aboutsummaryrefslogtreecommitdiffstats
path: root/techlibs/xilinx/brams_defs.vh
blob: 69fe5d716d0044910278d8976ff114b9f64083fb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
55 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
/******************************************************************************
 * page_alloc.c
 * 
 * Simple buddy heap allocator for Xen.
 * 
 * Copyright (c) 2002-2004 K A Fraser
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include <xen/config.h>
#include <xen/init.h>
#include <xen/types.h>
#include <xen/lib.h>
#include <asm/page.h>
#include <xen/spinlock.h>
#include <xen/slab.h>
#include <xen/irq.h>
#include <asm/domain_page.h>

/*
 * Comma-separated list of hexadecimal page numbers containing bad bytes.
 * e.g. 'badpage=0x3f45,0x8a321'.
 */
static char opt_badpage[100] = "";
string_param("badpage", opt_badpage);

#define round_pgdown(_p)  ((_p)&PAGE_MASK)
#define round_pgup(_p)    (((_p)+(PAGE_SIZE-1))&PAGE_MASK)

/*********************
 * ALLOCATION BITMAP
 *  One bit per page of memory. Bit set => page is allocated.
 */

static unsigned long  bitmap_size; /* in bytes */
static unsigned long *alloc_bitmap;
#define PAGES_PER_MAPWORD (sizeof(unsigned long) * 8)

#define allocated_in_map(_pn)                 \
( !! (alloc_bitmap[(_pn)/PAGES_PER_MAPWORD] & \
     (1UL<<((_pn)&(PAGES_PER_MAPWORD-1)))) )

/*
 * Hint regarding bitwise arithmetic in map_{alloc,free}:
 *  -(1<<n)  sets all bits >= n. 
 *  (1<<n)-1 sets all bits <  n.
 * Variable names in map_{alloc,free}:
 *  *_idx == Index into `alloc_bitmap' array.
 *  *_off == Bit offset within an element of the `alloc_bitmap' array.
 */

static void map_alloc(unsigned long first_page, unsigned long nr_pages)
{
    unsigned long start_off, end_off, curr_idx, end_idx;

#ifndef NDEBUG
    unsigned long i;
    /* Check that the block isn't already allocated. */
    for ( i = 0; i < nr_pages; i++ )
        ASSERT(!allocated_in_map(first_page + i));
#endif

    curr_idx  = first_page / PAGES_PER_MAPWORD;
    start_off = first_page & (PAGES_PER_MAPWORD-1);
    end_idx   = (first_page + nr_pages) / PAGES_PER_MAPWORD;
    end_off   = (first_page + nr_pages) & (PAGES_PER_MAPWORD-1);

    if ( curr_idx == end_idx )
    {
        alloc_bitmap[curr_idx] |= ((1UL<<end_off)-1) & -(1UL<<start_off);
    }
    else 
    {
        alloc_bitmap[curr_idx] |= -(1UL<<start_off);
        while ( ++curr_idx < end_idx ) alloc_bitmap[curr_idx] = ~0UL;
        alloc_bitmap[curr_idx] |= (1UL<<end_off)-1;
    }
}


static void map_free(unsigned long first_page, unsigned long nr_pages)
{
    unsigned long start_off, end_off, curr_idx, end_idx;

#ifndef NDEBUG
    unsigned long i;
    /* Check that the block isn't already freed. */
    for ( i = 0; i < nr_pages; i++ )
        ASSERT(allocated_in_map(first_page + i));
#endif

    curr_idx  = first_page / PAGES_PER_MAPWORD;
    start_off = first_page & (PAGES_PER_MAPWORD-1);
    end_idx   = (first_page + nr_pages) / PAGES_PER_MAPWORD;
    end_off   = (first_page + nr_pages) & (PAGES_PER_MAPWORD-1);

    if ( curr_idx == end_idx )
    {
        alloc_bitmap[curr_idx] &= -(1UL<<end_off) | ((1UL<<start_off)-1);
    }
    else 
    {
        alloc_bitmap[curr_idx] &= (1UL<<start_off)-1;
        while ( ++curr_idx != end_idx ) alloc_bitmap[curr_idx] = 0;
        alloc_bitmap[curr_idx] &= -(1UL<<end_off);
    }
}



/*************************
 * BOOT-TIME ALLOCATOR
 */

/* Initialise allocator to handle up to @max_page pages. */
unsigned long init_boot_allocator(unsigned long bitmap_start)
{
    bitmap_start = round_pgup(bitmap_start);

    /* Allocate space for the allocation bitmap. */
    bitmap_size  = max_page / 8;
    bitmap_size  = round_pgup(bitmap_size);
    alloc_bitmap = (unsigned long *)phys_to_virt(bitmap_start);

