diff options
author | John Crispin <blogic@openwrt.org> | 2011-05-29 21:19:26 +0000 |
---|---|---|
committer | John Crispin <blogic@openwrt.org> | 2011-05-29 21:19:26 +0000 |
commit | 9af744afe836c76a099b67a7ea976724b1363923 (patch) | |
tree | b9da76295132f5efbc18c34b9de3db80de664403 /target/linux/lantiq/patches-2.6.32/550-dwc_otg.patch | |
parent | c4509d34ea9afc5e373c353c48ccdf327f58217e (diff) | |
download | master-187ad058-9af744afe836c76a099b67a7ea976724b1363923.tar.gz master-187ad058-9af744afe836c76a099b67a7ea976724b1363923.tar.bz2 master-187ad058-9af744afe836c76a099b67a7ea976724b1363923.zip |
[lantiq]
* backport 2.6.8 patches to .39 / .32.33
* remove lqtapi
* bump tapi/dsl to .39
* migrate to new ltq_ style api
* add amazon_se support
git-svn-id: svn://svn.openwrt.org/openwrt/trunk@27026 3c298f89-4303-0410-b956-a3cf2f4a3e73
Diffstat (limited to 'target/linux/lantiq/patches-2.6.32/550-dwc_otg.patch')
-rw-r--r-- | target/linux/lantiq/patches-2.6.32/550-dwc_otg.patch | 15623 |
1 files changed, 15623 insertions, 0 deletions
diff --git a/target/linux/lantiq/patches-2.6.32/550-dwc_otg.patch b/target/linux/lantiq/patches-2.6.32/550-dwc_otg.patch new file mode 100644 index 0000000000..da13c71ea7 --- /dev/null +++ b/target/linux/lantiq/patches-2.6.32/550-dwc_otg.patch @@ -0,0 +1,15623 @@ +--- a/drivers/usb/Kconfig ++++ b/drivers/usb/Kconfig +@@ -107,6 +107,8 @@ + + source "drivers/usb/host/Kconfig" + ++source "drivers/usb/dwc_otg/Kconfig" ++ + source "drivers/usb/musb/Kconfig" + + source "drivers/usb/class/Kconfig" +--- a/drivers/usb/Makefile ++++ b/drivers/usb/Makefile +@@ -26,6 +26,8 @@ + + obj-$(CONFIG_USB_WUSB) += wusbcore/ + ++obj-$(CONFIG_DWC_OTG) += dwc_otg/ ++ + obj-$(CONFIG_USB_ACM) += class/ + obj-$(CONFIG_USB_PRINTER) += class/ + obj-$(CONFIG_USB_WDM) += class/ +--- /dev/null ++++ b/drivers/usb/dwc_otg/Kconfig +@@ -0,0 +1,37 @@ ++config DWC_OTG ++ tristate "Synopsis DWC_OTG support" ++ depends on USB ++ help ++ This driver supports Synopsis DWC_OTG IP core ++ embebbed on many SOCs (ralink, infineon, etc) ++ ++choice ++ prompt "USB Operation Mode" ++ depends on DWC_OTG ++ default DWC_OTG_HOST_ONLY ++ ++config DWC_OTG_HOST_ONLY ++ bool "HOST ONLY MODE" ++ depends on DWC_OTG ++ ++#config DWC_OTG_DEVICE_ONLY ++# bool "DEVICE ONLY MODE" ++# depends on DWC_OTG ++endchoice ++ ++choice ++ prompt "Platform" ++ depends on DWC_OTG ++ default DWC_OTG_LANTIQ ++ ++config DWC_OTG_LANTIQ ++ bool "Lantiq" ++ depends on LANTIQ ++ help ++ Danube USB Host Controller ++ platform support ++endchoice ++ ++config DWC_OTG_DEBUG ++ bool "Enable debug mode" ++ depends on DWC_OTG +--- /dev/null ++++ b/drivers/usb/dwc_otg/Makefile +@@ -0,0 +1,39 @@ ++# ++# Makefile for DWC_otg Highspeed USB controller driver ++# ++ ++ifeq ($(CONFIG_DWC_OTG_DEBUG),y) ++EXTRA_CFLAGS += -DDEBUG ++endif ++ ++# Use one of the following flags to compile the software in host-only or ++# device-only mode based on the configuration selected by the user ++ifeq ($(CONFIG_DWC_OTG_HOST_ONLY),y) ++ EXTRA_CFLAGS += -DDWC_OTG_HOST_ONLY -DDWC_HOST_ONLY ++ EXTRA_CFLAGS += -DDWC_OTG_EN_ISOC -DDWC_EN_ISOC ++else ifeq ($(CONFIG_DWC_OTG_DEVICE_ONLY),y) ++ EXTRA_CFLAGS += -DDWC_OTG_DEVICE_ONLY ++else ++ EXTRA_CFLAGS += -DDWC_OTG_MODE ++endif ++ ++# EXTRA_CFLAGS += -DDWC_HS_ELECT_TST ++# EXTRA_CFLAGS += -DDWC_OTG_EXT_CHG_PUMP ++ ++ifeq ($(CONFIG_DWC_OTG_LANTIQ),y) ++ EXTRA_CFLAGS += -Dlinux -D__LINUX__ -DDWC_OTG_IFX -DDWC_OTG_HOST_ONLY -DDWC_HOST_ONLY -D__KERNEL__ ++endif ++ifeq ($(CONFIG_DWC_OTG_LANTIQ),m) ++ EXTRA_CFLAGS += -Dlinux -D__LINUX__ -DDWC_OTG_IFX -DDWC_HOST_ONLY -DMODULE -D__KERNEL__ -DDEBUG ++endif ++ ++obj-$(CONFIG_DWC_OTG) := dwc_otg.o ++dwc_otg-objs := dwc_otg_hcd.o dwc_otg_hcd_intr.o dwc_otg_hcd_queue.o ++#dwc_otg-objs += dwc_otg_pcd.o dwc_otg_pcd_intr.o ++dwc_otg-objs += dwc_otg_attr.o ++dwc_otg-objs += dwc_otg_cil.o dwc_otg_cil_intr.o ++dwc_otg-objs += dwc_otg_ifx.o ++dwc_otg-objs += dwc_otg_driver.o ++ ++#obj-$(CONFIG_DWC_OTG_IFX) := dwc_otg_ifx.o ++#dwc_otg_ifx-objs := dwc_otg_ifx.o +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_attr.c +@@ -0,0 +1,802 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_attr.c $ ++ * $Revision: 1.1.1.1 $ ++ * $Date: 2009-04-17 06:15:34 $ ++ * $Change: 537387 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++/** @file ++ * ++ * The diagnostic interface will provide access to the controller for ++ * bringing up the hardware and testing. The Linux driver attributes ++ * feature will be used to provide the Linux Diagnostic ++ * Interface. These attributes are accessed through sysfs. ++ */ ++ ++/** @page "Linux Module Attributes" ++ * ++ * The Linux module attributes feature is used to provide the Linux ++ * Diagnostic Interface. These attributes are accessed through sysfs. ++ * The diagnostic interface will provide access to the controller for ++ * bringing up the hardware and testing. ++ ++ ++ The following table shows the attributes. ++ <table> ++ <tr> ++ <td><b> Name</b></td> ++ <td><b> Description</b></td> ++ <td><b> Access</b></td> ++ </tr> ++ ++ <tr> ++ <td> mode </td> ++ <td> Returns the current mode: 0 for device mode, 1 for host mode</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> hnpcapable </td> ++ <td> Gets or sets the "HNP-capable" bit in the Core USB Configuraton Register. ++ Read returns the current value.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> srpcapable </td> ++ <td> Gets or sets the "SRP-capable" bit in the Core USB Configuraton Register. ++ Read returns the current value.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> hnp </td> ++ <td> Initiates the Host Negotiation Protocol. Read returns the status.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> srp </td> ++ <td> Initiates the Session Request Protocol. Read returns the status.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> buspower </td> ++ <td> Gets or sets the Power State of the bus (0 - Off or 1 - On)</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> bussuspend </td> ++ <td> Suspends the USB bus.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> busconnected </td> ++ <td> Gets the connection status of the bus</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> gotgctl </td> ++ <td> Gets or sets the Core Control Status Register.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> gusbcfg </td> ++ <td> Gets or sets the Core USB Configuration Register</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> grxfsiz </td> ++ <td> Gets or sets the Receive FIFO Size Register</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> gnptxfsiz </td> ++ <td> Gets or sets the non-periodic Transmit Size Register</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> gpvndctl </td> ++ <td> Gets or sets the PHY Vendor Control Register</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> ggpio </td> ++ <td> Gets the value in the lower 16-bits of the General Purpose IO Register ++ or sets the upper 16 bits.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> guid </td> ++ <td> Gets or sets the value of the User ID Register</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> gsnpsid </td> ++ <td> Gets the value of the Synopsys ID Regester</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> devspeed </td> ++ <td> Gets or sets the device speed setting in the DCFG register</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> enumspeed </td> ++ <td> Gets the device enumeration Speed.</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> hptxfsiz </td> ++ <td> Gets the value of the Host Periodic Transmit FIFO</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> hprt0 </td> ++ <td> Gets or sets the value in the Host Port Control and Status Register</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> regoffset </td> ++ <td> Sets the register offset for the next Register Access</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> regvalue </td> ++ <td> Gets or sets the value of the register at the offset in the regoffset attribute.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> remote_wakeup </td> ++ <td> On read, shows the status of Remote Wakeup. On write, initiates a remote ++ wakeup of the host. When bit 0 is 1 and Remote Wakeup is enabled, the Remote ++ Wakeup signalling bit in the Device Control Register is set for 1 ++ milli-second.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> regdump </td> ++ <td> Dumps the contents of core registers.</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> hcddump </td> ++ <td> Dumps the current HCD state.</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> hcd_frrem </td> ++ <td> Shows the average value of the Frame Remaining ++ field in the Host Frame Number/Frame Remaining register when an SOF interrupt ++ occurs. This can be used to determine the average interrupt latency. Also ++ shows the average Frame Remaining value for start_transfer and the "a" and ++ "b" sample points. The "a" and "b" sample points may be used during debugging ++ bto determine how long it takes to execute a section of the HCD code.</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> rd_reg_test </td> ++ <td> Displays the time required to read the GNPTXFSIZ register many times ++ (the output shows the number of times the register is read). ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> wr_reg_test </td> ++ <td> Displays the time required to write the GNPTXFSIZ register many times ++ (the output shows the number of times the register is written). ++ <td> Read</td> ++ </tr> ++ ++ </table> ++ ++ Example usage: ++ To get the current mode: ++ cat /sys/devices/lm0/mode ++ ++ To power down the USB: ++ echo 0 > /sys/devices/lm0/buspower ++ */ ++#include <linux/kernel.h> ++#include <linux/module.h> ++#include <linux/moduleparam.h> ++#include <linux/init.h> ++#include <linux/device.h> ++#include <linux/errno.h> ++#include <linux/types.h> ++#include <linux/stat.h> /* permission constants */ ++ ++#include <asm/io.h> ++ ++#include "dwc_otg_plat.h" ++#include "dwc_otg_attr.h" ++#include "dwc_otg_driver.h" ++// #include "dwc_otg_pcd.h" ++#include "dwc_otg_hcd.h" ++ ++// 20070316, winder added. ++#ifndef SZ_256K ++#define SZ_256K 0x00040000 ++#endif ++ ++/* ++ * MACROs for defining sysfs attribute ++ */ ++#define DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ ++static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \ ++{ \ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);\ ++ uint32_t val; \ ++ val = dwc_read_reg32 (_addr_); \ ++ val = (val & (_mask_)) >> _shift_; \ ++ return sprintf (buf, "%s = 0x%x\n", _string_, val); \ ++} ++#define DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ ++static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, const char *buf, size_t count) \ ++{ \ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);\ ++ uint32_t set = simple_strtoul(buf, NULL, 16); \ ++ uint32_t clear = set; \ ++ clear = ((~clear) << _shift_) & _mask_; \ ++ set = (set << _shift_) & _mask_; \ ++ dev_dbg(_dev, "Storing Address=0x%08x Set=0x%08x Clear=0x%08x\n", (uint32_t)_addr_, set, clear); \ ++ dwc_modify_reg32(_addr_, clear, set); \ ++ return count; \ ++} ++ ++#define DWC_OTG_DEVICE_ATTR_BITFIELD_RW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ ++DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ ++DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ ++DEVICE_ATTR(_otg_attr_name_,0644,_otg_attr_name_##_show,_otg_attr_name_##_store); ++ ++#define DWC_OTG_DEVICE_ATTR_BITFIELD_RO(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ ++DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ ++DEVICE_ATTR(_otg_attr_name_,0444,_otg_attr_name_##_show,NULL); ++ ++/* ++ * MACROs for defining sysfs attribute for 32-bit registers ++ */ ++#define DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \ ++static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \ ++{ \ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);\ ++ uint32_t val; \ ++ val = dwc_read_reg32 (_addr_); \ ++ return sprintf (buf, "%s = 0x%08x\n", _string_, val); \ ++} ++#define DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_addr_,_string_) \ ++static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, const char *buf, size_t count) \ ++{ \ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);\ ++ uint32_t val = simple_strtoul(buf, NULL, 16); \ ++ dev_dbg(_dev, "Storing Address=0x%08x Val=0x%08x\n", (uint32_t)_addr_, val); \ ++ dwc_write_reg32(_addr_, val); \ ++ return count; \ ++} ++ ++#define DWC_OTG_DEVICE_ATTR_REG32_RW(_otg_attr_name_,_addr_,_string_) \ ++DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \ ++DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_addr_,_string_) \ ++DEVICE_ATTR(_otg_attr_name_,0644,_otg_attr_name_##_show,_otg_attr_name_##_store); ++ ++#define DWC_OTG_DEVICE_ATTR_REG32_RO(_otg_attr_name_,_addr_,_string_) \ ++DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \ ++DEVICE_ATTR(_otg_attr_name_,0444,_otg_attr_name_##_show,NULL); ++ ++ ++/** @name Functions for Show/Store of Attributes */ ++/**@{*/ ++ ++/** ++ * Show the register offset of the Register Access. ++ */ ++static ssize_t regoffset_show( struct device *_dev, struct device_attribute *attr, char *buf) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ return snprintf(buf, sizeof("0xFFFFFFFF\n")+1,"0x%08x\n", otg_dev->reg_offset); ++} ++ ++/** ++ * Set the register offset for the next Register Access Read/Write ++ */ ++static ssize_t regoffset_store( struct device *_dev, struct device_attribute *attr, const char *buf, ++ size_t count ) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ uint32_t offset = simple_strtoul(buf, NULL, 16); ++ //dev_dbg(_dev, "Offset=0x%08x\n", offset); ++ if (offset < SZ_256K ) { ++ otg_dev->reg_offset = offset; ++ } ++ else { ++ dev_err( _dev, "invalid offset\n" ); ++ } ++ ++ return count; ++} ++DEVICE_ATTR(regoffset, S_IRUGO|S_IWUSR, regoffset_show, regoffset_store); ++ ++/** ++ * Show the value of the register at the offset in the reg_offset ++ * attribute. ++ */ ++static ssize_t regvalue_show( struct device *_dev, struct device_attribute *attr, char *buf) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ uint32_t val; ++ volatile uint32_t *addr; ++ ++ if (otg_dev->reg_offset != 0xFFFFFFFF && 0 != otg_dev->base) { ++ /* Calculate the address */ ++ addr = (uint32_t*)(otg_dev->reg_offset + ++ (uint8_t*)otg_dev->base); ++ //dev_dbg(_dev, "@0x%08x\n", (unsigned)addr); ++ val = dwc_read_reg32( addr ); ++ return snprintf(buf, sizeof("Reg@0xFFFFFFFF = 0xFFFFFFFF\n")+1, ++ "Reg@0x%06x = 0x%08x\n", ++ otg_dev->reg_offset, val); ++ } ++ else { ++ dev_err(_dev, "Invalid offset (0x%0x)\n", ++ otg_dev->reg_offset); ++ return sprintf(buf, "invalid offset\n" ); ++ } ++} ++ ++/** ++ * Store the value in the register at the offset in the reg_offset ++ * attribute. ++ * ++ */ ++static ssize_t regvalue_store( struct device *_dev, struct device_attribute *attr, const char *buf, ++ size_t count ) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ volatile uint32_t * addr; ++ uint32_t val = simple_strtoul(buf, NULL, 16); ++ //dev_dbg(_dev, "Offset=0x%08x Val=0x%08x\n", otg_dev->reg_offset, val); ++ if (otg_dev->reg_offset != 0xFFFFFFFF && 0 != otg_dev->base) { ++ /* Calculate the address */ ++ addr = (uint32_t*)(otg_dev->reg_offset + ++ (uint8_t*)otg_dev->base); ++ //dev_dbg(_dev, "@0x%08x\n", (unsigned)addr); ++ dwc_write_reg32( addr, val ); ++ } ++ else { ++ dev_err(_dev, "Invalid Register Offset (0x%08x)\n", ++ otg_dev->reg_offset); ++ } ++ return count; ++} ++DEVICE_ATTR(regvalue, S_IRUGO|S_IWUSR, regvalue_show, regvalue_store); ++ ++/* ++ * Attributes ++ */ ++DWC_OTG_DEVICE_ATTR_BITFIELD_RO(mode,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<20),20,"Mode"); ++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(hnpcapable,&(otg_dev->core_if->core_global_regs->gusbcfg),(1<<9),9,"Mode"); ++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(srpcapable,&(otg_dev->core_if->core_global_regs->gusbcfg),(1<<8),8,"Mode"); ++ ++//DWC_OTG_DEVICE_ATTR_BITFIELD_RW(buspower,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<8),8,"Mode"); ++//DWC_OTG_DEVICE_ATTR_BITFIELD_RW(bussuspend,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<8),8,"Mode"); ++DWC_OTG_DEVICE_ATTR_BITFIELD_RO(busconnected,otg_dev->core_if->host_if->hprt0,0x01,0,"Bus Connected"); ++ ++DWC_OTG_DEVICE_ATTR_REG32_RW(gotgctl,&(otg_dev->core_if->core_global_regs->gotgctl),"GOTGCTL"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(gusbcfg,&(otg_dev->core_if->core_global_regs->gusbcfg),"GUSBCFG"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(grxfsiz,&(otg_dev->core_if->core_global_regs->grxfsiz),"GRXFSIZ"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(gnptxfsiz,&(otg_dev->core_if->core_global_regs->gnptxfsiz),"GNPTXFSIZ"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(gpvndctl,&(otg_dev->core_if->core_global_regs->gpvndctl),"GPVNDCTL"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(ggpio,&(otg_dev->core_if->core_global_regs->ggpio),"GGPIO"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(guid,&(otg_dev->core_if->core_global_regs->guid),"GUID"); ++DWC_OTG_DEVICE_ATTR_REG32_RO(gsnpsid,&(otg_dev->core_if->core_global_regs->gsnpsid),"GSNPSID"); ++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(devspeed,&(otg_dev->core_if->dev_if->dev_global_regs->dcfg),0x3,0,"Device Speed"); ++DWC_OTG_DEVICE_ATTR_BITFIELD_RO(enumspeed,&(otg_dev->core_if->dev_if->dev_global_regs->dsts),0x6,1,"Device Enumeration Speed"); ++ ++DWC_OTG_DEVICE_ATTR_REG32_RO(hptxfsiz,&(otg_dev->core_if->core_global_regs->hptxfsiz),"HPTXFSIZ"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(hprt0,otg_dev->core_if->host_if->hprt0,"HPRT0"); ++ ++ ++/** ++ * @todo Add code to initiate the HNP. ++ */ ++/** ++ * Show the HNP status bit ++ */ ++static ssize_t hnp_show( struct device *_dev, struct device_attribute *attr, char *buf) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ gotgctl_data_t val; ++ val.d32 = dwc_read_reg32 (&(otg_dev->core_if->core_global_regs->gotgctl)); ++ return sprintf (buf, "HstNegScs = 0x%x\n", val.b.hstnegscs); ++} ++ ++/** ++ * Set the HNP Request bit ++ */ ++static ssize_t hnp_store( struct device *_dev, struct device_attribute *attr, const char *buf, ++ size_t count ) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ uint32_t in = simple_strtoul(buf, NULL, 16); ++ uint32_t *addr = (uint32_t *)&(otg_dev->core_if->core_global_regs->gotgctl); ++ gotgctl_data_t mem; ++ mem.d32 = dwc_read_reg32(addr); ++ mem.b.hnpreq = in; ++ dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32); ++ dwc_write_reg32(addr, mem.d32); ++ return count; ++} ++DEVICE_ATTR(hnp, 0644, hnp_show, hnp_store); ++ ++/** ++ * @todo Add code to initiate the SRP. ++ */ ++/** ++ * Show the SRP status bit ++ */ ++static ssize_t srp_show( struct device *_dev, struct device_attribute *attr, char *buf) ++{ ++#ifndef DWC_HOST_ONLY ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ gotgctl_data_t val; ++ val.d32 = dwc_read_reg32 (&(otg_dev->core_if->core_global_regs->gotgctl)); ++ return sprintf (buf, "SesReqScs = 0x%x\n", val.b.sesreqscs); ++#else ++ return sprintf(buf, "Host Only Mode!\n"); ++#endif ++} ++ ++/** ++ * Set the SRP Request bit ++ */ ++static ssize_t srp_store( struct device *_dev, struct device_attribute *attr, const char *buf, ++ size_t count ) ++{ ++#ifndef DWC_HOST_ONLY ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ dwc_otg_pcd_initiate_srp(otg_dev->pcd); ++#endif ++ return count; ++} ++DEVICE_ATTR(srp, 0644, srp_show, srp_store); ++ ++/** ++ * @todo Need to do more for power on/off? ++ */ ++/** ++ * Show the Bus Power status ++ */ ++static ssize_t buspower_show( struct device *_dev, struct device_attribute *attr, char *buf) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ hprt0_data_t val; ++ val.d32 = dwc_read_reg32 (otg_dev->core_if->host_if->hprt0); ++ return sprintf (buf, "Bus Power = 0x%x\n", val.b.prtpwr); ++} ++ ++ ++/** ++ * Set the Bus Power status ++ */ ++static ssize_t buspower_store( struct device *_dev, struct device_attribute *attr, const char *buf, ++ size_t count ) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ uint32_t on = simple_strtoul(buf, NULL, 16); ++ uint32_t *addr = (uint32_t *)otg_dev->core_if->host_if->hprt0; ++ hprt0_data_t mem; ++ ++ mem.d32 = dwc_read_reg32(addr); ++ mem.b.prtpwr = on; ++ ++ //dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32); ++ dwc_write_reg32(addr, mem.d32); ++ ++ return count; ++} ++DEVICE_ATTR(buspower, 0644, buspower_show, buspower_store); ++ ++/** ++ * @todo Need to do more for suspend? ++ */ ++/** ++ * Show the Bus Suspend status ++ */ ++static ssize_t bussuspend_show( struct device *_dev, struct device_attribute *attr, char *buf) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ hprt0_data_t val; ++ val.d32 = dwc_read_reg32 (otg_dev->core_if->host_if->hprt0); ++ return sprintf (buf, "Bus Suspend = 0x%x\n", val.b.prtsusp); ++} ++ ++/** ++ * Set the Bus Suspend status ++ */ ++static ssize_t bussuspend_store( struct device *_dev, struct device_attribute *attr, const char *buf, ++ size_t count ) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ uint32_t in = simple_strtoul(buf, NULL, 16); ++ uint32_t *addr = (uint32_t *)otg_dev->core_if->host_if->hprt0; ++ hprt0_data_t mem; ++ mem.d32 = dwc_read_reg32(addr); ++ mem.b.prtsusp = in; ++ dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32); ++ dwc_write_reg32(addr, mem.d32); ++ return count; ++} ++DEVICE_ATTR(bussuspend, 0644, bussuspend_show, bussuspend_store); ++ ++/** ++ * Show the status of Remote Wakeup. ++ */ ++static ssize_t remote_wakeup_show( struct device *_dev, struct device_attribute *attr, char *buf) ++{ ++#ifndef DWC_HOST_ONLY ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ dctl_data_t val; ++ val.d32 = dwc_read_reg32( &otg_dev->core_if->dev_if->dev_global_regs->dctl); ++ return sprintf( buf, "Remote Wakeup = %d Enabled = %d\n", ++ val.b.rmtwkupsig, otg_dev->pcd->remote_wakeup_enable); ++#else ++ return sprintf(buf, "Host Only Mode!\n"); ++#endif ++} ++ ++/** ++ * Initiate a remote wakeup of the host. The Device control register ++ * Remote Wakeup Signal bit is written if the PCD Remote wakeup enable ++ * flag is set. ++ * ++ */ ++static ssize_t remote_wakeup_store( struct device *_dev, struct device_attribute *attr, const char *buf, ++ size_t count ) ++{ ++#ifndef DWC_HOST_ONLY ++ uint32_t val = simple_strtoul(buf, NULL, 16); ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ if (val&1) { ++ dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 1); ++ } ++ else { ++ dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 0); ++ } ++#endif ++ return count; ++} ++DEVICE_ATTR(remote_wakeup, S_IRUGO|S_IWUSR, remote_wakeup_show, ++ remote_wakeup_store); ++ ++/** ++ * Dump global registers and either host or device registers (depending on the ++ * current mode of the core). ++ */ ++static ssize_t regdump_show( struct device *_dev, struct device_attribute *attr, char *buf) ++{ ++#ifdef DEBUG ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ printk("%s otg_dev=0x%p\n", __FUNCTION__, otg_dev); ++ ++ dwc_otg_dump_global_registers( otg_dev->core_if); ++ if (dwc_otg_is_host_mode(otg_dev->core_if)) { ++ dwc_otg_dump_host_registers( otg_dev->core_if); ++ } else { ++ dwc_otg_dump_dev_registers( otg_dev->core_if); ++ } ++#endif ++ ++ return sprintf( buf, "Register Dump\n" ); ++} ++ ++DEVICE_ATTR(regdump, S_IRUGO|S_IWUSR, regdump_show, 0); ++ ++/** ++ * Dump the current hcd state. ++ */ ++static ssize_t hcddump_show( struct device *_dev, struct device_attribute *attr, char *buf) ++{ ++#ifndef DWC_DEVICE_ONLY ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ dwc_otg_hcd_dump_state(otg_dev->hcd); ++#endif ++ return sprintf( buf, "HCD Dump\n" ); ++} ++ ++DEVICE_ATTR(hcddump, S_IRUGO|S_IWUSR, hcddump_show, 0); ++ ++/** ++ * Dump the average frame remaining at SOF. This can be used to ++ * determine average interrupt latency. Frame remaining is also shown for ++ * start transfer and two additional sample points. ++ */ ++static ssize_t hcd_frrem_show( struct device *_dev, struct device_attribute *attr, char *buf) ++{ ++#ifndef DWC_DEVICE_ONLY ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ dwc_otg_hcd_dump_frrem(otg_dev->hcd); ++#endif ++ return sprintf( buf, "HCD Dump Frame Remaining\n" ); ++} ++ ++DEVICE_ATTR(hcd_frrem, S_IRUGO|S_IWUSR, hcd_frrem_show, 0); ++ ++/** ++ * Displays the time required to read the GNPTXFSIZ register many times (the ++ * output shows the number of times the register is read). ++ */ ++#define RW_REG_COUNT 10000000 ++#define MSEC_PER_JIFFIE 1000/HZ ++static ssize_t rd_reg_test_show( struct device *_dev, struct device_attribute *attr, char *buf) ++{ ++ int i; ++ int time; ++ int start_jiffies; ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ ++ printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n", ++ HZ, MSEC_PER_JIFFIE, loops_per_jiffy); ++ start_jiffies = jiffies; ++ for (i = 0; i < RW_REG_COUNT; i++) { ++ dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz); ++ } ++ time = jiffies - start_jiffies; ++ return sprintf( buf, "Time to read GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n", ++ RW_REG_COUNT, time * MSEC_PER_JIFFIE, time ); ++} ++ ++DEVICE_ATTR(rd_reg_test, S_IRUGO|S_IWUSR, rd_reg_test_show, 0); ++ ++/** ++ * Displays the time required to write the GNPTXFSIZ register many times (the ++ * output shows the number of times the register is written). ++ */ ++static ssize_t wr_reg_test_show( struct device *_dev, struct device_attribute *attr, char *buf) ++{ ++ int i; ++ int time; ++ int start_jiffies; ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ uint32_t reg_val; ++ ++ printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n", ++ HZ, MSEC_PER_JIFFIE, loops_per_jiffy); ++ reg_val = dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz); ++ start_jiffies = jiffies; ++ for (i = 0; i < RW_REG_COUNT; i++) { ++ dwc_write_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz, reg_val); ++ } ++ time = jiffies - start_jiffies; ++ return sprintf( buf, "Time to write GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n", ++ RW_REG_COUNT, time * MSEC_PER_JIFFIE, time); ++} ++ ++DEVICE_ATTR(wr_reg_test, S_IRUGO|S_IWUSR, wr_reg_test_show, 0); ++/**@}*/ ++ ++/** ++ * Create the device files ++ */ ++void dwc_otg_attr_create (struct device *_dev) ++{ ++ int retval; ++ ++ retval = device_create_file(_dev, &dev_attr_regoffset); ++ retval += device_create_file(_dev, &dev_attr_regvalue); ++ retval += device_create_file(_dev, &dev_attr_mode); ++ retval += device_create_file(_dev, &dev_attr_hnpcapable); ++ retval += device_create_file(_dev, &dev_attr_srpcapable); ++ retval += device_create_file(_dev, &dev_attr_hnp); ++ retval += device_create_file(_dev, &dev_attr_srp); ++ retval += device_create_file(_dev, &dev_attr_buspower); ++ retval += device_create_file(_dev, &dev_attr_bussuspend); ++ retval += device_create_file(_dev, &dev_attr_busconnected); ++ retval += device_create_file(_dev, &dev_attr_gotgctl); ++ retval += device_create_file(_dev, &dev_attr_gusbcfg); ++ retval += device_create_file(_dev, &dev_attr_grxfsiz); ++ retval += device_create_file(_dev, &dev_attr_gnptxfsiz); ++ retval += device_create_file(_dev, &dev_attr_gpvndctl); ++ retval += device_create_file(_dev, &dev_attr_ggpio); ++ retval += device_create_file(_dev, &dev_attr_guid); ++ retval += device_create_file(_dev, &dev_attr_gsnpsid); ++ retval += device_create_file(_dev, &dev_attr_devspeed); ++ retval += device_create_file(_dev, &dev_attr_enumspeed); ++ retval += device_create_file(_dev, &dev_attr_hptxfsiz); ++ retval += device_create_file(_dev, &dev_attr_hprt0); ++ retval += device_create_file(_dev, &dev_attr_remote_wakeup); ++ retval += device_create_file(_dev, &dev_attr_regdump); ++ retval += device_create_file(_dev, &dev_attr_hcddump); ++ retval += device_create_file(_dev, &dev_attr_hcd_frrem); ++ retval += device_create_file(_dev, &dev_attr_rd_reg_test); ++ retval += device_create_file(_dev, &dev_attr_wr_reg_test); ++ ++ if(retval != 0) ++ { ++ DWC_PRINT("cannot create sysfs device files.\n"); ++ // DWC_PRINT("killing own sysfs device files!\n"); ++ dwc_otg_attr_remove(_dev); ++ } ++} ++ ++/** ++ * Remove the device files ++ */ ++void dwc_otg_attr_remove (struct device *_dev) ++{ ++ device_remove_file(_dev, &dev_attr_regoffset); ++ device_remove_file(_dev, &dev_attr_regvalue); ++ device_remove_file(_dev, &dev_attr_mode); ++ device_remove_file(_dev, &dev_attr_hnpcapable); ++ device_remove_file(_dev, &dev_attr_srpcapable); ++ device_remove_file(_dev, &dev_attr_hnp); ++ device_remove_file(_dev, &dev_attr_srp); ++ device_remove_file(_dev, &dev_attr_buspower); ++ device_remove_file(_dev, &dev_attr_bussuspend); ++ device_remove_file(_dev, &dev_attr_busconnected); ++ device_remove_file(_dev, &dev_attr_gotgctl); ++ device_remove_file(_dev, &dev_attr_gusbcfg); ++ device_remove_file(_dev, &dev_attr_grxfsiz); ++ device_remove_file(_dev, &dev_attr_gnptxfsiz); ++ device_remove_file(_dev, &dev_attr_gpvndctl); ++ device_remove_file(_dev, &dev_attr_ggpio); ++ device_remove_file(_dev, &dev_attr_guid); ++ device_remove_file(_dev, &dev_attr_gsnpsid); ++ device_remove_file(_dev, &dev_attr_devspeed); ++ device_remove_file(_dev, &dev_attr_enumspeed); ++ device_remove_file(_dev, &dev_attr_hptxfsiz); ++ device_remove_file(_dev, &dev_attr_hprt0); ++ device_remove_file(_dev, &dev_attr_remote_wakeup); ++ device_remove_file(_dev, &dev_attr_regdump); ++ device_remove_file(_dev, &dev_attr_hcddump); ++ device_remove_file(_dev, &dev_attr_hcd_frrem); ++ device_remove_file(_dev, &dev_attr_rd_reg_test); ++ device_remove_file(_dev, &dev_attr_wr_reg_test); ++} +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_attr.h +@@ -0,0 +1,67 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_attr.h $ ++ * $Revision: 1.1.1.1 $ ++ * $Date: 2009-04-17 06:15:34 $ ++ * $Change: 510275 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++#if !defined(__DWC_OTG_ATTR_H__) ++#define __DWC_OTG_ATTR_H__ ++ ++/** @file ++ * This file contains the interface to the Linux device attributes. ++ */ ++extern struct device_attribute dev_attr_regoffset; ++extern struct device_attribute dev_attr_regvalue; ++ ++extern struct device_attribute dev_attr_mode; ++extern struct device_attribute dev_attr_hnpcapable; ++extern struct device_attribute dev_attr_srpcapable; ++extern struct device_attribute dev_attr_hnp; ++extern struct device_attribute dev_attr_srp; ++extern struct device_attribute dev_attr_buspower; ++extern struct device_attribute dev_attr_bussuspend; ++extern struct device_attribute dev_attr_busconnected; ++extern struct device_attribute dev_attr_gotgctl; ++extern struct device_attribute dev_attr_gusbcfg; ++extern struct device_attribute dev_attr_grxfsiz; ++extern struct device_attribute dev_attr_gnptxfsiz; ++extern struct device_attribute dev_attr_gpvndctl; ++extern struct device_attribute dev_attr_ggpio; ++extern struct device_attribute dev_attr_guid; ++extern struct device_attribute dev_attr_gsnpsid; ++extern struct device_attribute dev_attr_devspeed; ++extern struct device_attribute dev_attr_enumspeed; ++extern struct device_attribute dev_attr_hptxfsiz; ++extern struct device_attribute dev_attr_hprt0; ++ ++void dwc_otg_attr_create (struct device *_dev); ++void dwc_otg_attr_remove (struct device *_dev); ++ ++#endif +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_cil.c +@@ -0,0 +1,3025 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_cil.c $ ++ * $Revision: 1.1.1.1 $ ++ * $Date: 2009-04-17 06:15:34 $ ++ * $Change: 631780 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++/** @file ++ * ++ * The Core Interface Layer provides basic services for accessing and ++ * managing the DWC_otg hardware. These services are used by both the ++ * Host Controller Driver and the Peripheral Controller Driver. ++ * ++ * The CIL manages the memory map for the core so that the HCD and PCD ++ * don't have to do this separately. It also handles basic tasks like ++ * reading/writing the registers and data FIFOs in the controller. ++ * Some of the data access functions provide encapsulation of several ++ * operations required to perform a task, such as writing multiple ++ * registers to start a transfer. Finally, the CIL performs basic ++ * services that are not specific to either the host or device modes ++ * of operation. These services include management of the OTG Host ++ * Negotiation Protocol (HNP) and Session Request Protocol (SRP). A ++ * Diagnostic API is also provided to allow testing of the controller ++ * hardware. ++ * ++ * The Core Interface Layer has the following requirements: ++ * - Provides basic controller operations. ++ * - Minimal use of OS services. ++ * - The OS services used will be abstracted by using inline functions ++ * or macros. ++ * ++ */ ++#include <asm/unaligned.h> ++ ++#ifdef DEBUG ++#include <linux/jiffies.h> ++#endif ++ ++#include "dwc_otg_plat.h" ++ ++#include "dwc_otg_regs.h" ++#include "dwc_otg_cil.h" ++ ++/** ++ * This function is called to initialize the DWC_otg CSR data ++ * structures. The register addresses in the device and host ++ * structures are initialized from the base address supplied by the ++ * caller. The calling function must make the OS calls to get the ++ * base address of the DWC_otg controller registers. The core_params ++ * argument holds the parameters that specify how the core should be ++ * configured. ++ * ++ * @param[in] _reg_base_addr Base address of DWC_otg core registers ++ * @param[in] _core_params Pointer to the core configuration parameters ++ * ++ */ ++dwc_otg_core_if_t *dwc_otg_cil_init(const uint32_t *_reg_base_addr, ++ dwc_otg_core_params_t *_core_params) ++{ ++ dwc_otg_core_if_t *core_if = 0; ++ dwc_otg_dev_if_t *dev_if = 0; ++ dwc_otg_host_if_t *host_if = 0; ++ uint8_t *reg_base = (uint8_t *)_reg_base_addr; ++ int i = 0; ++ ++ DWC_DEBUGPL(DBG_CILV, "%s(%p,%p)\n", __func__, _reg_base_addr, _core_params); ++ ++ core_if = kmalloc( sizeof(dwc_otg_core_if_t), GFP_KERNEL); ++ if (core_if == 0) { ++ DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_core_if_t failed\n"); ++ return 0; ++ } ++ memset(core_if, 0, sizeof(dwc_otg_core_if_t)); ++ ++ core_if->core_params = _core_params; ++ core_if->core_global_regs = (dwc_otg_core_global_regs_t *)reg_base; ++ /* ++ * Allocate the Device Mode structures. ++ */ ++ dev_if = kmalloc( sizeof(dwc_otg_dev_if_t), GFP_KERNEL); ++ if (dev_if == 0) { ++ DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_dev_if_t failed\n"); ++ kfree( core_if ); ++ return 0; ++ } ++ ++ dev_if->dev_global_regs = ++ (dwc_otg_device_global_regs_t *)(reg_base + DWC_DEV_GLOBAL_REG_OFFSET); ++ ++ for (i=0; i<MAX_EPS_CHANNELS; i++) { ++ dev_if->in_ep_regs[i] = (dwc_otg_dev_in_ep_regs_t *) ++ (reg_base + DWC_DEV_IN_EP_REG_OFFSET + ++ (i * DWC_EP_REG_OFFSET)); ++ ++ dev_if->out_ep_regs[i] = (dwc_otg_dev_out_ep_regs_t *) ++ (reg_base + DWC_DEV_OUT_EP_REG_OFFSET + ++ (i * DWC_EP_REG_OFFSET)); ++ DWC_DEBUGPL(DBG_CILV, "in_ep_regs[%d]->diepctl=%p\n", ++ i, &dev_if->in_ep_regs[i]->diepctl); ++ DWC_DEBUGPL(DBG_CILV, "out_ep_regs[%d]->doepctl=%p\n", ++ i, &dev_if->out_ep_regs[i]->doepctl); ++ } ++ dev_if->speed = 0; // unknown ++ //dev_if->num_eps = MAX_EPS_CHANNELS; ++ //dev_if->num_perio_eps = 0; ++ ++ core_if->dev_if = dev_if; ++ /* ++ * Allocate the Host Mode structures. ++ */ ++ host_if = kmalloc( sizeof(dwc_otg_host_if_t), GFP_KERNEL); ++ if (host_if == 0) { ++ DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_host_if_t failed\n"); ++ kfree( dev_if ); ++ kfree( core_if ); ++ return 0; ++ } ++ ++ host_if->host_global_regs = (dwc_otg_host_global_regs_t *) ++ (reg_base + DWC_OTG_HOST_GLOBAL_REG_OFFSET); ++ host_if->hprt0 = (uint32_t*)(reg_base + DWC_OTG_HOST_PORT_REGS_OFFSET); ++ for (i=0; i<MAX_EPS_CHANNELS; i++) { ++ host_if->hc_regs[i] = (dwc_otg_hc_regs_t *) ++ (reg_base + DWC_OTG_HOST_CHAN_REGS_OFFSET + ++ (i * DWC_OTG_CHAN_REGS_OFFSET)); ++ DWC_DEBUGPL(DBG_CILV, "hc_reg[%d]->hcchar=%p\n", ++ i, &host_if->hc_regs[i]->hcchar); ++ } ++ host_if->num_host_channels = MAX_EPS_CHANNELS; ++ core_if->host_if = host_if; ++ ++ for (i=0; i<MAX_EPS_CHANNELS; i++) { ++ core_if->data_fifo[i] = ++ (uint32_t *)(reg_base + DWC_OTG_DATA_FIFO_OFFSET + ++ (i * DWC_OTG_DATA_FIFO_SIZE)); ++ DWC_DEBUGPL(DBG_CILV, "data_fifo[%d]=0x%08x\n", ++ i, (unsigned)core_if->data_fifo[i]); ++ } // for loop. ++ ++ core_if->pcgcctl = (uint32_t*)(reg_base + DWC_OTG_PCGCCTL_OFFSET); ++ ++ /* ++ * Store the contents of the hardware configuration registers here for ++ * easy access later. ++ */ ++ core_if->hwcfg1.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg1); ++ core_if->hwcfg2.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg2); ++ core_if->hwcfg3.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg3); ++ core_if->hwcfg4.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg4); ++ ++ DWC_DEBUGPL(DBG_CILV,"hwcfg1=%08x\n",core_if->hwcfg1.d32); ++ DWC_DEBUGPL(DBG_CILV,"hwcfg2=%08x\n",core_if->hwcfg2.d32); ++ DWC_DEBUGPL(DBG_CILV,"hwcfg3=%08x\n",core_if->hwcfg3.d32); ++ DWC_DEBUGPL(DBG_CILV,"hwcfg4=%08x\n",core_if->hwcfg4.d32); ++ ++ ++ DWC_DEBUGPL(DBG_CILV,"op_mode=%0x\n",core_if->hwcfg2.b.op_mode); ++ DWC_DEBUGPL(DBG_CILV,"arch=%0x\n",core_if->hwcfg2.b.architecture); ++ DWC_DEBUGPL(DBG_CILV,"num_dev_ep=%d\n",core_if->hwcfg2.b.num_dev_ep); ++ DWC_DEBUGPL(DBG_CILV,"num_host_chan=%d\n",core_if->hwcfg2.b.num_host_chan); ++ DWC_DEBUGPL(DBG_CILV,"nonperio_tx_q_depth=0x%0x\n",core_if->hwcfg2.b.nonperio_tx_q_depth); ++ DWC_DEBUGPL(DBG_CILV,"host_perio_tx_q_depth=0x%0x\n",core_if->hwcfg2.b.host_perio_tx_q_depth); ++ DWC_DEBUGPL(DBG_CILV,"dev_token_q_depth=0x%0x\n",core_if->hwcfg2.b.dev_token_q_depth); ++ ++ DWC_DEBUGPL(DBG_CILV,"Total FIFO SZ=%d\n", core_if->hwcfg3.b.dfifo_depth); ++ DWC_DEBUGPL(DBG_CILV,"xfer_size_cntr_width=%0x\n", core_if->hwcfg3.b.xfer_size_cntr_width); ++ ++ /* ++ * Set the SRP sucess bit for FS-I2c ++ */ ++ core_if->srp_success = 0; ++ core_if->srp_timer_started = 0; ++ ++ return core_if; ++} ++/** ++ * This function frees the structures allocated by dwc_otg_cil_init(). ++ * ++ * @param[in] _core_if The core interface pointer returned from ++ * dwc_otg_cil_init(). ++ * ++ */ ++void dwc_otg_cil_remove( dwc_otg_core_if_t *_core_if ) ++{ ++ /* Disable all interrupts */ ++ dwc_modify_reg32( &_core_if->core_global_regs->gahbcfg, 1, 0); ++ dwc_write_reg32( &_core_if->core_global_regs->gintmsk, 0); ++ ++ if ( _core_if->dev_if ) { ++ kfree( _core_if->dev_if ); ++ } ++ if ( _core_if->host_if ) { ++ kfree( _core_if->host_if ); ++ } ++ kfree( _core_if ); ++} ++ ++/** ++ * This function enables the controller's Global Interrupt in the AHB Config ++ * register. ++ * ++ * @param[in] _core_if Programming view of DWC_otg controller. ++ */ ++extern void dwc_otg_enable_global_interrupts( dwc_otg_core_if_t *_core_if ) ++{ ++ gahbcfg_data_t ahbcfg = { .d32 = 0}; ++ ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */ ++ dwc_modify_reg32(&_core_if->core_global_regs->gahbcfg, 0, ahbcfg.d32); ++} ++/** ++ * This function disables the controller's Global Interrupt in the AHB Config ++ * register. ++ * ++ * @param[in] _core_if Programming view of DWC_otg controller. ++ */ ++extern void dwc_otg_disable_global_interrupts( dwc_otg_core_if_t *_core_if ) ++{ ++ gahbcfg_data_t ahbcfg = { .d32 = 0}; ++ ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */ ++ dwc_modify_reg32(&_core_if->core_global_regs->gahbcfg, ahbcfg.d32, 0); ++} ++ ++/** ++ * This function initializes the commmon interrupts, used in both ++ * device and host modes. ++ * ++ * @param[in] _core_if Programming view of the DWC_otg controller ++ * ++ */ ++static void dwc_otg_enable_common_interrupts(dwc_otg_core_if_t *_core_if) ++{ ++ dwc_otg_core_global_regs_t *global_regs = ++ _core_if->core_global_regs; ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ /* Clear any pending OTG Interrupts */ ++ dwc_write_reg32( &global_regs->gotgint, 0xFFFFFFFF); ++ /* Clear any pending interrupts */ ++ dwc_write_reg32( &global_regs->gintsts, 0xFFFFFFFF); ++ /* ++ * Enable the interrupts in the GINTMSK. ++ */ ++ intr_mask.b.modemismatch = 1; ++ intr_mask.b.otgintr = 1; ++ if (!