aboutsummaryrefslogtreecommitdiffstats
path: root/tests/rpc/frontend.py
blob: 8cbec568238a7937720b603cad3d92f373530f50 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
def modules():
	return ["python_inv"]

def derive(module, parameters):
	assert module == r"python_inv"
	if parameters.keys() != {r"\width"}:
		raise ValueError("Invalid parameters")
	return "ilang", r"""
module \impl
	wire width {width:d} input 1 \i
	wire width {width:d} output 2 \o
	cell $neg $0
		parameter \A_SIGNED 1'0
		parameter \A_WIDTH 32'{width:b}
		parameter \Y_WIDTH 32'{width:b}
		connect \A \i
		connect \Y \o
	end
end
module \python_inv
	wire width {width:d} input 1 \i
	wire width {width:d} output 2 \o
	cell \impl $0
		connect \i \i
		connect \o \o
	end
end
""".format(width=parameters[r"\width"])

# ----------------------------------------------------------------------------

import json
import argparse
import sys, socket, os, subprocess
try:
	import msvcrt, win32pipe, win32file
except ImportError:
	msvcrt = win32pipe = win32file = None

def map_parameter(parameter):
	if parameter["type"] == "unsigned":
		return int(parameter["value"], 2)
	if parameter["type"] == "signed":
		width = len(parameter["value"])
		value = int(parameter["value"], 2)
		if value & (1 << (width - 1)):
			value = -((1 << width) - value)
		return value
	if parameter["type"] == "string":
		return parameter["value"]
	if parameter["type"] == "real":
		return float(parameter["value"])

def call(input_json):
	input = json.loads(input_json)
	if input["method"] == "modules":
		return json.dumps({"modules": modules()})
	if input["method"] == "derive":
		try:
			frontend, source = derive(input["module"],
				{name: map_parameter(value) for name, value in input["parameters"].items()})
			return json.dumps({"frontend": frontend, "source": source})
		except ValueError as e:
			return json.dumps({"error": str(e)})

def main():
	parser = argparse.ArgumentParser()
	modes = parser.add_subparsers(dest="mode")
	mode_stdio = modes.add_parser("stdio")
	if os.name == "posix":
		mode_path = modes.add_parser("unix-socket")
	if os.name == "nt":
		mode_path = modes.add_parser("named-pipe")
	mode_path.add_argument("path")
	args = parser.parse_args()

	if args.mode == "stdio":
		while True:
			input = sys.stdin.readline()
			if not input: break
			sys.stdout.write(call(input) + "\n")
			sys.stdout.flush()

	if args.mode == "unix-socket":
		sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
		sock.settimeout(30)
		sock.bind(args.path)
		try:
			sock.listen(1)
			ys_proc = subprocess.Popen(["../../yosys", "-ql", "unix.log", "-p", "connect_rpc -path {}; read_verilog design.v; hierarchy -top top; flatten; select -assert-count 1 t:$neg".format(args.path)])
			conn, addr = sock.accept()
			file = conn.makefile("rw")
			while True:
				input = file.readline()
				if not input: break
				file.write(call(input) + "\n")
				file.flush()
			ys_proc.wait(timeout=10)
			if ys_proc.returncode:
				raise subprocess.CalledProcessError(ys_proc.returncode, ys_proc.args)
		finally:
			ys_proc.kill()
			sock.close()
			os.unlink(args.path)

	if args.mode == "named-pipe":
		pipe = win32pipe.CreateNamedPipe(args.path, win32pipe.PIPE_ACCESS_DUPLEX,
		    win32pipe.PIPE_TYPE_BYTE|win32pipe.PIPE_READMODE_BYTE|win32pipe.PIPE_WAIT,
		    1, 4096, 4096, 0, None)
		win32pipe.ConnectNamedPipe(pipe, None)
		try:
			while True:
				input = b""
				while not input.endswith(b"\n"):
					result, data = win32file.ReadFile(pipe, 4096)
					assert result == 0
					input += data
					assert not b"\n" in input or input.endswith(b"\n")
				output = (call(input.decode("utf-8")) + "\n").encode("utf-8")
				length = len(output)
				while length > 0:
					result, done = win32file.WriteFile(pipe, output)
					assert result == 0
					length -= done
		except win32file.error as e:
			if e.args[0] == 109: # ERROR_BROKEN_PIPE
				pass
			else:
				raise

