Q, $QQ;
  generate if (INIT == 1'b1) begin
    assign Q = ~QQ;
    FDCE #(
      .INIT(1'b0),
      .IS_C_INVERTED(IS_C_INVERTED),
      .IS_D_INVERTED(IS_D_INVERTED),
      .IS_CLR_INVERTED(IS_PRE_INVERTED),
    ) _TECHMAP_REPLACE_ (
      .D(~D), .Q($Q), .C(C), .CE(CE), .CLR(PRE)
                                            // ^^^ Note that async
                                            //     control is not directly
                                            //     supported by abc9 but its
                                            //     behaviour is captured by
                                            //     $__ABC9_ASYNC0 below
    );
    $__ABC9_ASYNC0 abc_async (.A($QQ), .S(PRE ^ IS_PRE_INVERTED), .Y(QQ));
  end
  else begin
    assign Q = QQ;
    FDPE #(
      .INIT(1'b0),
      .IS_C_INVERTED(IS_C_INVERTED),
      .IS_D_INVERTED(IS_D_INVERTED),
      .IS_PRE_INVERTED(IS_PRE_INVERTED),
    ) _TECHMAP_REPLACE_ (
      .D(D), .Q($Q), .C(C), .CE(CE), .PRE(PRE)
                                           // ^^^ Note that async
                                           //     control is not directly
                                           //     supported by abc9 but its
                                           //     behaviour is captured by
                                           //     $__ABC9_ASYNC1 below
    );
    $__ABC9_ASYNC1 abc_async (.A($QQ), .S(PRE ^ IS_PRE_INVERTED), .Y(QQ));
  end endgenerate
  $__ABC9_FF_ abc9_ff (.D($Q), .Q($QQ));

  // Special signals
  wire [1:0] abc9_ff.clock = {C, IS_C_INVERTED};
  wire [0:0] abc9_ff.init = 1'b0;
  wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = $QQ;
endmodule
module FDPE_1 (output Q, input C, CE, D, PRE);
  parameter [0:0] INIT = 1'b1;
  wire QQ, $Q, $QQ;
  generate if (INIT == 1'b1) begin
    assign Q = ~QQ;
    FDCE_1 #(
      .INIT(1'b0)
    ) _TECHMAP_REPLACE_ (
      .D(~D), .Q($Q), .C(C), .CE(CE), .CLR(PRE)
                                            // ^^^ Note that async
                                            //     control is not directly
                                            //     supported by abc9 but its
                                            //     behaviour is captured by
                                            //     $__ABC9_ASYNC0 below
    );
    $__ABC9_ASYNC0 abc_async (.A($QQ), .S(PRE), .Y(QQ));
  end
  else begin
    assign Q = QQ;
    FDPE_1 #(
      .INIT(1'b0)
    ) _TECHMAP_REPLACE_ (
      .D(D), .Q($Q), .C(C), .CE(CE), .PRE(PRE)
                                           // ^^^ Note that async
                                           //     control is not directly
                                           //     supported by abc9 but its
                                           //     behaviour is captured by
                                           //     $__ABC9_ASYNC1 below
    );
    $__ABC9_ASYNC1 abc_async (.A($QQ), .S(PRE), .Y(QQ));
  end endgenerate
  $__ABC9_FF_ abc9_ff (.D($Q), .Q($QQ));

  // Special signals
  wire [1:0] abc9_ff.clock = {C, 1'b1 /* IS_C_INVERTED */};
  wire [0:0] abc9_ff.init = 1'b0;
  wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = $QQ;
endmodule
`endif