_core_if->dma_enable) { ++ intr_mask.b.rxstsqlvl = 1; ++ } ++ intr_mask.b.conidstschng = 1; ++ intr_mask.b.wkupintr = 1; ++ intr_mask.b.disconnect = 1; ++ intr_mask.b.usbsuspend = 1; ++ intr_mask.b.sessreqintr = 1; ++ dwc_write_reg32( &global_regs->gintmsk, intr_mask.d32); ++} ++ ++/** ++ * Initializes the FSLSPClkSel field of the HCFG register depending on the PHY ++ * type. ++ */ ++static void init_fslspclksel(dwc_otg_core_if_t *_core_if) ++{ ++ uint32_t val; ++ hcfg_data_t hcfg; ++ ++ if (((_core_if->hwcfg2.b.hs_phy_type == 2) && ++ (_core_if->hwcfg2.b.fs_phy_type == 1) && ++ (_core_if->core_params->ulpi_fs_ls)) || ++ (_core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) ++ { ++ /* Full speed PHY */ ++ val = DWC_HCFG_48_MHZ; ++ } else { ++ /* High speed PHY running at full speed or high speed */ ++ val = DWC_HCFG_30_60_MHZ; ++ } ++ ++ DWC_DEBUGPL(DBG_CIL, "Initializing HCFG.FSLSPClkSel to 0x%1x\n", val); ++ hcfg.d32 = dwc_read_reg32(&_core_if->host_if->host_global_regs->hcfg); ++ hcfg.b.fslspclksel = val; ++ dwc_write_reg32(&_core_if->host_if->host_global_regs->hcfg, hcfg.d32); ++} ++ ++/** ++ * Initializes the DevSpd field of the DCFG register depending on the PHY type ++ * and the enumeration speed of the device. ++ */ ++static void init_devspd(dwc_otg_core_if_t *_core_if) ++{ ++ uint32_t val; ++ dcfg_data_t dcfg; ++ ++ if (((_core_if->hwcfg2.b.hs_phy_type == 2) && ++ (_core_if->hwcfg2.b.fs_phy_type == 1) && ++ (_core_if->core_params->ulpi_fs_ls)) || ++ (_core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) ++ { ++ /* Full speed PHY */ ++ val = 0x3; ++ } else if (_core_if->core_params->speed == DWC_SPEED_PARAM_FULL) { ++ /* High speed PHY running at full speed */ ++ val = 0x1; ++ } else { ++ /* High speed PHY running at high speed */ ++ val = 0x0; ++ } ++ ++ DWC_DEBUGPL(DBG_CIL, "Initializing DCFG.DevSpd to 0x%1x\n", val); ++ dcfg.d32 = dwc_read_reg32(&_core_if->dev_if->dev_global_regs->dcfg); ++ dcfg.b.devspd = val; ++ dwc_write_reg32(&_core_if->dev_if->dev_global_regs->dcfg, dcfg.d32); ++} ++ ++/** ++ * This function calculates the number of IN EPS ++ * using GHWCFG1 and GHWCFG2 registers values ++ * ++ * @param _pcd the pcd structure. ++ */ ++static uint32_t calc_num_in_eps(dwc_otg_core_if_t * _core_if) ++{ ++ uint32_t num_in_eps = 0; ++ uint32_t num_eps = _core_if->hwcfg2.b.num_dev_ep; ++ uint32_t hwcfg1 = _core_if->hwcfg1.d32 >> 2; ++ uint32_t num_tx_fifos = _core_if->hwcfg4.b.num_in_eps; ++ int i; ++ for (i = 0; i < num_eps; ++i) { ++ if (!(hwcfg1 & 0x1)) ++ num_in_eps++; ++ hwcfg1 >>= 2; ++ } ++ if (_core_if->hwcfg4.b.ded_fifo_en) { ++ num_in_eps = (num_in_eps > num_tx_fifos) ? num_tx_fifos : num_in_eps; ++ } ++ return num_in_eps; ++} ++ ++ ++/** ++ * This function calculates the number of OUT EPS ++ * using GHWCFG1 and GHWCFG2 registers values ++ * ++ * @param _pcd the pcd structure. ++ */ ++static uint32_t calc_num_out_eps(dwc_otg_core_if_t * _core_if) ++{ ++ uint32_t num_out_eps = 0; ++ uint32_t num_eps = _core_if->hwcfg2.b.num_dev_ep; ++ uint32_t hwcfg1 = _core_if->hwcfg1.d32 >> 2; ++ int i; ++ for (i = 0; i < num_eps; ++i) { ++ if (!(hwcfg1 & 0x2)) ++ num_out_eps++; ++ hwcfg1 >>= 2; ++ } ++ return num_out_eps; ++} ++/** ++ * This function initializes the DWC_otg controller registers and ++ * prepares the core for device mode or host mode operation. ++ * ++ * @param _core_if Programming view of the DWC_otg controller ++ * ++ */ ++void dwc_otg_core_init(dwc_otg_core_if_t *_core_if) ++{ ++ dwc_otg_core_global_regs_t * global_regs = _core_if->core_global_regs; ++ dwc_otg_dev_if_t *dev_if = _core_if->dev_if; ++ int i = 0; ++ gahbcfg_data_t ahbcfg = { .d32 = 0}; ++ gusbcfg_data_t usbcfg = { .d32 = 0 }; ++ gi2cctl_data_t i2cctl = {.d32 = 0}; ++ ++ DWC_DEBUGPL(DBG_CILV, "dwc_otg_core_init(%p)\n",_core_if); ++ ++ /* Common Initialization */ ++ ++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); ++ DWC_DEBUGPL(DBG_CIL, "USB config register: 0x%08x\n", usbcfg.d32); ++ ++ /* Program the ULPI External VBUS bit if needed */ ++ //usbcfg.b.ulpi_ext_vbus_drv = 1; ++ //usbcfg.b.ulpi_ext_vbus_drv = 0; ++ usbcfg.b.ulpi_ext_vbus_drv = ++ (_core_if->core_params->phy_ulpi_ext_vbus == DWC_PHY_ULPI_EXTERNAL_VBUS) ? 1 : 0; ++ ++ /* Set external TS Dline pulsing */ ++ usbcfg.b.term_sel_dl_pulse = (_core_if->core_params->ts_dline == 1) ? 1 : 0; ++ dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32); ++ ++ /* Reset the Controller */ ++ dwc_otg_core_reset( _core_if ); ++ ++ /* Initialize parameters from Hardware configuration registers. */ ++#if 0 ++ dev_if->num_eps = _core_if->hwcfg2.b.num_dev_ep; ++ dev_if->num_perio_eps = _core_if->hwcfg4.b.num_dev_perio_in_ep; ++#else ++ dev_if->num_in_eps = calc_num_in_eps(_core_if); ++ dev_if->num_out_eps = calc_num_out_eps(_core_if); ++#endif ++ DWC_DEBUGPL(DBG_CIL, "num_dev_perio_in_ep=%d\n", ++ _core_if->hwcfg4.b.num_dev_perio_in_ep); ++ DWC_DEBUGPL(DBG_CIL, "Is power optimization enabled? %s\n", ++ _core_if->hwcfg4.b.power_optimiz ? "Yes" : "No"); ++ DWC_DEBUGPL(DBG_CIL, "vbus_valid filter enabled? %s\n", ++ _core_if->hwcfg4.b.vbus_valid_filt_en ? "Yes" : "No"); ++ DWC_DEBUGPL(DBG_CIL, "iddig filter enabled? %s\n", ++ _core_if->hwcfg4.b.iddig_filt_en ? "Yes" : "No"); ++ ++ DWC_DEBUGPL(DBG_CIL, "num_dev_perio_in_ep=%d\n",_core_if->hwcfg4.b.num_dev_perio_in_ep); ++ for (i=0; i < _core_if->hwcfg4.b.num_dev_perio_in_ep; i++) { ++ dev_if->perio_tx_fifo_size[i] = ++ dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16; ++ DWC_DEBUGPL(DBG_CIL, "Periodic Tx FIFO SZ #%d=0x%0x\n", i, ++ dev_if->perio_tx_fifo_size[i]); ++ } ++ for (i = 0; i < _core_if->hwcfg4.b.num_in_eps; i++) { ++ dev_if->tx_fifo_size[i] = ++ dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16; ++ DWC_DEBUGPL(DBG_CIL, "Tx FIFO SZ #%d=0x%0x\n", i, ++ dev_if->perio_tx_fifo_size[i]); ++ } ++ ++ _core_if->total_fifo_size = _core_if->hwcfg3.b.dfifo_depth; ++ _core_if->rx_fifo_size = dwc_read_reg32(&global_regs->grxfsiz); ++ _core_if->nperio_tx_fifo_size = dwc_read_reg32(&global_regs->gnptxfsiz) >> 16; ++ ++ DWC_DEBUGPL(DBG_CIL, "Total FIFO SZ=%d\n", _core_if->total_fifo_size); ++ DWC_DEBUGPL(DBG_CIL, "Rx FIFO SZ=%d\n", _core_if->rx_fifo_size); ++ DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO SZ=%d\n", _core_if->nperio_tx_fifo_size); ++ ++ /* This programming sequence needs to happen in FS mode before any other ++ * programming occurs */ ++ if ((_core_if->core_params->speed == DWC_SPEED_PARAM_FULL) && ++ (_core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) { ++ /* If FS mode with FS PHY */ ++ ++ /* core_init() is now called on every switch so only call the ++ * following for the first time through. */ ++ if (!_core_if->phy_init_done) { ++ _core_if->phy_init_done = 1; ++ DWC_DEBUGPL(DBG_CIL, "FS_PHY detected\n"); ++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); ++ usbcfg.b.physel = 1; ++ dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32); ++ ++ /* Reset after a PHY select */ ++ dwc_otg_core_reset( _core_if ); ++ } ++ ++ /* Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also ++ * do this on HNP Dev/Host mode switches (done in dev_init and ++ * host_init). */ ++ if (dwc_otg_is_host_mode(_core_if)) { ++ DWC_DEBUGPL(DBG_CIL, "host mode\n"); ++ init_fslspclksel(_core_if); ++ } else { ++ DWC_DEBUGPL(DBG_CIL, "device mode\n"); ++ init_devspd(_core_if); ++ } ++ ++ if (_core_if->core_params->i2c_enable) { ++ DWC_DEBUGPL(DBG_CIL, "FS_PHY Enabling I2c\n"); ++ /* Program GUSBCFG.OtgUtmifsSel to I2C */ ++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); ++ usbcfg.b.otgutmifssel = 1; ++ dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32); ++ ++ /* Program GI2CCTL.I2CEn */ ++ i2cctl.d32 = dwc_read_reg32(&global_regs->gi2cctl); ++ i2cctl.b.i2cdevaddr = 1; ++ i2cctl.b.i2cen = 0; ++ dwc_write_reg32 (&global_regs->gi2cctl, i2cctl.d32); ++ i2cctl.b.i2cen = 1; ++ dwc_write_reg32 (&global_regs->gi2cctl, i2cctl.d32); ++ } ++ ++ } /* endif speed == DWC_SPEED_PARAM_FULL */ ++ else { ++ /* High speed PHY. */ ++ if (!_core_if->phy_init_done) { ++ _core_if->phy_init_done = 1; ++ DWC_DEBUGPL(DBG_CIL, "High spped PHY\n"); ++ /* HS PHY parameters. These parameters are preserved ++ * during soft reset so only program the first time. Do ++ * a soft reset immediately after setting phyif. */ ++ usbcfg.b.ulpi_utmi_sel = _core_if->core_params->phy_type; ++ if (usbcfg.b.ulpi_utmi_sel == 2) { // winder ++ DWC_DEBUGPL(DBG_CIL, "ULPI\n"); ++ /* ULPI interface */ ++ usbcfg.b.phyif = 0; ++ usbcfg.b.ddrsel = _core_if->core_params->phy_ulpi_ddr; ++ } else { ++ /* UTMI+ interface */ ++ if (_core_if->core_params->phy_utmi_width == 16) { ++ usbcfg.b.phyif = 1; ++ DWC_DEBUGPL(DBG_CIL, "UTMI+ 16\n"); ++ } else { ++ DWC_DEBUGPL(DBG_CIL, "UTMI+ 8\n"); ++ usbcfg.b.phyif = 0; ++ } ++ } ++ dwc_write_reg32( &global_regs->gusbcfg, usbcfg.d32); ++ ++ /* Reset after setting the PHY parameters */ ++ dwc_otg_core_reset( _core_if ); ++ } ++ } ++ ++ if ((_core_if->hwcfg2.b.hs_phy_type == 2) && ++ (_core_if->hwcfg2.b.fs_phy_type == 1) && ++ (_core_if->core_params->ulpi_fs_ls)) ++ { ++ DWC_DEBUGPL(DBG_CIL, "Setting ULPI FSLS\n"); ++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); ++ usbcfg.b.ulpi_fsls = 1; ++ usbcfg.b.ulpi_clk_sus_m = 1; ++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); ++ } else { ++ DWC_DEBUGPL(DBG_CIL, "Setting ULPI FSLS=0\n"); ++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); ++ usbcfg.b.ulpi_fsls = 0; ++ usbcfg.b.ulpi_clk_sus_m = 0; ++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); ++ } ++ ++ /* Program the GAHBCFG Register.