    /* All allocated by default. */
    memset(alloc_bitmap, ~0, bitmap_size);

    return bitmap_start + bitmap_size;
}

void init_boot_pages(unsigned long ps, unsigned long pe)
{
    unsigned long bad_pfn;
    char *p;

    ps = round_pgup(ps);
    pe = round_pgdown(pe);

    map_free(ps >> PAGE_SHIFT, (pe - ps) >> PAGE_SHIFT);

    /* Check new pages against the bad-page list. */
    p = opt_badpage;
    while ( *p != '\0' )
    {
        bad_pfn = simple_strtoul(p, &p, 0);

        if ( *p == ',' )
            p++;
        else if ( *p != '\0' )
            break;

        if ( (bad_pfn < (bitmap_size*8)) && !allocated_in_map(bad_pfn) )
        {
            printk("Marking page %p as bad\n", bad_pfn);
            map_alloc(bad_pfn, 1);
        }
    }
}

unsigned long alloc_boot_pages(unsigned long size, unsigned long align)
{
    unsigned long pg, i;

    size  = round_pgup(size) >> PAGE_SHIFT;
    align = round_pgup(align) >> PAGE_SHIFT;

    for ( pg = 0; (pg + size) < (bitmap_size*8); pg += align )
    {
        for ( i = 0; i < size; i++ )
            if ( allocated_in_map(pg + i) )
                 break;

        if ( i == size )
        {
            map_alloc(pg, size);
            return pg << PAGE_SHIFT;
        }
    }

    return 0;
}



/*************************
 * BINARY BUDDY ALLOCATOR
 */

#define MEMZONE_XEN 0
#define MEMZONE_DOM 1
#define NR_ZONES    2

/* Up to 2^20 pages can be allocated at once. */
#define MAX_ORDER 20
static struct list_head heap[NR_ZONES][MAX_ORDER+1];

static unsigned long avail[NR_ZONES];

static spinlock_t heap_lock = SPIN_LOCK_UNLOCKED;

void end_boot_allocator(void)
{
    unsigned long i, j;
    int curr_free = 0, next_free = 0;

    memset(avail, 0, sizeof(avail));

    for ( i = 0; i < NR_ZONES; i++ )
        for ( j = 0; j <= MAX_ORDER; j++ )
            INIT_LIST_HEAD(&heap[i][j]);

    /* Pages that are free now go to the domain sub-allocator. */
    for ( i = 0; i < max_page; i++ )
    {
        curr_free = next_free;
        next_free = !allocated_in_map(i+1);
        if ( next_free )
            map_alloc(i+1, 1); /* prevent merging in free_heap_pages() */
        if ( curr_free )
            free_heap_pages(MEMZONE_DOM, pfn_to_page(i), 0);
    }
}

/* Hand the specified arbitrary page range to the specified heap zone. */
void init_heap_pages(
    unsigned int zone, struct pfn_info *pg, unsigned long nr_pages)
{
    unsigned long i;

    ASSERT(zone < NR_ZONES);

    for ( i = 0; i < nr_pages; i++ )
        free_heap_pages(zone, pg+i, 0);
}


/* Allocate 2^@order contiguous pages. */
struct pfn_info *alloc_heap_pages(unsigned int zone, unsigned int order)
{
    int i;
    struct pfn_info *pg;

    ASSERT(zone < NR_ZONES);

    if ( unlikely(order > MAX_ORDER) )
        return NULL;

    spin_lock(&heap_lock);

    /* Find smallest order which can satisfy the request. */
    for ( i = order; i <= MAX_ORDER; i++ )
        if ( !list_empty(&heap[zone][i]) )
            goto found;

    /* No suitable memory blocks. Fail the request. */
    spin_unlock(&heap_lock);
    return NULL;

 found: 
    pg = list_entry(heap[zone][i].next, struct pfn_info, list);
    list_del(&pg->list);

    /* We may have to halve the chunk a number of times. */
    while ( i != order )
    {
        PFN_ORDER(pg) = --i;
        list_add_tail(&pg->list, &heap[zone][i]);
        pg += 1 << i;
    }
    
    map_alloc(page_to_pfn(pg), 1 << order);
    avail[zone] -= 1 << order;

    spin_unlock(&heap_lock);

    return pg;
}


/* Free 2^@order set of pages. */
void free_heap_pages(
    unsigned int zone, struct pfn_info *pg, unsigned int order)
{
    unsigned long mask;

    ASSERT(zone < NR_ZONES);
    ASSERT(order <= MAX_ORDER);

    spin_lock(&heap_lock);

    map_free(page_to_pfn(pg), 1 << order);
    avail[zone] += 1 << order;
    