if __name__ == "__main__":
	main()
">,_P,_P,_P,_P,_P, /* 176-191 */ _U,_U,_U,_U,_U,_U,_U,_U,_U,_U,_U,_U,_U,_U,_U,_U, /* 192-207 */ _U,_U,_U,_U,_U,_U,_U,_P,_U,_U,_U,_U,_U,_U,_U,_L, /* 208-223 */ _L,_L,_L,_L,_L,_L,_L,_L,_L,_L,_L,_L,_L,_L,_L,_L, /* 224-239 */ _L,_L,_L,_L,_L,_L,_L,_P,_L,_L,_L,_L,_L,_L,_L,_L}; /* 240-255 */ /* * A couple of 64 bit operations ported from FreeBSD. * The code within the '#if BITS_PER_LONG == 32' block below, and no other * code in this file, is distributed under the following licensing terms * This is the modified '3-clause' BSD license with the obnoxious * advertising clause removed, as permitted by University of California. * * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #if BITS_PER_LONG == 32 /* * Depending on the desired operation, we view a `long long' (aka quad_t) in * one or more of the following formats. */ union uu { s64 q; /* as a (signed) quad */ s64 uq; /* as an unsigned quad */ long sl[2]; /* as two signed longs */ unsigned long ul[2]; /* as two unsigned longs */ }; #ifdef __BIG_ENDIAN #define _QUAD_HIGHWORD 0 #define _QUAD_LOWWORD 1 #else /* __LITTLE_ENDIAN */ #define _QUAD_HIGHWORD 1 #define _QUAD_LOWWORD 0 #endif /* * Define high and low longwords. */ #define H _QUAD_HIGHWORD #define L _QUAD_LOWWORD /* * Total number of bits in a quad_t and in the pieces that make it up. * These are used for shifting, and also below for halfword extraction * and assembly. */ #define CHAR_BIT 8 /* number of bits in a char */ #define QUAD_BITS (sizeof(s64) * CHAR_BIT) #define LONG_BITS (sizeof(long) * CHAR_BIT) #define HALF_BITS (sizeof(long) * CHAR_BIT / 2) /* * Extract high and low shortwords from longword, and move low shortword of * longword to upper half of long, i.e., produce the upper longword of * ((quad_t)(x) << (number_of_bits_in_long/2)). (`x' must actually be u_long.) * * These are used in the multiply code, to split a longword into upper * and lower halves, and to reassemble a product as a quad_t, shifted left * (sizeof(long)*CHAR_BIT/2). */ #define HHALF(x) ((x) >> HALF_BITS) #define LHALF(x) ((x) & ((1 << HALF_BITS) - 1)) #define LHUP(x) ((x) << HALF_BITS) /* * Multiprecision divide. This algorithm is from Knuth vol. 2 (2nd ed), * section 4.3.1, pp. 257--259. */ #define B (1 << HALF_BITS) /* digit base */ /* Combine two `digits' to make a single two-digit number. */ #define COMBINE(a, b) (((u_long)(a) << HALF_BITS) | (b)) /* select a type for digits in base B */ typedef u_long digit; /* * Shift p[0]..p[len] left `sh' bits, ignoring any bits that * `fall out' the left (there never will be any such anyway). * We may assume len >= 0. NOTE THAT THIS WRITES len+1 DIGITS. */ static void shl(register digit *p, register int len, register int sh) { register int i; for (i = 0; i < len; i++) p[i] = LHALF(p[i] << sh) | (p[i + 1] >> (HALF_BITS - sh)); p[i] = LHALF(p[i] << sh); } /* * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v. * * We