// Attach a (combinatorial) black-box onto the output
//   of thes LUTRAM primitives to capture their
//   asynchronous read behaviour
module RAM32X1D (
  output DPO, SPO,
  (* techmap_autopurge *) input  D,
  (* techmap_autopurge *) input  WCLK,
  (* techmap_autopurge *) input  WE,
  (* techmap_autopurge *) input  A0, A1, A2, A3, A4,
  (* techmap_autopurge *) input  DPRA0, DPRA1, DPRA2, DPRA3, DPRA4
);
  parameter INIT = 32'h0;
  parameter IS_WCLK_INVERTED = 1'b0;
  wire $DPO, $SPO;
  RAM32X1D #(
    .INIT(INIT), .IS_WCLK_INVERTED(IS_WCLK_INVERTED)
  ) _TECHMAP_REPLACE_ (
    .DPO($DPO), .SPO($SPO),
    .D(D), .WCLK(WCLK), .WE(WE),
    .A0(A0), .A1(A1), .A2(A2), .A3(A3), .A4(A4),
    .DPRA0(DPRA0), .DPRA1(DPRA1), .DPRA2(DPRA2), .DPRA3(DPRA3), .DPRA4(DPRA4)
  );
  $__ABC9_LUT6 spo (.A($SPO), .S({1'b1, A4, A3, A2, A1, A0}), .Y(SPO));
  $__ABC9_LUT6 dpo (.A($DPO), .S({1'b1, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}), .Y(DPO));
endmodule

module RAM64X1D (
  output DPO, SPO,
  (* techmap_autopurge *) input  D,
  (* techmap_autopurge *) input  WCLK,
  (* techmap_autopurge *) input  WE,
  (* techmap_autopurge *) input  A0, A1, A2, A3, A4, A5,
  (* techmap_autopurge *) input  DPRA0, DPRA1, DPRA2, DPRA3, DPRA4, DPRA5
);
  parameter INIT = 64'h0;
  parameter IS_WCLK_INVERTED = 1'b0;
  wire $DPO, $SPO;
  RAM64X1D #(
    .INIT(INIT), .IS_WCLK_INVERTED(IS_WCLK_INVERTED)
  ) _TECHMAP_REPLACE_ (
    .DPO($DPO), .SPO($SPO),
    .D(D), .WCLK(WCLK), .WE(WE),
    .A0(A0), .A1(A1), .A2(A2), .A3(A3), .A4(A4), .A5(A5),
    .DPRA0(DPRA0), .DPRA1(DPRA1), .DPRA2(DPRA2), .DPRA3(DPRA3), .DPRA4(DPRA4), .DPRA5(DPRA5)
  );
  $__ABC9_LUT6 spo (.A($SPO), .S({A5, A4, A3, A2, A1, A0}), .Y(SPO));
  $__ABC9_LUT6 dpo (.A($DPO), .S({DPRA5, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}), .Y(DPO));
endmodule

module RAM128X1D (
  output       DPO, SPO,
  (* techmap_autopurge *) input        D,
  (* techmap_autopurge *) input        WCLK,
  (* techmap_autopurge *) input        WE,
  (* techmap_autopurge *) input  [6:0] A, DPRA
);
  parameter INIT = 128'h0;
  parameter IS_WCLK_INVERTED = 1'b0;
  wire $DPO, $SPO;
  RAM128X1D #(
    .INIT(INIT), .IS_WCLK_INVERTED(IS_WCLK_INVERTED)
  ) _TECHMAP_REPLACE_ (
    .DPO($DPO), .SPO($SPO),
    .D(D), .WCLK(WCLK), .WE(WE),
    .A(A),
    .DPRA(DPRA)
  );
  $__ABC9_LUT7 spo (.A($SPO), .S(A), .Y(SPO));
  $__ABC9_LUT7 dpo (.A($DPO), .S(DPRA), .Y(DPO));
endmodule