    /* Merge chunks as far as possible. */
    while ( order < MAX_ORDER )
    {
        mask = 1 << order;

        if ( (page_to_pfn(pg) & mask) )
        {
            /* Merge with predecessor block? */
            if ( allocated_in_map(page_to_pfn(pg)-mask) ||
                 (PFN_ORDER(pg-mask) != order) )
                break;
            list_del(&(pg-mask)->list);
            pg -= mask;
        }
        else
        {
            /* Merge with successor block? */
            if ( allocated_in_map(page_to_pfn(pg)+mask) ||
                 (PFN_ORDER(pg+mask) != order) )
                break;
            list_del(&(pg+mask)->list);
        }
        
        order++;
    }

    PFN_ORDER(pg) = order;
    list_add_tail(&pg->list, &heap[zone][order]);

    spin_unlock(&heap_lock);
}


/*
 * Scrub all unallocated pages in all heap zones. This function is more
 * convoluted than appears necessary because we do not want to continuously
 * hold the lock or disable interrupts while scrubbing very large memory areas.
 */
void scrub_heap_pages(void)
{
    void *p;
    unsigned long pfn, flags;

    printk("Scrubbing Free RAM: ");

    for ( pfn = 0; pfn < (bitmap_size * 8); pfn++ )
    {
        /* Every 100MB, print a progress dot and appease the watchdog. */
        if ( (pfn % ((100*1024*1024)/PAGE_SIZE)) == 0 )
        {
            printk(".");
            touch_nmi_watchdog();
        }

        /* Quick lock-free check. */
        if ( allocated_in_map(pfn) )
            continue;
        
        spin_lock_irqsave(&heap_lock, flags);
        
        /* Re-check page status with lock held. */
        if ( !allocated_in_map(pfn) )
        {
            p = map_domain_mem(pfn << PAGE_SHIFT);
            clear_page(p);
            unmap_domain_mem(p);
        }
        
        spin_unlock_irqrestore(&heap_lock, flags);
    }

    printk("done.\n");
}



/*************************
 * XEN-HEAP SUB-ALLOCATOR
 */

void init_xenheap_pages(unsigned long ps, unsigned long pe)
{
    unsigned long flags;

    ps = round_pgup(ps);
    pe = round_pgdown(pe);

    memguard_guard_range(__va(ps), pe - ps);

    /*
     * Yuk! Ensure there is a one-page buffer between Xen and Dom zones, to
     * prevent merging of power-of-two blocks across the zone boundary.
     */
    if ( !IS_XEN_HEAP_FRAME(phys_to_page(pe)) )
        pe -= PAGE_SIZE;

    local_irq_save(flags);
    init_heap_pages(MEMZONE_XEN, phys_to_page(ps), (pe - ps) >> PAGE_SHIFT);
    local_irq_restore(flags);
}


unsigned long alloc_xenheap_pages(unsigned int order)
{
    unsigned long flags;
    struct pfn_info *pg;
    int i;

    local_irq_save(flags);
    pg = alloc_heap_pages(MEMZONE_XEN, order);
    local_irq_restore(flags);

    if ( unlikely(pg == NULL) )
        goto no_memory;

    memguard_unguard_range(page_to_virt(pg), 1 << (order + PAGE_SHIFT));

    for ( i = 0; i < (1 << order); i++ )
    {
        pg[i].count_info        = 0;
        pg[i].u.inuse._domain   = 0;
        pg[i].u.inuse.type_info = 0;
    }

    return (unsigned long)page_to_virt(pg);

 no_memory:
    printk("Cannot handle page request order %d!\n", order);
    return 0;
}


void free_xenheap_pages(unsigned long p, unsigned int order)
{
    unsigned long flags;

    memguard_guard_range((void *)p, 1 << (order + PAGE_SHIFT));    

    local_irq_save(flags);
    free_heap_pages(MEMZONE_XEN, virt_to_page(p), order);
    local_irq_restore(flags);
}



/*************************
 * DOMAIN-HEAP SUB-ALLOCATOR
 */

void init_domheap_pages(unsigned long ps, unsigned long pe)
{
    ASSERT(!in_irq());

    ps = round_pgup(ps);
    pe = round_pgdown(pe);

    init_heap_pages(MEMZONE_DOM, phys_to_page(ps), (pe - ps) >> PAGE_SHIFT);
}


struct pfn_info *alloc_domheap_pages(struct domain *d, unsigned int order)
{
    struct pfn_info *pg;
    unsigned long mask, flushed_mask, pfn_stamp, cpu_stamp;
    int i, j;