do this in base 2-sup-HALF_BITS, so that all intermediate products * fit within u_long. As a consequence, the maximum length dividend and * divisor are 4 `digits' in this base (they are shorter if they have * leading zeros). */ u64 __qdivrem(u64 uq, u64 vq, u64 *arq) { union uu tmp; digit *u, *v, *q; register digit v1, v2; u_long qhat, rhat, t; int m, n, d, j, i; digit uspace[5], vspace[5], qspace[5]; /* * Take care of special cases: divide by zero, and u < v. */ if (vq == 0) { /* divide by zero. */ static volatile const unsigned int zero = 0; tmp.ul[H] = tmp.ul[L] = 1 / zero; if (arq) *arq = uq; return (tmp.q); } if (uq < vq) { if (arq) *arq = uq; return (0); } u = &uspace[0]; v = &vspace[0]; q = &qspace[0]; /* * Break dividend and divisor into digits in base B, then * count leading zeros to determine m and n. When done, we * will have: * u = (u[1]u[2]...u[m+n]) sub B * v = (v[1]v[2]...v[n]) sub B * v[1] != 0 * 1 < n <= 4 (if n = 1, we use a different division algorithm) * m >= 0 (otherwise u < v, which we already checked) * m + n = 4 * and thus * m = 4 - n <= 2 */ tmp.uq = uq; u[0] = 0; u[1] = HHALF(tmp.ul[H]); u[2] = LHALF(tmp.ul[H]); u[3] = HHALF(tmp.ul[L]); u[4] = LHALF(tmp.ul[L]); tmp.uq = vq; v[1] = HHALF(tmp.ul[H]); v[2] = LHALF(tmp.ul[H]); v[3] = HHALF(tmp.ul[L]); v[4] = LHALF(tmp.ul[L]); for (n = 4; v[1] == 0; v++) { if (--n == 1) { u_long rbj; /* r*B+u[j] (not root boy jim) */ digit q1, q2, q3, q4; /* * Change of plan, per exercise 16. * r = 0; * for j = 1..4: * q[j] = floor((r*B + u[j]) / v), * r = (r*B + u[j]) % v; * We unroll this completely here. */ t = v[2]; /* nonzero, by definition */ q1 = u[1] / t; rbj = COMBINE(u[1] % t, u[2]); q2 = rbj / t; rbj = COMBINE(rbj % t, u[3]); q3 = rbj / t; rbj = COMBINE(rbj % t, u[4]); q4 = rbj / t; if (arq) *arq = rbj % t; tmp.ul[H] = COMBINE(q1, q2); tmp.ul[L] = COMBINE(q3, q4); return (tmp.q); } } /* * By adjusting q once we determine m, we can guarantee that * there is a complete four-digit quotient at &qspace[1] when * we finally stop. */ for (m = 4 - n; u[1] == 0; u++) m--; for (i = 4 - m; --i >= 0;) q[i] = 0; q += 4 - m; /* * Here we run Program D, translated from MIX to C and acquiring * a few minor changes. * * D1: choose multiplier 1 << d to ensure v[1] >= B/2. */ d = 0; for (t = v[1]; t < B / 2; t <<= 1) d++; if (d > 0) { shl(&u[0], m + n, d); /* u <<= d */ shl(&v[1], n - 1, d); /* v <<= d */ } /* * D2: j = 0. */ j = 0; v1 = v[1]; /* for D3 -- note that v[1..n] are constant */ v2 = v[2]; /* for D3 */ do { register digit uj0, uj1, uj2; /* * D3: Calculate qhat (\^q, in TeX notation). * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and * let rhat = (u[j]*B + u[j+1]) mod v[1]. * While rhat < B and v[2]*qhat > rhat*B+u[j+2], * decrement qhat and increase rhat correspondingly. * Note that if rhat >= B, v[2]*qhat < rhat*B. */ uj0 = u[j + 0]; /* for D3 only -- note