*/ ++ switch (_core_if->hwcfg2.b.architecture){ ++ ++ case DWC_SLAVE_ONLY_ARCH: ++ DWC_DEBUGPL(DBG_CIL, "Slave Only Mode\n"); ++ ahbcfg.b.nptxfemplvl_txfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY; ++ ahbcfg.b.ptxfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY; ++ _core_if->dma_enable = 0; ++ break; ++ ++ case DWC_EXT_DMA_ARCH: ++ DWC_DEBUGPL(DBG_CIL, "External DMA Mode\n"); ++ ahbcfg.b.hburstlen = _core_if->core_params->dma_burst_size; ++ _core_if->dma_enable = (_core_if->core_params->dma_enable != 0); ++ break; ++ ++ case DWC_INT_DMA_ARCH: ++ DWC_DEBUGPL(DBG_CIL, "Internal DMA Mode\n"); ++ //ahbcfg.b.hburstlen = DWC_GAHBCFG_INT_DMA_BURST_INCR; ++ ahbcfg.b.hburstlen = DWC_GAHBCFG_INT_DMA_BURST_INCR4; ++ _core_if->dma_enable = (_core_if->core_params->dma_enable != 0); ++ break; ++ } ++ ahbcfg.b.dmaenable = _core_if->dma_enable; ++ dwc_write_reg32(&global_regs->gahbcfg, ahbcfg.d32); ++ _core_if->en_multiple_tx_fifo = _core_if->hwcfg4.b.ded_fifo_en; ++ ++ /* ++ * Program the GUSBCFG register. ++ */ ++ usbcfg.d32 = dwc_read_reg32( &global_regs->gusbcfg ); ++ ++ switch (_core_if->hwcfg2.b.op_mode) { ++ case DWC_MODE_HNP_SRP_CAPABLE: ++ usbcfg.b.hnpcap = (_core_if->core_params->otg_cap == ++ DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE); ++ usbcfg.b.srpcap = (_core_if->core_params->otg_cap != ++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); ++ break; ++ ++ case DWC_MODE_SRP_ONLY_CAPABLE: ++ usbcfg.b.hnpcap = 0; ++ usbcfg.b.srpcap = (_core_if->core_params->otg_cap != ++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); ++ break; ++ ++ case DWC_MODE_NO_HNP_SRP_CAPABLE: ++ usbcfg.b.hnpcap = 0; ++ usbcfg.b.srpcap = 0; ++ break; ++ ++ case DWC_MODE_SRP_CAPABLE_DEVICE: ++ usbcfg.b.hnpcap = 0; ++ usbcfg.b.srpcap = (_core_if->core_params->otg_cap != ++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); ++ break; ++ ++ case DWC_MODE_NO_SRP_CAPABLE_DEVICE: ++ usbcfg.b.hnpcap = 0; ++ usbcfg.b.srpcap = 0; ++ break; ++ ++ case DWC_MODE_SRP_CAPABLE_HOST: ++ usbcfg.b.hnpcap = 0; ++ usbcfg.b.srpcap = (_core_if->core_params->otg_cap != ++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); ++ break; ++ ++ case DWC_MODE_NO_SRP_CAPABLE_HOST: ++ usbcfg.b.hnpcap = 0; ++ usbcfg.b.srpcap = 0; ++ break; ++ } ++ ++ dwc_write_reg32( &global_regs->gusbcfg, usbcfg.d32); ++ ++ /* Enable common interrupts */ ++ dwc_otg_enable_common_interrupts( _core_if ); ++ ++ /* Do device or host intialization based on mode during PCD ++ * and HCD initialization */ ++ if (dwc_otg_is_host_mode( _core_if )) { ++ DWC_DEBUGPL(DBG_ANY, "Host Mode\n" ); ++ _core_if->op_state = A_HOST; ++ } else { ++ DWC_DEBUGPL(DBG_ANY, "Device Mode\n" ); ++ _core_if->op_state = B_PERIPHERAL; ++#ifdef DWC_DEVICE_ONLY ++ dwc_otg_core_dev_init( _core_if ); ++#endif ++ } ++} ++ ++ ++/** ++ * This function enables the Device mode interrupts. ++ * ++ * @param _core_if Programming view of DWC_otg controller ++ */ ++void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t *_core_if) ++{ ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ dwc_otg_core_global_regs_t * global_regs = _core_if->core_global_regs; ++ ++ DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__); ++ ++ /* Disable all interrupts. */ ++ dwc_write_reg32( &global_regs->gintmsk, 0); ++ ++ /* Clear any pending interrupts */ ++ dwc_write_reg32( &global_regs->gintsts, 0xFFFFFFFF); ++ ++ /* Enable the common interrupts */ ++ dwc_otg_enable_common_interrupts( _core_if ); ++ ++ /* Enable interrupts */ ++ intr_mask.b.usbreset = 1; ++ intr_mask.b.enumdone = 1; ++ //intr_mask.b.epmismatch = 1; ++ intr_mask.b.inepintr = 1; ++ intr_mask.b.outepintr = 1; ++ intr_mask.b.erlysuspend = 1; ++ if (_core_if->en_multiple_tx_fifo == 0) { ++ intr_mask.b.epmismatch = 1; ++ } ++ ++ /** @todo NGS: Should this be a module parameter? */ ++ intr_mask.b.isooutdrop = 1; ++ intr_mask.b.eopframe = 1; ++ intr_mask.b.incomplisoin = 1; ++ intr_mask.b.incomplisoout = 1; ++ ++ dwc_modify_reg32( &global_regs->gintmsk, intr_mask.d32, intr_mask.d32); ++ ++ DWC_DEBUGPL(DBG_CIL, "%s() gintmsk=%0x\n", __func__, ++ dwc_read_reg32( &global_regs->gintmsk)); ++} ++ ++/** ++ * This function initializes the DWC_otg controller registers for ++ * device mode. ++ * ++ * @param _core_if Programming view of DWC_otg controller ++ * ++ */ ++void dwc_otg_core_dev_init(dwc_otg_core_if_t *_core_if) ++{ ++ dwc_otg_core_global_regs_t *global_regs = ++ _core_if->core_global_regs; ++ dwc_otg_dev_if_t *dev_if = _core_if->dev_if; ++ dwc_otg_core_params_t *params = _core_if->core_params; ++ dcfg_data_t dcfg = {.d32 = 0}; ++ grstctl_t resetctl = { .d32=0 }; ++ int i; ++ uint32_t rx_fifo_size; ++ fifosize_data_t nptxfifosize; ++ fifosize_data_t txfifosize; ++ dthrctl_data_t dthrctl; ++ ++ fifosize_data_t ptxfifosize; ++ ++ /* Restart the Phy Clock */ ++ dwc_write_reg32(_core_if->pcgcctl, 0); ++ ++ /* Device configuration register */ ++ init_devspd(_core_if); ++ dcfg.d32 = dwc_read_reg32( &dev_if->dev_global_regs->dcfg); ++ dcfg.b.perfrint = DWC_DCFG_FRAME_INTERVAL_80; ++ dwc_write_reg32( &dev_if->dev_global_regs->dcfg, dcfg.d32 ); ++ ++ /* Configure data FIFO sizes */ ++ if ( _core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo ) { ++ ++ DWC_DEBUGPL(DBG_CIL, "Total FIFO Size=%d\n", _core_if->total_fifo_size); ++ DWC_DEBUGPL(DBG_CIL, "Rx FIFO Size=%d\n", params->dev_rx_fifo_size); ++ DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO Size=%d\n", params->dev_nperio_tx_fifo_size); ++ ++ /* Rx FIFO */ ++ DWC_DEBUGPL(DBG_CIL, "initial grxfsiz=%08x\n", ++ dwc_read_reg32(&global_regs->grxfsiz)); ++ rx_fifo_size = params->dev_rx_fifo_size; ++ dwc_write_reg32( &global_regs->grxfsiz, rx_fifo_size ); ++ DWC_DEBUGPL(DBG_CIL, "new grxfsiz=%08x\n", ++ dwc_read_reg32(&global_regs->grxfsiz)); ++ ++ /** Set Periodic Tx FIFO Mask all bits 0 */ ++ _core_if->p_tx_msk = 0; ++ ++ /** Set Tx FIFO Mask all bits 0 */ ++ _core_if->tx_msk = 0; ++ if (_core_if->en_multiple_tx_fifo == 0) { ++ /* Non-periodic Tx FIFO */ ++ DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n", ++ dwc_read_reg32(&global_regs->gnptxfsiz)); ++ nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size; ++ nptxfifosize.b.startaddr = params->dev_rx_fifo_size; ++ dwc_write_reg32( &global_regs->gnptxfsiz, nptxfifosize.d32 ); ++ DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n", ++ dwc_read_reg32(&global_regs->gnptxfsiz)); ++ ++ ++ /**@todo NGS: Fix Periodic FIFO Sizing! */ ++ /* ++ * Periodic Tx FIFOs These FIFOs are numbered from 1 to 15. ++ * Indexes of the FIFO size module parameters in the ++ * dev_perio_tx_fifo_size array and the FIFO size registers in ++ * the dptxfsiz array run from 0 to 14. ++ */ ++ /** @todo Finish debug of this */ ++ ptxfifosize.b.startaddr = ++ nptxfifosize.b.startaddr + nptxfifosize.b.depth; ++ for (i = 0; i < _core_if->hwcfg4.b.num_dev_perio_in_ep;i++) { ++ ptxfifosize.b.depth = params->dev_perio_tx_fifo_size[i]; ++ DWC_DEBUGPL(DBG_CIL,"initial dptxfsiz_dieptxf[%d]=%08x\n", ++ i,dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i])); ++ dwc_write_reg32(&global_regs->dptxfsiz_dieptxf[i],ptxfifosize.d32); ++ DWC_DEBUGPL(DBG_CIL,"new dptxfsiz_dieptxf[%d]=%08x\n", ++ i,dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i])); ++ ptxfifosize.b.startaddr += ptxfifosize.b.depth; ++ } ++ } else { ++ ++ /* ++ * Tx FIFOs These FIFOs are numbered from 1 to 15. ++ * Indexes of the FIFO size module parameters in the ++ * dev_tx_fifo_size array and the FIFO size registers in ++ * the dptxfsiz_dieptxf array run from 0 to 14. ++ */ ++ ++ /* Non-periodic Tx FIFO */ ++ DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n", ++ dwc_read_reg32(&global_regs->gnptxfsiz)); ++ nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size; ++ nptxfifosize.b.startaddr = params->dev_rx_fifo_size; ++ dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32); ++ DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n", ++ dwc_read_reg32(&global_regs->gnptxfsiz)); ++ txfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth; ++ for (i = 1;i < _core_if->hwcfg4.b.num_dev_perio_in_ep;i++) { ++ txfifosize.b.depth = params->dev_tx_fifo_size[i]; ++ DWC_DEBUGPL(DBG_CIL,"initial dptxfsiz_dieptxf[%d]=%08x\n", ++ i,dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i])); ++ dwc_write_reg32(&global_regs->dptxfsiz_dieptxf[i - 1],txfifosize.d32); ++ DWC_DEBUGPL(DBG_CIL,"new dptxfsiz_dieptxf[%d]=%08x\n", ++ i,dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i-1])); ++ txfifosize.b.startaddr += txfifosize.b.depth; ++ } ++ } ++ } ++ /* Flush the FIFOs */ ++ dwc_otg_flush_tx_fifo(_core_if, 0x10); /* all Tx FIFOs */ ++ dwc_otg_flush_rx_fifo(_core_if); ++ ++ /* Flush the Learning Queue. */ ++ resetctl.b.intknqflsh = 1; ++ dwc_write_reg32( &_core_if->core_global_regs->grstctl, resetctl.d32); ++ ++ /* Clear all pending Device Interrupts */ ++ dwc_write_reg32( &dev_if->dev_global_regs->diepmsk, 0 ); ++ dwc_write_reg32( &dev_if->dev_global_regs->doepmsk, 0 ); ++ dwc_write_reg32( &dev_if->dev_global_regs->daint, 0xFFFFFFFF ); ++ dwc_write_reg32( &dev_if->dev_global_regs->daintmsk, 0 ); ++ ++ for (i = 0; i <= dev_if->num_in_eps; i++) { ++ depctl_data_t depctl; ++ depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl); ++ if (depctl.b.epena) { ++ depctl.d32 = 0; ++ depctl.b.epdis = 1; ++ depctl.b.snak = 1; ++ } else { ++ depctl.d32 = 0; ++ } ++ dwc_write_reg32( &dev_if->in_ep_regs[i]->diepctl, depctl.d32); ++ ++ dwc_write_reg32(&dev_if->in_ep_regs[i]->dieptsiz, 0); ++ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepdma, 0); ++ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepint, 0xFF); ++ } ++ for (i = 0; i <= dev_if->num_out_eps; i++) { ++ depctl_data_t depctl; ++ depctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doepctl); ++ if (depctl.b.epena) { ++ depctl.d32 = 0; ++ depctl.b.epdis = 1; ++ depctl.b.snak = 1; ++ } else { ++ depctl.d32 = 0; ++ } ++ dwc_write_reg32( &dev_if->out_ep_regs[i]->doepctl, depctl.d32); ++ ++ //dwc_write_reg32( &dev_if->in_ep_regs[i]->dieptsiz, 0); ++ dwc_write_reg32( &dev_if->out_ep_regs[i]->doeptsiz, 0); ++ //dwc_write_reg32( &dev_if->in_ep_regs[i]->diepdma, 0); ++ dwc_write_reg32( &dev_if->out_ep_regs[i]->doepdma, 0); ++ //dwc_write_reg32( &dev_if->in_ep_regs[i]->diepint, 0xFF); ++ dwc_write_reg32( &dev_if->out_ep_regs[i]->doepint, 0xFF); ++ } ++ ++ if (_core_if->en_multiple_tx_fifo && _core_if->dma_enable) { ++ dev_if->non_iso_tx_thr_en = _core_if->core_params->thr_ctl & 0x1; ++ dev_if->iso_tx_thr_en = (_core_if->core_params->thr_ctl >> 1) & 0x1; ++ dev_if->rx_thr_en = (_core_if->core_params->thr_ctl >> 2) & 0x1; ++ dev_if->rx_thr_length = _core_if->core_params->rx_thr_length; ++ dev_if->tx_thr_length = _core_if->core_params->tx_thr_length; ++ dthrctl.d32 = 0; ++ dthrctl.b.non_iso_thr_en = dev_if->non_iso_tx_thr_en; ++ dthrctl.b.iso_thr_en = dev_if->iso_tx_thr_en; ++ dthrctl.b.tx_thr_len = dev_if->tx_thr_length; ++ dthrctl.b.rx_thr_en = dev_if->rx_thr_en; ++ dthrctl.b.rx_thr_len = dev_if->rx_thr_length; ++ dwc_write_reg32(&dev_if->dev_global_regs->dtknqr3_dthrctl,dthrctl.d32); ++ DWC_DEBUGPL(DBG_CIL, "Non ISO Tx Thr - %d\nISO Tx Thr - %d\n" ++ "Rx Thr - %d\nTx Thr Len - %d\nRx Thr Len - %d\n", ++ dthrctl.b.non_iso_thr_en, dthrctl.b.iso_thr_en, ++ dthrctl.b.rx_thr_en, dthrctl.b.tx_thr_len, ++ dthrctl.b.rx_thr_len); ++ } ++ dwc_otg_enable_device_interrupts( _core_if ); ++ { ++ diepmsk_data_t msk = {.d32 = 0}; ++ msk.b.txfifoundrn = 1; ++ dwc_modify_reg32(&dev_if->dev_global_regs->diepmsk, msk.d32,msk.d32); ++} ++} ++ ++/** ++ * This function enables the Host mode interrupts. ++ * ++ * @param _core_if Programming view of DWC_otg controller ++ */ ++void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t *_core_if) ++{ ++ dwc_otg_core_global_regs_t *global_regs = _core_if->core_global_regs; ++ gintmsk_data_t intr_mask = {.d32 = 0}; ++ ++ DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__); ++ ++ /* Disable all interrupts. */ ++ dwc_write_reg32(&global_regs->gintmsk, 0); ++ ++ /* Clear any pending interrupts. */ ++ dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF); ++ ++ /* Enable the common interrupts */ ++ dwc_otg_enable_common_interrupts(_core_if); ++ ++ /* ++ * Enable host mode interrupts without disturbing common ++ * interrupts. ++ */ ++ intr_mask.b.sofintr = 1; ++ intr_mask.b.portintr = 1; ++ intr_mask.b.hcintr = 1; ++ ++ //dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32); ++ //dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32); ++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32); ++} ++ ++/** ++ * This function disables the Host Mode interrupts. ++ * ++ * @param _core_if Programming view of DWC_otg controller ++ */ ++void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t *_core_if) ++{ ++ dwc_otg_core_global_regs_t *global_regs = ++ _core_if->core_global_regs; ++ gintmsk_data_t intr_mask = {.d32 = 0}; ++ ++ DWC_DEBUGPL(DBG_CILV, "%s()\n", __func__); ++ ++ /* ++ * Disable host mode interrupts without disturbing common ++ * interrupts. ++ */ ++ intr_mask.b.sofintr = 1; ++ intr_mask.b.portintr = 1; ++ intr_mask.b.hcintr = 1; ++ intr_mask.b.ptxfempty = 1; ++ intr_mask.b.nptxfempty = 1; ++ ++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0); ++} ++ ++#if 0 ++/* currently not used, keep it here as if needed later */ ++static int phy_read(dwc_otg_core_if_t * _core_if, int addr) ++{ ++ u32 val; ++ int timeout = 10; ++ ++ dwc_write_reg32(&_core_if->core_global_regs->gpvndctl, ++ 0x02000000 | (addr << 16)); ++ val = dwc_read_reg32(&_core_if->core_global_regs->gpvndctl); ++ while (((val & 0x08000000) == 0) && (timeout--)) { ++ udelay(1000); ++ val = dwc_read_reg32(&_core_if->core_global_regs->gpvndctl); ++ } ++ val = dwc_read_reg32(&_core_if->core_global_regs->gpvndctl); ++ printk("%s: addr=%02x regval=%02x\n", __func__, addr, val & 0x000000ff); ++ ++ return 0; ++} ++#endif ++ ++/** ++ * This function initializes the DWC_otg controller registers for ++ * host mode. ++ * ++ * This function flushes the Tx and Rx FIFOs and it flushes any entries in the ++ * request queues. Host channels are reset to ensure that they are ready for ++ * performing transfers. ++ * ++ * @param _core_if Programming view of DWC_otg controller ++ * ++ */ ++void dwc_otg_core_host_init(dwc_otg_core_if_t *_core_if) ++{ ++ dwc_otg_core_global_regs_t *global_regs = _core_if->core_global_regs; ++ dwc_otg_host_if_t *host_if = _core_if->host_if; ++ dwc_otg_core_params_t *params = _core_if->core_params; ++ hprt0_data_t hprt0 = {.d32 = 0}; ++ fifosize_data_t nptxfifosize; ++ fifosize_data_t ptxfifosize; ++ int i; ++ hcchar_data_t hcchar; ++ hcfg_data_t hcfg; ++ dwc_otg_hc_regs_t *hc_regs; ++ int num_channels; ++ gotgctl_data_t gotgctl = {.d32 = 0}; ++ ++ DWC_DEBUGPL(DBG_CILV,"%s(%p)\n", __func__, _core_if); ++ ++ /* Restart the Phy Clock */ ++ dwc_write_reg32(_core_if->pcgcctl, 0); ++ ++ /* Initialize Host Configuration Register */ ++ init_fslspclksel(_core_if); ++ if (_core_if->core_params->speed == DWC_SPEED_PARAM_FULL) { ++ hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg); ++ hcfg.b.fslssupp = 1; ++ dwc_write_reg32(&host_if->host_global_regs->hcfg, hcfg.d32); ++ } ++ ++ /* Configure data FIFO sizes */ ++ if (_core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) { ++ DWC_DEBUGPL(DBG_CIL,"Total FIFO Size=%d\n", _core_if->total_fifo_size); ++ DWC_DEBUGPL(DBG_CIL,"Rx FIFO Size=%d\n", params->host_rx_fifo_size); ++ DWC_DEBUGPL(DBG_CIL,"NP Tx FIFO Size=%d\n", params->host_nperio_tx_fifo_size); ++ DWC_DEBUGPL(DBG_CIL,"P Tx FIFO Size=%d\n", params->host_perio_tx_fifo_size); ++ ++ /* Rx FIFO */ ++ DWC_DEBUGPL(DBG_CIL,"initial grxfsiz=%08x\n", dwc_read_reg32(&global_regs->grxfsiz)); ++ dwc_write_reg32(&global_regs->grxfsiz, params->host_rx_fifo_size); ++ DWC_DEBUGPL(DBG_CIL,"new grxfsiz=%08x\n", dwc_read_reg32(&global_regs->grxfsiz)); ++ ++ /* Non-periodic Tx FIFO */ ++ DWC_DEBUGPL(DBG_CIL,"initial gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz)); ++ nptxfifosize.b.depth = params->host_nperio_tx_fifo_size; ++ nptxfifosize.b.startaddr = params->host_rx_fifo_size; ++ dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32); ++ DWC_DEBUGPL(DBG_CIL,"new gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz)); ++ ++ /* Periodic Tx FIFO */ ++ DWC_DEBUGPL(DBG_CIL,"initial hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz)); ++ ptxfifosize.b.depth = params->host_perio_tx_fifo_size; ++ ptxfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth; ++ dwc_write_reg32(&global_regs->hptxfsiz, ptxfifosize.d32); ++ DWC_DEBUGPL(DBG_CIL,"new hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz)); ++ } ++ ++ /* Clear Host Set HNP Enable in the OTG Control Register */ ++ gotgctl.b.hstsethnpen = 1; ++ dwc_modify_reg32( &global_regs->gotgctl, gotgctl.d32, 0); ++ ++ /* Make sure the FIFOs are flushed. */ ++ dwc_otg_flush_tx_fifo(_core_if, 0x10 /* all Tx FIFOs */); ++ dwc_otg_flush_rx_fifo(_core_if); ++ ++ /* Flush out any leftover queued requests. */ ++ num_channels = _core_if->core_params->host_channels; ++ for (i = 0; i < num_channels; i++) { ++ hc_regs = _core_if->host_if->hc_regs[i]; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.chen = 0; ++ hcchar.b.chdis = 1; ++ hcchar.b.epdir = 0; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ } ++ ++ /* Halt all channels to put them into a known state. */ ++ for (i = 0; i < num_channels; i++) { ++ int count = 0; ++ hc_regs = _core_if->host_if->hc_regs[i]; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.chen = 1; ++ hcchar.b.chdis = 1; ++ hcchar.b.epdir = 0; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ DWC_DEBUGPL(DBG_HCDV, "%s: Halt channel %d\n", __func__, i); ++ do { ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (++count > 200) { ++ DWC_ERROR("%s: Unable to clear halt on channel %d\n", ++ __func__, i); ++ break; ++ } ++ udelay(100); ++ } while (hcchar.b.chen); ++ } ++ ++ /* Turn on the vbus power. */ ++ DWC_PRINT("Init: Port Power? op_state=%d\n", _core_if->op_state); ++ if (_core_if->op_state == A_HOST){ ++ hprt0.d32 = dwc_otg_read_hprt0(_core_if); ++ DWC_PRINT("Init: Power Port (%d)\n", hprt0.b.prtpwr); ++ if (hprt0.b.prtpwr == 0 ) { ++ hprt0.b.prtpwr = 1; ++ dwc_write_reg32(host_if->hprt0, hprt0.d32); ++ } ++ } ++ ++ dwc_otg_enable_host_interrupts( _core_if ); ++} ++ ++/** ++ * Prepares a host channel for transferring packets to/from a specific ++ * endpoint. The HCCHARn register is set up with the characteristics specified ++ * in _hc. Host channel interrupts that may need to be serviced while this ++ * transfer is in progress are enabled. ++ * ++ * @param _core_if Programming view of DWC_otg controller ++ * @param _hc Information needed to initialize the host channel ++ */ ++void dwc_otg_hc_init(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc) ++{ ++ uint32_t intr_enable; ++ hcintmsk_data_t hc_intr_mask; ++ gintmsk_data_t gintmsk = {.d32 = 0}; ++ hcchar_data_t hcchar; ++ hcsplt_data_t hcsplt; ++ ++ uint8_t hc_num = _hc->hc_num; ++ dwc_otg_host_if_t *host_if = _core_if->host_if; ++ dwc_otg_hc_regs_t *hc_regs = host_if->hc_regs[hc_num]; ++ ++ /* Clear old interrupt conditions for this host channel. */ ++ hc_intr_mask.d32 = 0xFFFFFFFF; ++ hc_intr_mask.b.reserved = 0; ++ dwc_write_reg32(&hc_regs->hcint, hc_intr_mask.d32); ++ ++ /* Enable channel interrupts required for this transfer. */ ++ hc_intr_mask.d32 = 0; ++ hc_intr_mask.b.chhltd = 1; ++ if (_core_if->dma_enable) { ++ hc_intr_mask.b.ahberr = 1; ++ if (_hc->error_state && !_hc->do_split && ++ _hc->ep_type != DWC_OTG_EP_TYPE_ISOC) { ++ hc_intr_mask.b.ack = 1; ++ if (_hc->ep_is_in) { ++ hc_intr_mask.b.datatglerr = 1; ++ if (_hc->ep_type != DWC_OTG_EP_TYPE_INTR) { ++ hc_intr_mask.b.nak = 1; ++ } ++ } ++ } ++ } else { ++ switch (_hc->ep_type) { ++ case DWC_OTG_EP_TYPE_CONTROL: ++ case DWC_OTG_EP_TYPE_BULK: ++ hc_intr_mask.b.xfercompl = 1; ++ hc_intr_mask.b.stall = 1; ++ hc_intr_mask.b.xacterr = 1; ++ hc_intr_mask.b.datatglerr = 1; ++ if (_hc->ep_is_in) { ++ hc_intr_mask.b.bblerr = 1; ++ } else { ++ hc_intr_mask.b.nak = 1; ++ hc_intr_mask.b.nyet = 1; ++ if (_hc->do_ping) { ++ hc_intr_mask.b.ack = 1; ++ } ++ } ++ ++ if (_hc->do_split) { ++ hc_intr_mask.b.nak = 1; ++ if (_hc->complete_split) { ++ hc_intr_mask.b.nyet = 1; ++ } ++ else { ++ hc_intr_mask.b.ack = 1; ++ } ++ } ++ ++ if (_hc->error_state) { ++ hc_intr_mask.b.ack = 1; ++ } ++ break; ++ case DWC_OTG_EP_TYPE_INTR: ++ hc_intr_mask.b.xfercompl = 1; ++ hc_intr_mask.b.nak = 1; ++ hc_intr_mask.b.stall = 1; ++ hc_intr_mask.b.xacterr = 1; ++ hc_intr_mask.b.datatglerr = 1; ++ hc_intr_mask.b.frmovrun = 1; ++ ++ if (_hc->ep_is_in) { ++ hc_intr_mask.b.bblerr = 1; ++ } ++ if (_hc->error_state) { ++ hc_intr_mask.b.ack = 1; ++ } ++ if (_hc->do_split) { ++ if (_hc->complete_split) { ++ hc_intr_mask.b.nyet = 1; ++ } ++ else { ++ hc_intr_mask.b.ack = 1; ++ } ++ } ++ break; ++ case DWC_OTG_EP_TYPE_ISOC: ++ hc_intr_mask.b.xfercompl = 1; ++ hc_intr_mask.b.frmovrun = 1; ++ hc_intr_mask.b.ack = 1; ++ ++ if (_hc->ep_is_in) { ++ hc_intr_mask.b.xacterr = 1; ++ hc_intr_mask.b.bblerr = 1; ++ } ++ break; ++ } ++ } ++ dwc_write_reg32(&hc_regs->hcintmsk, hc_intr_mask.d32); ++ ++ /* Enable the top level host channel interrupt. */ ++ intr_enable = (1 << hc_num); ++ dwc_modify_reg32(&host_if->host_global_regs->haintmsk, 0, intr_enable); ++ ++ /* Make sure host channel interrupts are enabled. */ ++ gintmsk.b.hcintr = 1; ++ dwc_modify_reg32(&_core_if->core_global_regs->gintmsk, 0, gintmsk.d32); ++ ++ /* ++ * Program the HCCHARn register with the endpoint characteristics for ++ * the current transfer. ++ */ ++ hcchar.d32 = 0; ++ hcchar.b.devaddr = _hc->dev_addr; ++ hcchar.b.epnum = _hc->ep_num; ++ hcchar.b.epdir = _hc->ep_is_in; ++ hcchar.b.lspddev = (_hc->speed == DWC_OTG_EP_SPEED_LOW); ++ hcchar.b.eptype = _hc->ep_type; ++ hcchar.b.mps = _hc->max_packet; ++ ++ dwc_write_reg32(&host_if->hc_regs[hc_num]->hcchar, hcchar.d32); ++ ++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num); ++ DWC_DEBUGPL(DBG_HCDV, " Dev Addr: %d\n", hcchar.b.devaddr); ++ DWC_DEBUGPL(DBG_HCDV, " Ep Num: %d\n", hcchar.b.epnum); ++ DWC_DEBUGPL(DBG_HCDV, " Is In: %d\n", hcchar.b.epdir); ++ DWC_DEBUGPL(DBG_HCDV, " Is Low Speed: %d\n", hcchar.b.lspddev); ++ DWC_DEBUGPL(DBG_HCDV, " Ep Type: %d\n", hcchar.b.eptype); ++ DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps); ++ DWC_DEBUGPL(DBG_HCDV, " Multi Cnt: %d\n", hcchar.b.multicnt); ++ ++ /* ++ * Program the HCSPLIT register for SPLITs ++ */ ++ hcsplt.d32 = 0; ++ if (_hc->do_split) { ++ DWC_DEBUGPL(DBG_HCDV, "Programming HC %d with split --> %s\n", _hc->hc_num, ++ _hc->complete_split ? "CSPLIT" : "SSPLIT"); ++ hcsplt.b.compsplt = _hc->complete_split; ++ hcsplt.b.xactpos = _hc->xact_pos; ++ hcsplt.b.hubaddr = _hc->hub_addr; ++ hcsplt.b.prtaddr = _hc->port_addr; ++ DWC_DEBUGPL(DBG_HCDV, " comp split %d\n", _hc->complete_split); ++ DWC_DEBUGPL(DBG_HCDV, " xact pos %d\n", _hc->xact_pos); ++ DWC_DEBUGPL(DBG_HCDV, " hub addr %d\n", _hc->hub_addr); ++ DWC_DEBUGPL(DBG_HCDV, " port addr %d\n", _hc->port_addr); ++ DWC_DEBUGPL(DBG_HCDV, " is_in %d\n", _hc->ep_is_in); ++ DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps); ++ DWC_DEBUGPL(DBG_HCDV, " xferlen: %d\n", _hc->xfer_len); ++ } ++ dwc_write_reg32(&host_if->hc_regs[hc_num]->hcsplt, hcsplt.d32); ++ ++} ++ ++/** ++ * Attempts to halt a host channel. This function should only be called in ++ * Slave mode or to abort a transfer in either Slave mode or DMA mode. Under ++ * normal circumstances in DMA mode, the controller halts the channel when the ++ * transfer is complete or a condition occurs that requires application ++ * intervention. ++ * ++ * In slave mode, checks for a free request queue entry, then sets the Channel ++ * Enable and Channel Disable bits of the Host Channel Characteristics ++ * register of the specified channel to intiate the halt. If there is no free ++ * request queue entry, sets only the Channel Disable bit of the HCCHARn ++ * register to flush requests for this channel. In the latter case, sets a ++ * flag to indicate that the host channel needs to be halted when a request ++ * queue slot is open. ++ * ++ * In DMA mode, always sets the Channel Enable and Channel Disable bits of the ++ * HCCHARn register. The controller ensures there is space in the request ++ * queue before submitting the halt request. ++ * ++ * Some time may elapse before the core flushes any posted requests for this ++ * host channel and halts. The Channel Halted interrupt handler completes the ++ * deactivation of the host channel. ++ * ++ * @param _core_if Controller register interface. ++ * @param _hc Host channel to halt. ++ * @param _halt_status Reason for halting the channel. ++ */ ++void dwc_otg_hc_halt(dwc_otg_core_if_t *_core_if, ++ dwc_hc_t *_hc, ++ dwc_otg_halt_status_e _halt_status) ++{ ++ gnptxsts_data_t nptxsts; ++ hptxsts_data_t hptxsts; ++ hcchar_data_t hcchar; ++ dwc_otg_hc_regs_t *hc_regs; ++ dwc_otg_core_global_regs_t *global_regs; ++ dwc_otg_host_global_regs_t *host_global_regs; ++ ++ hc_regs = _core_if->host_if->hc_regs[_hc->hc_num]; ++ global_regs = _core_if->core_global_regs; ++ host_global_regs = _core_if->host_if->host_global_regs; ++ ++ WARN_ON(_halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS); ++ ++ if (_halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE || ++ _halt_status == DWC_OTG_HC_XFER_AHB_ERR) { ++ /* ++ * Disable all channel interrupts except Ch Halted. The QTD ++ * and QH state associated with this transfer has been cleared ++ * (in the case of URB_DEQUEUE), so the channel needs to be ++ * shut down carefully to prevent crashes. ++ */ ++ hcintmsk_data_t hcintmsk; ++ hcintmsk.d32 = 0; ++ hcintmsk.b.chhltd = 1; ++ dwc_write_reg32(&hc_regs->hcintmsk, hcintmsk.d32); ++ ++ /* ++ * Make sure no other interrupts besides halt are currently ++ * pending. Handling another interrupt could cause a crash due ++ * to the QTD and QH state. ++ */ ++ dwc_write_reg32(&hc_regs->hcint, ~hcintmsk.d32); ++ ++ /* ++ * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR ++ * even if the channel was already halted for some other ++ * reason. ++ */ ++ _hc->halt_status = _halt_status; ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chen == 0) { ++ /* ++ * The channel is either already halted or it hasn't ++ * started yet. In DMA mode, the transfer may halt if ++ * it finishes normally or a condition occurs that ++ * requires driver intervention. Don't want to halt ++ * the channel again. In either Slave or DMA mode, ++ * it's possible that the transfer has been assigned ++ * to a channel, but not started yet when an URB is ++ * dequeued. Don't want to halt a channel that hasn't ++ * started yet. ++ */ ++ return; ++ } ++ } ++ ++ if (_hc->halt_pending) { ++ /* ++ * A halt has already been issued for this channel. This might ++ * happen when a transfer is aborted by a higher level in ++ * the stack. ++ */ ++#ifdef DEBUG ++ DWC_PRINT("*** %s: Channel %d, _hc->halt_pending already set ***\n", ++ __func__, _hc->hc_num); ++ ++/* dwc_otg_dump_global_registers(_core_if); */ ++/* dwc_otg_dump_host_registers(_core_if); */ ++#endif ++ return; ++ } ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.chen = 1; ++ hcchar.b.chdis = 1; ++ ++ if (!