module RAM32M (
  output [1:0] DOA,
  output [1:0] DOB,
  output [1:0] DOC,
  output [1:0] DOD,
  (* techmap_autopurge *) input [4:0] ADDRA,
  (* techmap_autopurge *) input [4:0] ADDRB,
  (* techmap_autopurge *) input [4:0] ADDRC,
  (* techmap_autopurge *) input [4:0] ADDRD,
  (* techmap_autopurge *) input [1:0] DIA,
  (* techmap_autopurge *) input [1:0] DIB,
  (* techmap_autopurge *) input [1:0] DIC,
  (* techmap_autopurge *) input [1:0] DID,
  (* techmap_autopurge *) input WCLK,
  (* techmap_autopurge *) input WE
);
  parameter [63:0] INIT_A = 64'h0000000000000000;
  parameter [63:0] INIT_B = 64'h0000000000000000;
  parameter [63:0] INIT_C = 64'h0000000000000000;
  parameter [63:0] INIT_D = 64'h0000000000000000;
  parameter [0:0] IS_WCLK_INVERTED = 1'b0;
  wire [1:0] $DOA, $DOB, $DOC, $DOD;
  RAM32M #(
    .INIT_A(INIT_A), .INIT_B(INIT_B), .INIT_C(INIT_C), .INIT_D(INIT_D),
    .IS_WCLK_INVERTED(IS_WCLK_INVERTED)
  ) _TECHMAP_REPLACE_ (
    .DOA($DOA), .DOB($DOB), .DOC($DOC), .DOD($DOD),
    .WCLK(WCLK), .WE(WE),
    .ADDRA(ADDRA), .ADDRB(ADDRB), .ADDRC(ADDRC), .ADDRD(ADDRD),
    .DIA(DIA), .DIB(DIB), .DIC(DIC), .DID(DID)
  );
  $__ABC9_LUT6 doa0 (.A($DOA[0]), .S({1'b1, ADDRA}), .Y(DOA[0]));
  $__ABC9_LUT6 doa1 (.A($DOA[1]), .S({1'b1, ADDRA}), .Y(DOA[1]));
  $__ABC9_LUT6 dob0 (.A($DOB[0]), .S({1'b1, ADDRB}), .Y(DOB[0]));
  $__ABC9_LUT6 dob1 (.A($DOB[1]), .S({1'b1, ADDRB}), .Y(DOB[1]));
  $__ABC9_LUT6 doc0 (.A($DOC[0]), .S({1'b1, ADDRC}), .Y(DOC[0]));
  $__ABC9_LUT6 doc1 (.A($DOC[1]), .S({1'b1, ADDRC}), .Y(DOC[1]));
  $__ABC9_LUT6 dod0 (.A($DOD[0]), .S({1'b1, ADDRD}), .Y(DOD[0]));
  $__ABC9_LUT6 dod1 (.A($DOD[1]), .S({1'b1, ADDRD}), .Y(DOD[1]));
endmodule

module RAM64M (
  output DOA,
  output DOB,
  output DOC,
  output DOD,
  (* techmap_autopurge *) input [5:0] ADDRA,
  (* techmap_autopurge *) input [5:0] ADDRB,
  (* techmap_autopurge *) input [5:0] ADDRC,
  (* techmap_autopurge *) input [5:0] ADDRD,
  (* techmap_autopurge *) input DIA,
  (* techmap_autopurge *) input DIB,
  (* techmap_autopurge *) input DIC,
  (* techmap_autopurge *) input DID,
  (* techmap_autopurge *) input WCLK,
  (* techmap_autopurge *) input WE
);
  parameter [63:0] INIT_A = 64'h0000000000000000;
  parameter [63:0] INIT_B = 64'h0000000000000000;
  parameter [63:0] INIT_C = 64'h0000000000000000;
  parameter [63:0] INIT_D = 64'h0000000000000000;
  parameter [0:0] IS_WCLK_INVERTED = 1'b0;
  wire $DOA, $DOB, $DOC, $DOD;
  RAM64M #(
    .INIT_A(INIT_A), .INIT_B(INIT_B), .INIT_C(INIT_C), .INIT_D(INIT_D),
    .IS_WCLK_INVERTED(IS_WCLK_INVERTED)
  ) _TECHMAP_REPLACE_ (
    .DOA($DOA), .DOB($DOB), .DOC($DOC), .DOD($DOD),
    .WCLK(WCLK), .WE(WE),
    .ADDRA(ADDRA), .ADDRB(ADDRB), .ADDRC(ADDRC), .ADDRD(ADDRD),
    .DIA(DIA), .DIB(DIB), .DIC(DIC), .DID(DID)
  );
  $__ABC9_LUT6 doa (.A($DOA), .S(ADDRA), .Y(DOA));
  $__ABC9_LUT6 dob (.A($DOB), .S(ADDRB), .Y(DOB));
  $__ABC9_LUT6 doc (.A($DOC), .S(ADDRC), .Y(DOC));
  $__ABC9_LUT6 dod (.A($DOD), .S(ADDRD), .Y(DOD));
endmodule