that u[j+...] change */ uj1 = u[j + 1]; /* for D3 only */ uj2 = u[j + 2]; /* for D3 only */ if (uj0 == v1) { qhat = B; rhat = uj1; goto qhat_too_big; } else { u_long nn = COMBINE(uj0, uj1); qhat = nn / v1; rhat = nn % v1; } while (v2 * qhat > COMBINE(rhat, uj2)) { qhat_too_big: qhat--; if ((rhat += v1) >= B) break; } /* * D4: Multiply and subtract. * The variable `t' holds any borrows across the loop. * We split this up so that we do not require v[0] = 0, * and to eliminate a final special case. */ for (t = 0, i = n; i > 0; i--) { t = u[i + j] - v[i] * qhat - t; u[i + j] = LHALF(t); t = (B - HHALF(t)) & (B - 1); } t = u[j] - t; u[j] = LHALF(t); /* * D5: test remainder. * There is a borrow if and only if HHALF(t) is nonzero; * in that (rare) case, qhat was too large (by exactly 1). * Fix it by adding v[1..n] to u[j..j+n]. */ if (HHALF(t)) { qhat--; for (t = 0, i = n; i > 0; i--) { /* D6: add back. */ t += u[i + j] + v[i]; u[i + j] = LHALF(t); t = HHALF(t); } u[j] = LHALF(u[j] + t); } q[j] = qhat; } while (++j <= m); /* D7: loop on j. */ /* * If caller wants the remainder, we have to calculate it as * u[m..m+n] >> d (this is at most n digits and thus fits in * u[m+1..m+n], but we may need more source digits). */ if (arq) { if (d) { for (i = m + n; i > m; --i) u[i] = (u[i] >> d) | LHALF(u[i - 1] << (HALF_BITS - d)); u[i] = 0; } tmp.ul[H] = COMBINE(uspace[1], uspace[2]); tmp.ul[L] = COMBINE(uspace[3], uspace[4]); *arq = tmp.q; } tmp.ul[H] = COMBINE(qspace[1], qspace[2]); tmp.ul[L] = COMBINE(qspace[3], qspace[4]); return (tmp.q); } /* * Divide two signed quads. * Truncates towards zero, as required by C99. */ s64 __divdi3(s64 a, s64 b) { u64 ua, ub, uq; int neg = (a < 0) ^ (b < 0); ua = (a < 0) ? -(u64)a : a; ub = (b < 0) ? -(u64)b : b; uq = __qdivrem(ua, ub, (u64 *)0); return (neg ? -uq : uq); } /* * Divide two unsigned quads. */ u64 __udivdi3(u64 a, u64 b) { return __qdivrem(a, b, (u64 *)0); } /* * Remainder of unsigned quad division */ u64 __umoddi3(u64 a, u64 b) { u64 rem; __qdivrem(a, b, &rem); return rem; } /* * Remainder of signed quad division. * Truncates towards zero, as required by C99: * 11 % 5 = 1 * -11 % 5 = -1 * 11 % -5 = 1 * -11 % -5 = 1 */ s64 __moddi3(s64 a, s64 b) { u64 ua, ub, urem; int neg = (a < 0); ua = neg ? -(u64)a : a; ub = (b < 0) ? -(u64)b : b; __qdivrem(ua, ub, &urem); return (neg ? -urem : urem); } #endif /* BITS_PER_LONG == 32 */ unsigned long long parse_size_and_unit(const char *s, const char **ps) { unsigned long long ret; const char *s1; ret = simple_strtoull(s, &s1, 0); switch ( *s1 ) { case 'G': case 'g': ret <<= 10; case 'M': case 'm': ret <<= 10; case 'K': case 'k': ret <<= 10; case 'B': case 'b': s1++; break; default: ret <<= 10; /* default to kB */ break; } if ( ps != NULL ) *ps = s1; return ret; } /* * Local variables: * mode: C * c-set-style: "BSD" * c-basic-offset: 4 * tab-width: 4 * indent-tabs-mode: nil * End: */