    ASSERT(!in_irq());

    if ( unlikely((pg = alloc_heap_pages(MEMZONE_DOM, order)) == NULL) )
        return NULL;

    flushed_mask = 0;
    for ( i = 0; i < (1 << order); i++ )
    {
        if ( (mask = (pg[i].u.free.cpu_mask & ~flushed_mask)) != 0 )
        {
            pfn_stamp = pg[i].tlbflush_timestamp;
            for ( j = 0; (mask != 0) && (j < smp_num_cpus); j++ )
            {
                if ( mask & (1UL<<j) )
                {
                    cpu_stamp = tlbflush_time[j];
                    if ( !NEED_FLUSH(cpu_stamp, pfn_stamp) )
                        mask &= ~(1UL<<j);
                }
            }
            
            if ( unlikely(mask != 0) )
            {
                flush_tlb_mask(mask);
                perfc_incrc(need_flush_tlb_flush);
                flushed_mask |= mask;
            }
        }

        pg[i].count_info        = 0;
        pg[i].u.inuse._domain   = 0;
        pg[i].u.inuse.type_info = 0;
    }

    if ( d == NULL )
        return pg;

    spin_lock(&d->page_alloc_lock);

    if ( unlikely(test_bit(DF_DYING, &d->d_flags)) ||
         unlikely((d->tot_pages + (1 << order)) > d->max_pages) )
    {
        DPRINTK("Over-allocation for domain %u: %u > %u\n",
                d->id, d->tot_pages + (1 << order), d->max_pages);
        DPRINTK("...or the domain is dying (%d)\n", 
                !!test_bit(DF_DYING, &d->d_flags));
        spin_unlock(&d->page_alloc_lock);
        free_heap_pages(MEMZONE_DOM, pg, order);
        return NULL;
    }

    if ( unlikely(d->tot_pages == 0) )
        get_knownalive_domain(d);

    d->tot_pages += 1 << order;

    for ( i = 0; i < (1 << order); i++ )
    {
        page_set_owner(&pg[i], d);
        wmb(); /* Domain pointer must be visible before updating refcnt. */
        pg[i].count_info |= PGC_allocated | 1;
        list_add_tail(&pg[i].list, &d->page_list);
    }

    spin_unlock(&d->page_alloc_lock);
    
    return pg;
}


void free_domheap_pages(struct pfn_info *pg, unsigned int order)
{
    int            i, drop_dom_ref;
    struct domain *d = page_get_owner(pg);
    struct exec_domain *ed;
    void          *p;
    int cpu_mask = 0;

    ASSERT(!in_irq());

    if ( unlikely(IS_XEN_HEAP_FRAME(pg)) )
    {
        /* NB. May recursively lock from domain_relinquish_memory(). */
        spin_lock_recursive(&d->page_alloc_lock);

        for ( i = 0; i < (1 << order); i++ )
            list_del(&pg[i].list);

        d->xenheap_pages -= 1 << order;
        drop_dom_ref = (d->xenheap_pages == 0);

        spin_unlock_recursive(&d->page_alloc_lock);
    }
    else if ( likely(d != NULL) )
    {
        /* NB. May recursively lock from domain_relinquish_memory(). */
        spin_lock_recursive(&d->page_alloc_lock);

        for_each_exec_domain(d, ed)
            cpu_mask |= 1 << ed->processor;

        for ( i = 0; i < (1 << order); i++ )
        {
            ASSERT((pg[i].u.inuse.type_info & PGT_count_mask) == 0);
            pg[i].tlbflush_timestamp  = tlbflush_current_time();
            pg[i].u.free.cpu_mask     = cpu_mask;
            list_del(&pg[i].list);

            /*
             * Normally we expect a domain to clear pages before freeing them,
             * if it cares about the secrecy of their contents. However, after
             * a domain has died we assume responsibility for erasure.
             */
            if ( unlikely(test_bit(DF_DYING, &d->d_flags)) )
            {
                p = map_domain_mem(page_to_phys(&pg[i]));
                clear_page(p);
                unmap_domain_mem(p);
            }
        }

        d->tot_pages -= 1 << order;
        drop_dom_ref = (d->tot_pages == 0);

        spin_unlock_recursive(&d->page_alloc_lock);

        free_heap_pages(MEMZONE_DOM, pg, order);
    }
    else
    {
        /* Freeing an anonymous domain-heap page. */
        free_heap_pages(MEMZONE_DOM, pg, order);
        drop_dom_ref = 0;
    }

    if ( drop_dom_ref )
        put_domain(d);
}


unsigned long avail_domheap_pages(void)
{
    return avail[MEMZONE_DOM];
}

/*
 * Local variables:
 * mode: C
 * c-set-style: "BSD"
 * c-basic-offset: 4
 * tab-width: 4
 * indent-tabs-mode: nil
 * End:
 */