module SRL16E (
  output Q,
  (* techmap_autopurge *) input A0, A1, A2, A3, CE, CLK, D
);
  parameter [15:0] INIT = 16'h0000;
  parameter [0:0] IS_CLK_INVERTED = 1'b0;
  wire $Q;
  SRL16E #(
    .INIT(INIT), .IS_CLK_INVERTED(IS_CLK_INVERTED)
  ) _TECHMAP_REPLACE_ (
    .Q($Q),
    .A0(A0), .A1(A1), .A2(A2), .A3(A3), .CE(CE), .CLK(CLK), .D(D)
  );
  $__ABC9_LUT6 q (.A($Q), .S({1'b1, A3, A2, A1, A0, 1'b1}), .Y(Q));
endmodule

module SRLC32E (
  output Q,
  output Q31,
  (* techmap_autopurge *) input [4:0] A,
  (* techmap_autopurge *) input CE, CLK, D
);
  parameter [31:0] INIT = 32'h00000000;
  parameter [0:0] IS_CLK_INVERTED = 1'b0;
  wire $Q;
  SRLC32E #(
    .INIT(INIT), .IS_CLK_INVERTED(IS_CLK_INVERTED)
  ) _TECHMAP_REPLACE_ (
    .Q($Q), .Q31(Q31),
    .A(A), .CE(CE), .CLK(CLK), .D(D)
  );
  $__ABC9_LUT6 q (.A($Q), .S({1'b1, A}), .Y(Q));
endmodule

module DSP48E1 (
    (* techmap_autopurge *) output [29:0] ACOUT,
    (* techmap_autopurge *) output [17:0] BCOUT,
    (* techmap_autopurge *) output reg CARRYCASCOUT,
    (* techmap_autopurge *) output reg [3:0] CARRYOUT,
    (* techmap_autopurge *) output reg MULTSIGNOUT,
    (* techmap_autopurge *) output OVERFLOW,
    (* techmap_autopurge *) output reg signed [47:0] P,
    (* techmap_autopurge *) output PATTERNBDETECT,
    (* techmap_autopurge *) output PATTERNDETECT,
    (* techmap_autopurge *) output [47:0] PCOUT,
    (* techmap_autopurge *) output UNDERFLOW,
    (* techmap_autopurge *) input signed [29:0] A,
    (* techmap_autopurge *) input [29:0] ACIN,
    (* techmap_autopurge *) input [3:0] ALUMODE,
    (* techmap_autopurge *) input signed [17:0] B,
    (* techmap_autopurge *) input [17:0] BCIN,
    (* techmap_autopurge *) input [47:0] C,
    (* techmap_autopurge *) input CARRYCASCIN,
    (* techmap_autopurge *) input CARRYIN,
    (* techmap_autopurge *) input [2:0] CARRYINSEL,
    (* techmap_autopurge *) input CEA1,
    (* techmap_autopurge *) input CEA2,
    (* techmap_autopurge *) input CEAD,
    (* techmap_autopurge *) input CEALUMODE,
    (* techmap_autopurge *) input CEB1,
    (* techmap_autopurge *) input CEB2,
    (* techmap_autopurge *) input CEC,
    (* techmap_autopurge *) input CECARRYIN,
    (* techmap_autopurge *) input CECTRL,
    (* techmap_autopurge *) input CED,
    (* techmap_autopurge *) input CEINMODE,
    (* techmap_autopurge *) input CEM,
    (* techmap_autopurge *) input CEP,
    (* techmap_autopurge *) input CLK,
    (* techmap_autopurge *) input [24:0] D,
    (* techmap_autopurge *) input [4:0] INMODE,
    (* techmap_autopurge *) input MULTSIGNIN,
    (* techmap_autopurge *) input [6:0] OPMODE,
    (* techmap_autopurge *) input [47:0] PCIN,
    (* techmap_autopurge *) input RSTA,
    (* techmap_autopurge *) input RSTALLCARRYIN,
    (* techmap_autopurge *) input RSTALUMODE,
    (* techmap_autopurge *) input RSTB,
    (* techmap_autopurge *) input RSTC,
    (* techmap_autopurge *) input RSTCTRL,
    (* techmap_autopurge *) input RSTD,
    (* techmap_autopurge *) input RSTINMODE,
    (* techmap_autopurge *) input RSTM,
    (* techmap_autopurge *) input RSTP
);
    parameter integer ACASCREG = 1;
    parameter integer ADREG = 1;
    parameter integer ALUMODEREG = 1;
    parameter integer AREG = 1;
    parameter AUTORESET_PATDET = "NO_RESET";
    parameter A_INPUT = "DIRECT";
    parameter integer BCASCREG = 1;
    parameter integer BREG = 1;
    parameter B_INPUT = "DIRECT";
    parameter integer CARRYINREG = 1;
    parameter integer CARRYINSELREG = 1;
    parameter integer CREG = 1;
    parameter integer DREG = 1;
    parameter integer INMODEREG = 1;
    parameter integer MREG = 1;
    parameter integer OPMODEREG = 1;
    parameter integer PREG = 1;
    parameter SEL_MASK = "MASK";
    parameter SEL_PATTERN = "PATTERN";
    parameter USE_DPORT = "FALSE";
    parameter USE_MULT = "MULTIPLY";
    parameter USE_PATTERN_DETECT = "NO_PATDET";
    parameter USE_SIMD = "ONE48";
    parameter [47:0] MASK = 48'h3FFFFFFFFFFF;
    parameter [47:0] PATTERN = 48'h000000000000;
    parameter [3:0] IS_ALUMODE_INVERTED = 4'b0;
    parameter [0:0] IS_CARRYIN_INVERTED = 1'b0;
    parameter [0:0] IS_CLK_INVERTED = 1'b0;
    parameter [4:0] IS_INMODE_INVERTED = 5'b0;
    parameter [6:0] IS_OPMODE_INVERTED = 7'b0;

    parameter _TECHMAP_CELLTYPE_ = "";
    localparam techmap_guard = (_TECHMAP_CELLTYPE_ != "");

`define DSP48E1_INST(__CELL__) """
__CELL__ #(
            .ACASCREG(ACASCREG),
            .ADREG(ADREG),
            .ALUMODEREG(ALUMODEREG),
            .AREG(AREG),
            .AUTORESET_PATDET(AUTORESET_PATDET),
            .A_INPUT(A_INPUT),
            .BCASCREG(BCASCREG),
            .BREG(BREG),
            .B_INPUT(B_INPUT),
            .CARRYINREG(CARRYINREG),
            .CARRYINSELREG(CARRYINSELREG),
            .CREG(CREG),
            .DREG(DREG),
            .INMODEREG(INMODEREG),
            .MREG(MREG),
            .OPMODEREG(OPMODEREG),
            .PREG(PREG),
            .SEL_MASK(SEL_MASK),
            .SEL_PATTERN(SEL_PATTERN),
            .USE_DPORT(USE_DPORT),
            .USE_MULT(USE_MULT),
            .USE_PATTERN_DETECT(USE_PATTERN_DETECT),
            .USE_SIMD(USE_SIMD),
            .MASK(MASK),
            .PATTERN(PATTERN),
            .IS_ALUMODE_INVERTED(IS_ALUMODE_INVERTED),
            .IS_CARRYIN_INVERTED(IS_CARRYIN_INVERTED),
            .IS_CLK_INVERTED(IS_CLK_INVERTED),
            .IS_INMODE_INVERTED(IS_INMODE_INVERTED),
            .IS_OPMODE_INVERTED(IS_OPMODE_INVERTED)
        ) _TECHMAP_REPLACE_ (
            .ACOUT(ACOUT),
            .BCOUT(BCOUT),
            .CARRYCASCOUT(CARRYCASCOUT),
            .CARRYOUT(CARRYOUT),
            .MULTSIGNOUT(MULTSIGNOUT),
            .OVERFLOW(OVERFLOW),
            .P(oP),
            .PATTERNBDETECT(PATTERNBDETECT),
            .PATTERNDETECT(PATTERNDETECT),
            .PCOUT(oPCOUT),
            .UNDERFLOW(UNDERFLOW),
            .A(iA),
            .ACIN(ACIN),
            .ALUMODE(ALUMODE),
            .B(iB),
            .BCIN(BCIN),
            .C(iC),
            .CARRYCASCIN(CARRYCASCIN),
            .CARRYIN(CARRYIN),
            .CARRYINSEL(CARRYINSEL),
            .CEA1(CEA1),
            .CEA2(CEA2),
            .CEAD(CEAD),
            .CEALUMODE(CEALUMODE),
            .CEB1(CEB1),
            .CEB2(CEB2),
            .CEC(CEC),
            .CECARRYIN(CECARRYIN),
            .CECTRL(CECTRL),
            .CED(CED),
            .CEINMODE(CEINMODE),
            .CEM(CEM),
            .CEP(CEP),
            .CLK(CLK),
            .D(iD),
            .INMODE(INMODE),
            .MULTSIGNIN(MULTSIGNIN),
            .OPMODE(OPMODE),
            .PCIN(PCIN),
            .RSTA(RSTA),
            .RSTALLCARRYIN(RSTALLCARRYIN),
            .RSTALUMODE(RSTALUMODE),
            .RSTB(RSTB),
            .RSTC(RSTC),
            .RSTCTRL(RSTCTRL),
            .RSTD(RSTD),
            .RSTINMODE(RSTINMODE),
            .RSTM(RSTM),
            .RSTP(RSTP)
        );
"""

    wire [29:0] iA;
    wire [17:0] iB;
    wire [47:0] iC;
    wire [24:0] iD;

    wire pA, pB, pC, pD, pAD, pM, pP;
    wire [47:0] oP, mP;
    wire [47:0] oPCOUT, mPCOUT;

    generate
    if (USE_MULT == "MULTIPLY" && USE_DPORT == "FALSE") begin
        // Disconnect the A-input if MREG is enabled, since
        //   combinatorial path is broken
        if (AREG == 0 && MREG == 0 && PREG == 0)
            assign iA = A, pA = 1'bx;
        else
            $__ABC9_REG #(.WIDTH(30)) rA (.I(A), .O(iA), .Q(pA));
        if (BREG == 0 && MREG == 0 && PREG == 0)
            assign iB = B, pB = 1'bx;
        else
            $__ABC9_REG #(.WIDTH(18)) rB (.I(B), .O(iB), .Q(pB));
        if (CREG == 0 && PREG == 0)
            assign iC = C, pC = 1'bx;
        else
            $__ABC9_REG #(.WIDTH(48)) rC (.I(C), .O(iC), .Q(pC));
        if (DREG == 0)
            assign iD = D;
        else if (techmap_guard)
        $error("Invalid DSP48E1 configuration: DREG enabled but USE_DPORT == \"FALSE\"");
        assign pD = 1'bx;
        if (ADREG == 1 && techmap_guard)
            $error("Invalid DSP48E1 configuration: ADREG enabled but USE_DPORT == \"FALSE\"");
        assign pAD = 1'bx;
    if (PREG == 0) begin
        if (MREG == 1)
        $__ABC9_REG rM (.Q(pM));
        else
        assign pM = 1'bx;
        assign pP = 1'bx;
    end else begin
            assign pM = 1'bx;
            $__ABC9_REG rP (.Q(pP));
        end

        if (MREG == 0 && PREG == 0)
            assign mP = oP, mPCOUT = oPCOUT;
        else
            assign mP = 1'bx, mPCOUT = 1'bx;
        $__ABC9_DSP48E1_MULT_P_MUX muxP (
            .Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oP), .Mq(pM), .P(mP), .Pq(pP), .O(P)
        );
        $__ABC9_DSP48E1_MULT_PCOUT_MUX muxPCOUT (
            .Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oPCOUT), .Mq(pM), .P(mPCOUT), .Pq(pP), .O(PCOUT)
        );

        `DSP48E1_INST($__ABC9_DSP48E1_MULT )
    end
    else if (USE_MULT == "MULTIPLY" && USE_DPORT == "TRUE") begin
        // Disconnect the A-input if MREG is enabled, since
        //   combinatorial path is broken
        if (AREG == 0 && ADREG == 0 && MREG == 0 && PREG == 0)
            assign iA = A, pA = 1'bx;
        else
            $__ABC9_REG #(.WIDTH(30)) rA (.I(A), .O(iA), .Q(pA));
        if (BREG == 0 && MREG == 0 && PREG == 0)
            assign iB = B, pB = 1'bx;
        else
            $__ABC9_REG #(.WIDTH(18)) rB (.I(B), .O(iB), .Q(pB));
        if (CREG == 0 && PREG == 0)
            assign iC = C, pC = 1'bx;
        else
            $__ABC9_REG #(.WIDTH(48)) rC (.I(C), .O(iC), .Q(pC));
        if (DREG == 0 && ADREG == 0)
            assign iD = D, pD = 1'bx;
        else
            $__ABC9_REG #(.WIDTH(25)) rD (.I(D), .O(iD), .Q(pD));
        if (PREG == 0) begin
            if (MREG == 1) begin
                assign pAD = 1'bx;
        $__ABC9_REG rM (.Q(pM));
            end else begin
                if (ADREG == 1)
                    $__ABC9_REG rAD (.Q(pAD));
                else
                    assign pAD = 1'bx;
        assign pM = 1'bx;
        end
        assign pP = 1'bx;
    end else begin
            assign pAD = 1'bx, pM = 1'bx;
            $__ABC9_REG rP (.Q(pP));
        end

        if (MREG == 0 && PREG == 0)
            assign mP = oP, mPCOUT = oPCOUT;
        else
            assign mP = 1'bx, mPCOUT = 1'bx;
        $__ABC9_DSP48E1_MULT_DPORT_P_MUX muxP (
            .Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oP), .Mq(pM), .P(mP), .Pq(pP), .O(P)
        );
        $__ABC9_DSP48E1_MULT_DPORT_PCOUT_MUX muxPCOUT (
            .Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oPCOUT), .Mq(pM), .P(mPCOUT), .Pq(pP), .O(PCOUT)
        );

        `DSP48E1_INST($__ABC9_DSP48E1_MULT_DPORT )
    end
    else if (USE_MULT == "NONE" && USE_DPORT == "FALSE") begin
        // Disconnect the A-input if MREG is enabled, since
        //   combinatorial path is broken
        if (AREG == 0 && PREG == 0)
            assign iA = A, pA = 1'bx;
        else
            $__ABC9_REG #(.WIDTH(30)) rA (.I(A), .O(iA), .Q(pA));
        if (BREG == 0 && PREG == 0)
            assign iB = B, pB = 1'bx;
        else
            $__ABC9_REG #(.WIDTH(18)) rB (.I(B), .O(iB), .Q(pB));
        if (CREG == 0 && PREG == 0)
            assign iC = C, pC = 1'bx;
        else
            $__ABC9_REG #(.WIDTH(48)) rC (.I(C), .O(iC), .Q(pC));
        if (DREG == 1 && techmap_guard)
            $error("Invalid DSP48E1 configuration: DREG enabled but USE_DPORT == \"FALSE\"");
        assign pD = 1'bx;
        if (ADREG == 1 && techmap_guard)
            $error("Invalid DSP48E1 configuration: ADREG enabled but USE_DPORT == \"FALSE\"");
        assign pAD = 1'bx;
        if (MREG == 1 && techmap_guard)
            $error("Invalid DSP48E1 configuration: MREG enabled but USE_MULT == \"NONE\"");
        assign pM = 1'bx;
        if (PREG == 1)
            $__ABC9_REG rP (.Q(pP));
        else
            assign pP = 1'bx;

        if (MREG == 0 && PREG == 0)
            assign mP = oP, mPCOUT = oPCOUT;
        else
            assign mP = 1'bx, mPCOUT = 1'bx;
        $__ABC9_DSP48E1_P_MUX muxP (
            .Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oP), .Mq(pM), .P(mP), .Pq(pP), .O(P)
        );
        $__ABC9_DSP48E1_PCOUT_MUX muxPCOUT (
            .Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oPCOUT), .Mq(pM), .P(mPCOUT), .Pq(pP), .O(PCOUT)
        );

        `DSP48E1_INST($__ABC9_DSP48E1 )
    end
    else
        $error("Invalid DSP48E1 configuration");
    endgenerate
    `undef DSP48E1_INST
endmodule