_core_if->dma_enable) { ++ /* Check for space in the request queue to issue the halt. */ ++ if (_hc->ep_type == DWC_OTG_EP_TYPE_CONTROL || ++ _hc->ep_type == DWC_OTG_EP_TYPE_BULK) { ++ nptxsts.d32 = dwc_read_reg32(&global_regs->gnptxsts); ++ if (nptxsts.b.nptxqspcavail == 0) { ++ hcchar.b.chen = 0; ++ } ++ } else { ++ hptxsts.d32 = dwc_read_reg32(&host_global_regs->hptxsts); ++ if ((hptxsts.b.ptxqspcavail == 0) || (_core_if->queuing_high_bandwidth)) { ++ hcchar.b.chen = 0; ++ } ++ } ++ } ++ ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ ++ _hc->halt_status = _halt_status; ++ ++ if (hcchar.b.chen) { ++ _hc->halt_pending = 1; ++ _hc->halt_on_queue = 0; ++ } else { ++ _hc->halt_on_queue = 1; ++ } ++ ++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num); ++ DWC_DEBUGPL(DBG_HCDV, " hcchar: 0x%08x\n", hcchar.d32); ++ DWC_DEBUGPL(DBG_HCDV, " halt_pending: %d\n", _hc->halt_pending); ++ DWC_DEBUGPL(DBG_HCDV, " halt_on_queue: %d\n", _hc->halt_on_queue); ++ DWC_DEBUGPL(DBG_HCDV, " halt_status: %d\n", _hc->halt_status); ++ ++ return; ++} ++ ++/** ++ * Clears the transfer state for a host channel. This function is normally ++ * called after a transfer is done and the host channel is being released. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _hc Identifies the host channel to clean up. ++ */ ++void dwc_otg_hc_cleanup(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc) ++{ ++ dwc_otg_hc_regs_t *hc_regs; ++ ++ _hc->xfer_started = 0; ++ ++ /* ++ * Clear channel interrupt enables and any unhandled channel interrupt ++ * conditions. ++ */ ++ hc_regs = _core_if->host_if->hc_regs[_hc->hc_num]; ++ dwc_write_reg32(&hc_regs->hcintmsk, 0); ++ dwc_write_reg32(&hc_regs->hcint, 0xFFFFFFFF); ++ ++#ifdef DEBUG ++ del_timer(&_core_if->hc_xfer_timer[_hc->hc_num]); ++ { ++ hcchar_data_t hcchar; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chdis) { ++ DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n", ++ __func__, _hc->hc_num, hcchar.d32); ++ } ++ } ++#endif ++} ++ ++/** ++ * Sets the channel property that indicates in which frame a periodic transfer ++ * should occur. This is always set to the _next_ frame. This function has no ++ * effect on non-periodic transfers. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _hc Identifies the host channel to set up and its properties. ++ * @param _hcchar Current value of the HCCHAR register for the specified host ++ * channel. ++ */ ++static inline void hc_set_even_odd_frame(dwc_otg_core_if_t *_core_if, ++ dwc_hc_t *_hc, ++ hcchar_data_t *_hcchar) ++{ ++ if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR || ++ _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ hfnum_data_t hfnum; ++ hfnum.d32 = dwc_read_reg32(&_core_if->host_if->host_global_regs->hfnum); ++ /* 1 if _next_ frame is odd, 0 if it's even */ ++ _hcchar->b.oddfrm = (hfnum.b.frnum & 0x1) ? 0 : 1; ++#ifdef DEBUG ++ if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR && _hc->do_split && !_hc->complete_split) { ++ switch (hfnum.b.frnum & 0x7) { ++ case 7: ++ _core_if->hfnum_7_samples++; ++ _core_if->hfnum_7_frrem_accum += hfnum.b.frrem; ++ break; ++ case 0: ++ _core_if->hfnum_0_samples++; ++ _core_if->hfnum_0_frrem_accum += hfnum.b.frrem; ++ break; ++ default: ++ _core_if->hfnum_other_samples++; ++ _core_if->hfnum_other_frrem_accum += hfnum.b.frrem; ++ break; ++ } ++ } ++#endif ++ } ++} ++ ++#ifdef DEBUG ++static void hc_xfer_timeout(unsigned long _ptr) ++{ ++ hc_xfer_info_t *xfer_info = (hc_xfer_info_t *)_ptr; ++ int hc_num = xfer_info->hc->hc_num; ++ DWC_WARN("%s: timeout on channel %d\n", __func__, hc_num); ++ DWC_WARN(" start_hcchar_val 0x%08x\n", xfer_info->core_if->start_hcchar_val[hc_num]); ++} ++#endif ++ ++/* ++ * This function does the setup for a data transfer for a host channel and ++ * starts the transfer. May be called in either Slave mode or DMA mode. In ++ * Slave mode, the caller must ensure that there is sufficient space in the ++ * request queue and Tx Data FIFO. ++ * ++ * For an OUT transfer in Slave mode, it loads a data packet into the ++ * appropriate FIFO. If necessary, additional data packets will be loaded in ++ * the Host ISR. ++ * ++ * For an IN transfer in Slave mode, a data packet is requested. The data ++ * packets are unloaded from the Rx FIFO in the Host ISR. If necessary, ++ * additional data packets are requested in the Host ISR. ++ * ++ * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ ++ * register along with a packet count of 1 and the channel is enabled. This ++ * causes a single PING transaction to occur. Other fields in HCTSIZ are ++ * simply set to 0 since no data transfer occurs in this case. ++ * ++ * For a PING transfer in DMA mode, the HCTSIZ register is initialized with ++ * all the information required to perform the subsequent data transfer. In ++ * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the ++ * controller performs the entire PING protocol, then starts the data ++ * transfer. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _hc Information needed to initialize the host channel. The xfer_len ++ * value may be reduced to accommodate the max widths of the XferSize and ++ * PktCnt fields in the HCTSIZn register. The multi_count value may be changed ++ * to reflect the final xfer_len value. ++ */ ++void dwc_otg_hc_start_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc) ++{ ++ hcchar_data_t hcchar; ++ hctsiz_data_t hctsiz; ++ uint16_t num_packets; ++ uint32_t max_hc_xfer_size = _core_if->core_params->max_transfer_size; ++ uint16_t max_hc_pkt_count = _core_if->core_params->max_packet_count; ++ dwc_otg_hc_regs_t *hc_regs = _core_if->host_if->hc_regs[_hc->hc_num]; ++ ++ hctsiz.d32 = 0; ++ ++ if (_hc->do_ping) { ++ if (!_core_if->dma_enable) { ++ dwc_otg_hc_do_ping(_core_if, _hc); ++ _hc->xfer_started = 1; ++ return; ++ } else { ++ hctsiz.b.dopng = 1; ++ } ++ } ++ ++ if (_hc->do_split) { ++ num_packets = 1; ++ ++ if (_hc->complete_split && !_hc->ep_is_in) { ++ /* For CSPLIT OUT Transfer, set the size to 0 so the ++ * core doesn't expect any data written to the FIFO */ ++ _hc->xfer_len = 0; ++ } else if (_hc->ep_is_in || (_hc->xfer_len > _hc->max_packet)) { ++ _hc->xfer_len = _hc->max_packet; ++ } else if (!_hc->ep_is_in && (_hc->xfer_len > 188)) { ++ _hc->xfer_len = 188; ++ } ++ ++ hctsiz.b.xfersize = _hc->xfer_len; ++ } else { ++ /* ++ * Ensure that the transfer length and packet count will fit ++ * in the widths allocated for them in the HCTSIZn register. ++ */ ++ if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR || ++ _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ /* ++ * Make sure the transfer size is no larger than one ++ * (micro)frame's worth of data. (A check was done ++ * when the periodic transfer was accepted to ensure ++ * that a (micro)frame's worth of data can be ++ * programmed into a channel.) ++ */ ++ uint32_t max_periodic_len = _hc->multi_count * _hc->max_packet; ++ if (_hc->xfer_len > max_periodic_len) { ++ _hc->xfer_len = max_periodic_len; ++ } else { ++ } ++ } else if (_hc->xfer_len > max_hc_xfer_size) { ++ /* Make sure that xfer_len is a multiple of max packet size. */ ++ _hc->xfer_len = max_hc_xfer_size - _hc->max_packet + 1; ++ } ++ ++ if (_hc->xfer_len > 0) { ++ num_packets = (_hc->xfer_len + _hc->max_packet - 1) / _hc->max_packet; ++ if (num_packets > max_hc_pkt_count) { ++ num_packets = max_hc_pkt_count; ++ _hc->xfer_len = num_packets * _hc->max_packet; ++ } ++ } else { ++ /* Need 1 packet for transfer length of 0. */ ++ num_packets = 1; ++ } ++ ++ if (_hc->ep_is_in) { ++ /* Always program an integral # of max packets for IN transfers. */ ++ _hc->xfer_len = num_packets * _hc->max_packet; ++ } ++ ++ if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR || ++ _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ /* ++ * Make sure that the multi_count field matches the ++ * actual transfer length. ++ */ ++ _hc->multi_count = num_packets; ++ ++ } ++ ++ if (_hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ /* Set up the initial PID for the transfer. */ ++ if (_hc->speed == DWC_OTG_EP_SPEED_HIGH) { ++ if (_hc->ep_is_in) { ++ if (_hc->multi_count == 1) { ++ _hc->data_pid_start = DWC_OTG_HC_PID_DATA0; ++ } else if (_hc->multi_count == 2) { ++ _hc->data_pid_start = DWC_OTG_HC_PID_DATA1; ++ } else { ++ _hc->data_pid_start = DWC_OTG_HC_PID_DATA2; ++ } ++ } else { ++ if (_hc->multi_count == 1) { ++ _hc->data_pid_start = DWC_OTG_HC_PID_DATA0; ++ } else { ++ _hc->data_pid_start = DWC_OTG_HC_PID_MDATA; ++ } ++ } ++ } else { ++ _hc->data_pid_start = DWC_OTG_HC_PID_DATA0; ++ } ++ } ++ ++ hctsiz.b.xfersize = _hc->xfer_len; ++ } ++ ++ _hc->start_pkt_count = num_packets; ++ hctsiz.b.pktcnt = num_packets; ++ hctsiz.b.pid = _hc->data_pid_start; ++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); ++ ++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num); ++ DWC_DEBUGPL(DBG_HCDV, " Xfer Size: %d\n", hctsiz.b.xfersize); ++ DWC_DEBUGPL(DBG_HCDV, " Num Pkts: %d\n", hctsiz.b.pktcnt); ++ DWC_DEBUGPL(DBG_HCDV, " Start PID: %d\n", hctsiz.b.pid); ++ ++ if (_core_if->dma_enable) { ++#ifdef DEBUG ++if(((uint32_t)_hc->xfer_buff)%4) ++printk("dwc_otg_hc_start_transfer _hc->xfer_buff not 4 byte alignment\n"); ++#endif ++ dwc_write_reg32(&hc_regs->hcdma, (uint32_t)_hc->xfer_buff); ++ } ++ ++ /* Start the split */ ++ if (_hc->do_split) { ++ hcsplt_data_t hcsplt; ++ hcsplt.d32 = dwc_read_reg32 (&hc_regs->hcsplt); ++ hcsplt.b.spltena = 1; ++ dwc_write_reg32(&hc_regs->hcsplt, hcsplt.d32); ++ } ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.multicnt = _hc->multi_count; ++ hc_set_even_odd_frame(_core_if, _hc, &hcchar); ++#ifdef DEBUG ++ _core_if->start_hcchar_val[_hc->hc_num] = hcchar.d32; ++ if (hcchar.b.chdis) { ++ DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n", ++ __func__, _hc->hc_num, hcchar.d32); ++ } ++#endif ++ ++ /* Set host channel enable after all other setup is complete. */ ++ hcchar.b.chen = 1; ++ hcchar.b.chdis = 0; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ ++ _hc->xfer_started = 1; ++ _hc->requests++; ++ ++ if (!_core_if->dma_enable && !_hc->ep_is_in && _hc->xfer_len > 0) { ++ /* Load OUT packet into the appropriate Tx FIFO. */ ++ dwc_otg_hc_write_packet(_core_if, _hc); ++ } ++ ++#ifdef DEBUG ++ /* Start a timer for this transfer. */ ++ _core_if->hc_xfer_timer[_hc->hc_num].function = hc_xfer_timeout; ++ _core_if->hc_xfer_info[_hc->hc_num].core_if = _core_if; ++ _core_if->hc_xfer_info[_hc->hc_num].hc = _hc; ++ _core_if->hc_xfer_timer[_hc->hc_num].data = (unsigned long)(&_core_if->hc_xfer_info[_hc->hc_num]); ++ _core_if->hc_xfer_timer[_hc->hc_num].expires = jiffies + (HZ*10); ++ add_timer(&_core_if->hc_xfer_timer[_hc->hc_num]); ++#endif ++} ++ ++/** ++ * This function continues a data transfer that was started by previous call ++ * to <code>dwc_otg_hc_start_transfer</code>. The caller must ensure there is ++ * sufficient space in the request queue and Tx Data FIFO. This function ++ * should only be called in Slave mode. In DMA mode, the controller acts ++ * autonomously to complete transfers programmed to a host channel. ++ * ++ * For an OUT transfer, a new data packet is loaded into the appropriate FIFO ++ * if there is any data remaining to be queued. For an IN transfer, another ++ * data packet is always requested. For the SETUP phase of a control transfer, ++ * this function does nothing. ++ * ++ * @return 1 if a new request is queued, 0 if no more requests are required ++ * for this transfer. ++ */ ++int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc) ++{ ++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num); ++ ++ if (_hc->do_split) { ++ /* SPLITs always queue just once per channel */ ++ return 0; ++ } else if (_hc->data_pid_start == DWC_OTG_HC_PID_SETUP) { ++ /* SETUPs are queued only once since they can't be NAKed. */ ++ return 0; ++ } else if (_hc->ep_is_in) { ++ /* ++ * Always queue another request for other IN transfers. If ++ * back-to-back INs are issued and NAKs are received for both, ++ * the driver may still be processing the first NAK when the ++ * second NAK is received. When the interrupt handler clears ++ * the NAK interrupt for the first NAK, the second NAK will ++ * not be seen. So we can't depend on the NAK interrupt ++ * handler to requeue a NAKed request. Instead, IN requests ++ * are issued each time this function is called. When the ++ * transfer completes, the extra requests for the channel will ++ * be flushed. ++ */ ++ hcchar_data_t hcchar; ++ dwc_otg_hc_regs_t *hc_regs = _core_if->host_if->hc_regs[_hc->hc_num]; ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hc_set_even_odd_frame(_core_if, _hc, &hcchar); ++ hcchar.b.chen = 1; ++ hcchar.b.chdis = 0; ++ DWC_DEBUGPL(DBG_HCDV, " IN xfer: hcchar = 0x%08x\n", hcchar.d32); ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ _hc->requests++; ++ return 1; ++ } else { ++ /* OUT transfers. */ ++ if (_hc->xfer_count < _hc->xfer_len) { ++ if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR || ++ _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ hcchar_data_t hcchar; ++ dwc_otg_hc_regs_t *hc_regs; ++ hc_regs = _core_if->host_if->hc_regs[_hc->hc_num]; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hc_set_even_odd_frame(_core_if, _hc, &hcchar); ++ } ++ ++ /* Load OUT packet into the appropriate Tx FIFO. */ ++ dwc_otg_hc_write_packet(_core_if, _hc); ++ _hc->requests++; ++ return 1; ++ } else { ++ return 0; ++ } ++ } ++} ++ ++/** ++ * Starts a PING transfer. This function should only be called in Slave mode. ++ * The Do Ping bit is set in the HCTSIZ register, then the channel is enabled. ++ */ ++void dwc_otg_hc_do_ping(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc) ++{ ++ hcchar_data_t hcchar; ++ hctsiz_data_t hctsiz; ++ dwc_otg_hc_regs_t *hc_regs = _core_if->host_if->hc_regs[_hc->hc_num]; ++ ++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num); ++ ++ hctsiz.d32 = 0; ++ hctsiz.b.dopng = 1; ++ hctsiz.b.pktcnt = 1; ++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.chen = 1; ++ hcchar.b.chdis = 0; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++} ++ ++/* ++ * This function writes a packet into the Tx FIFO associated with the Host ++ * Channel. For a channel associated with a non-periodic EP, the non-periodic ++ * Tx FIFO is written. For a channel associated with a periodic EP, the ++ * periodic Tx FIFO is written. This function should only be called in Slave ++ * mode. ++ * ++ * Upon return the xfer_buff and xfer_count fields in _hc are incremented by ++ * then number of bytes written to the Tx FIFO. ++ */ ++void dwc_otg_hc_write_packet(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc) ++{ ++ uint32_t i; ++ uint32_t remaining_count; ++ uint32_t byte_count; ++ uint32_t dword_count; ++ ++ uint32_t *data_buff = (uint32_t *)(_hc->xfer_buff); ++ uint32_t *data_fifo = _core_if->data_fifo[_hc->hc_num]; ++ ++ remaining_count = _hc->xfer_len - _hc->xfer_count; ++ if (remaining_count > _hc->max_packet) { ++ byte_count = _hc->max_packet; ++ } else { ++ byte_count = remaining_count; ++ } ++ ++ dword_count = (byte_count + 3) / 4; ++ ++ if ((((unsigned long)data_buff) & 0x3) == 0) { ++ /* xfer_buff is DWORD aligned. */ ++ for (i = 0; i < dword_count; i++, data_buff++) { ++ dwc_write_reg32(data_fifo, *data_buff); ++ } ++ } else { ++ /* xfer_buff is not DWORD aligned. */ ++ for (i = 0; i < dword_count; i++, data_buff++) { ++ dwc_write_reg32(data_fifo, get_unaligned(data_buff)); ++ } ++ } ++ ++ _hc->xfer_count += byte_count; ++ _hc->xfer_buff += byte_count; ++} ++ ++/** ++ * Gets the current USB frame number. This is the frame number from the last ++ * SOF packet. ++ */ ++uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t *_core_if) ++{ ++ dsts_data_t dsts; ++ dsts.d32 = dwc_read_reg32(&_core_if->dev_if->dev_global_regs->dsts); ++ ++ /* read current frame/microfreme number from DSTS register */ ++ return dsts.b.soffn; ++} ++ ++/** ++ * This function reads a setup packet from the Rx FIFO into the destination ++ * buffer. This function is called from the Rx Status Queue Level (RxStsQLvl) ++ * Interrupt routine when a SETUP packet has been received in Slave mode. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _dest Destination buffer for packet data. ++ */ ++void dwc_otg_read_setup_packet(dwc_otg_core_if_t *_core_if, uint32_t *_dest) ++{ ++ /* Get the 8 bytes of a setup transaction data */ ++ ++ /* Pop 2 DWORDS off the receive data FIFO into memory */ ++ _dest[0] = dwc_read_reg32(_core_if->data_fifo[0]); ++ _dest[1] = dwc_read_reg32(_core_if->data_fifo[0]); ++ //_dest[0] = dwc_read_datafifo32(_core_if->data_fifo[0]); ++ //_dest[1] = dwc_read_datafifo32(_core_if->data_fifo[0]); ++} ++ ++ ++/** ++ * This function enables EP0 OUT to receive SETUP packets and configures EP0 ++ * IN for transmitting packets. It is normally called when the ++ * "Enumeration Done" interrupt occurs. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _ep The EP0 data. ++ */ ++void dwc_otg_ep0_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep) ++{ ++ dwc_otg_dev_if_t *dev_if = _core_if->dev_if; ++ dsts_data_t dsts; ++ depctl_data_t diepctl; ++ depctl_data_t doepctl; ++ dctl_data_t dctl ={.d32=0}; ++ ++ /* Read the Device Status and Endpoint 0 Control registers */ ++ dsts.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dsts); ++ diepctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl); ++ doepctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl); ++ ++ /* Set the MPS of the IN EP based on the enumeration speed */ ++ switch (dsts.b.enumspd) { ++ case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ: ++ case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ: ++ case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ: ++ diepctl.b.mps = DWC_DEP0CTL_MPS_64; ++ break; ++ case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ: ++ diepctl.b.mps = DWC_DEP0CTL_MPS_8; ++ break; ++ } ++ ++ dwc_write_reg32(&dev_if->in_ep_regs[0]->diepctl, diepctl.d32); ++ ++ /* Enable OUT EP for receive */ ++ doepctl.b.epena = 1; ++ dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32); ++ ++#ifdef VERBOSE ++ DWC_DEBUGPL(DBG_PCDV,"doepctl0=%0x\n", ++ dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl)); ++ DWC_DEBUGPL(DBG_PCDV,"diepctl0=%0x\n", ++ dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl)); ++#endif ++ dctl.b.cgnpinnak = 1; ++ dwc_modify_reg32(&dev_if->dev_global_regs->dctl, dctl.d32, dctl.d32); ++ DWC_DEBUGPL(DBG_PCDV,"dctl=%0x\n", ++ dwc_read_reg32(&dev_if->dev_global_regs->dctl)); ++} ++ ++/** ++ * This function activates an EP. The Device EP control register for ++ * the EP is configured as defined in the ep structure. Note: This ++ * function is not used for EP0. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _ep The EP to activate. ++ */ ++void dwc_otg_ep_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep) ++{ ++ dwc_otg_dev_if_t *dev_if = _core_if->dev_if; ++ depctl_data_t depctl; ++ volatile uint32_t *addr; ++ daint_data_t daintmsk = {.d32=0}; ++ ++ DWC_DEBUGPL(DBG_PCDV, "%s() EP%d-%s\n", __func__, _ep->num, ++ (_ep->is_in?"IN":"OUT")); ++ ++ /* Read DEPCTLn register */ ++ if (_ep->is_in == 1) { ++ addr = &dev_if->in_ep_regs[_ep->num]->diepctl; ++ daintmsk.ep.in = 1<<_ep->num; ++ } else { ++ addr = &dev_if->out_ep_regs[_ep->num]->doepctl; ++ daintmsk.ep.out = 1<<_ep->num; ++ } ++ ++ /* If the EP is already active don't change the EP Control ++ * register. */ ++ depctl.d32 = dwc_read_reg32(addr); ++ if (!depctl.b.usbactep) { ++ depctl.b.mps = _ep->maxpacket; ++ depctl.b.eptype = _ep->type; ++ depctl.b.txfnum = _ep->tx_fifo_num; ++ ++ if (_ep->type == DWC_OTG_EP_TYPE_ISOC) { ++ depctl.b.setd0pid = 1; // ??? ++ } else { ++ depctl.b.setd0pid = 1; ++ } ++ depctl.b.usbactep = 1; ++ ++ dwc_write_reg32(addr, depctl.d32); ++ DWC_DEBUGPL(DBG_PCDV,"DEPCTL=%08x\n", dwc_read_reg32(addr)); ++ } ++ ++ ++ /* Enable the Interrupt for this EP */ ++ dwc_modify_reg32(&dev_if->dev_global_regs->daintmsk, ++ 0, daintmsk.d32); ++ DWC_DEBUGPL(DBG_PCDV,"DAINTMSK=%0x\n", ++ dwc_read_reg32(&dev_if->dev_global_regs->daintmsk)); ++ _ep->stall_clear_flag = 0; ++ return; ++} ++ ++/** ++ * This function deactivates an EP. This is done by clearing the USB Active ++ * EP bit in the Device EP control register. Note: This function is not used ++ * for EP0. EP0 cannot be deactivated. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _ep The EP to deactivate. ++ */ ++void dwc_otg_ep_deactivate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep) ++{ ++ depctl_data_t depctl ={.d32 = 0}; ++ volatile uint32_t *addr; ++ daint_data_t daintmsk = {.d32=0}; ++ ++ /* Read DEPCTLn register */ ++ if (_ep->is_in == 1) { ++ addr = &_core_if->dev_if->in_ep_regs[_ep->num]->diepctl; ++ daintmsk.ep.in = 1<<_ep->num; ++ } else { ++ addr = &_core_if->dev_if->out_ep_regs[_ep->num]->doepctl; ++ daintmsk.ep.out = 1<<_ep->num; ++ } ++ ++ depctl.b.usbactep = 0; ++ dwc_write_reg32(addr, depctl.d32); ++ ++ /* Disable the Interrupt for this EP */ ++ dwc_modify_reg32(&_core_if->dev_if->dev_global_regs->daintmsk, ++ daintmsk.d32, 0); ++ ++ return; ++} ++ ++/** ++ * This function does the setup for a data transfer for an EP and ++ * starts the transfer. For an IN transfer, the packets will be ++ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers, ++ * the packets are unloaded from the Rx FIFO in the ISR. the ISR. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _ep The EP to start the transfer on. ++ */ ++void dwc_otg_ep_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep) ++{ ++ /** @todo Refactor this funciton to check the transfer size ++ * count value does not execed the number bits in the Transfer ++ * count register. */ ++ depctl_data_t depctl; ++ deptsiz_data_t deptsiz; ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ ++#ifdef CHECK_PACKET_COUNTER_WIDTH ++ const uint32_t MAX_XFER_SIZE = ++ _core_if->core_params->max_transfer_size; ++ const uint32_t MAX_PKT_COUNT = ++ _core_if->core_params->max_packet_count; ++ uint32_t num_packets; ++ uint32_t transfer_len; ++ dwc_otg_dev_out_ep_regs_t *out_regs = ++ _core_if->dev_if->out_ep_regs[_ep->num]; ++ dwc_otg_dev_in_ep_regs_t *in_regs = ++ _core_if->dev_if->in_ep_regs[_ep->num]; ++ gnptxsts_data_t txstatus; ++ ++ int lvl = SET_DEBUG_LEVEL(DBG_PCD); ++ ++ ++ DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d " ++ "xfer_buff=%p start_xfer_buff=%p\n", ++ _ep->num, (_ep->is_in?"IN":"OUT"), _ep->xfer_len, ++ _ep->xfer_count, _ep->xfer_buff, _ep->start_xfer_buff); ++ ++ transfer_len = _ep->xfer_len - _ep->xfer_count; ++ if (transfer_len > MAX_XFER_SIZE) { ++ transfer_len = MAX_XFER_SIZE; ++ } ++ if (transfer_len == 0) { ++ num_packets = 1; ++ /* OUT EP to recieve Zero-length packet set transfer ++ * size to maxpacket size. */ ++ if (!_ep->is_in) { ++ transfer_len = _ep->maxpacket; ++ } ++ } else { ++ num_packets = ++ (transfer_len + _ep->maxpacket - 1) / _ep->maxpacket; ++ if (num_packets > MAX_PKT_COUNT) { ++ num_packets = MAX_PKT_COUNT; ++ } ++ } ++ DWC_DEBUGPL(DBG_PCD, "transfer_len=%d #pckt=%d\n", transfer_len, ++ num_packets); ++ ++ deptsiz.b.xfersize = transfer_len; ++ deptsiz.b.pktcnt = num_packets; ++ ++ /* IN endpoint */ ++ if (_ep->is_in == 1) { ++ depctl.d32 = dwc_read_reg32(&in_regs->diepctl); ++ } else {/* OUT endpoint */ ++ depctl.d32 = dwc_read_reg32(&out_regs->doepctl); ++ } ++ ++ /* EP enable, IN data in FIFO */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ /* IN endpoint */ ++ if (_ep->is_in == 1) { ++ txstatus.d32 = ++ dwc_read_reg32(&_core_if->core_global_regs->gnptxsts); ++ if (txstatus.b.nptxqspcavail == 0) { ++ DWC_DEBUGPL(DBG_ANY, "TX Queue Full (0x%0x)\n", ++ txstatus.d32); ++ return; ++ } ++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); ++ dwc_write_reg32(&in_regs->diepctl, depctl.d32); ++ /** ++ * Enable the Non-Periodic Tx FIFO empty interrupt, the ++ * data will be written into the fifo by the ISR. ++ */ ++ if (_core_if->dma_enable) { ++ dwc_write_reg32(&in_regs->diepdma, (uint32_t) _ep->xfer_buff); ++ } else { ++ if (_core_if->en_multiple_tx_fifo == 0) { ++ intr_mask.b.nptxfempty = 1; ++ dwc_modify_reg32( &_core_if->core_global_regs->gintsts, ++ intr_mask.d32, 0); ++ dwc_modify_reg32( &_core_if->core_global_regs->gintmsk, ++ intr_mask.d32, intr_mask.d32); ++ } else { ++ /* Enable the Tx FIFO Empty Interrupt for this EP */ ++ if (_ep->xfer_len > 0 && ++ _ep->type != DWC_OTG_EP_TYPE_ISOC) { ++ uint32_t fifoemptymsk = 0; ++ fifoemptymsk = (0x1 << _ep->num); ++ dwc_modify_reg32(&_core_if->dev_if->dev_global_regs-> ++ dtknqr4_fifoemptymsk,0, fifoemptymsk); ++ } ++ } ++ } ++ } else { /* OUT endpoint */ ++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); ++ dwc_write_reg32(&out_regs->doepctl, depctl.d32); ++ if (_core_if->dma_enable) { ++ dwc_write_reg32(&out_regs->doepdma,(uint32_t) _ep->xfer_buff); ++ } ++ } ++ DWC_DEBUGPL(DBG_PCD, "DOEPCTL=%08x DOEPTSIZ=%08x\n", ++ dwc_read_reg32(&out_regs->doepctl), ++ dwc_read_reg32(&out_regs->doeptsiz)); ++ DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n", ++ dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daintmsk), ++ dwc_read_reg32(&_core_if->core_global_regs->gintmsk)); ++ ++ SET_DEBUG_LEVEL(lvl); ++#endif ++ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__); ++ ++ DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d " ++ "xfer_buff=%p start_xfer_buff=%p\n", ++ _ep->num, (_ep->is_in?"IN":"OUT"), _ep->xfer_len, ++ _ep->xfer_count, _ep->xfer_buff, _ep->start_xfer_buff); ++ ++ /* IN endpoint */ ++ if (_ep->is_in == 1) { ++ dwc_otg_dev_in_ep_regs_t * in_regs = _core_if->dev_if->in_ep_regs[_ep->num]; ++ gnptxsts_data_t gtxstatus; ++ gtxstatus.d32 = dwc_read_reg32(&_core_if->core_global_regs->gnptxsts); ++ if (_core_if->en_multiple_tx_fifo == 0 && ++ gtxstatus.b.nptxqspcavail == 0) { ++#ifdef DEBUG ++ DWC_PRINT("TX Queue Full (0x%0x)\n", gtxstatus.d32); ++#endif ++ //return; ++ MDELAY(100); //james ++ } ++ ++ depctl.d32 = dwc_read_reg32(&(in_regs->diepctl)); ++ deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz)); ++ ++ /* Zero Length Packet? */ ++ if (_ep->xfer_len == 0) { ++ deptsiz.b.xfersize = 0; ++ deptsiz.b.pktcnt = 1; ++ } else { ++ ++ /* Program the transfer size and packet count ++ * as follows: xfersize = N * maxpacket + ++ * short_packet pktcnt = N + (short_packet ++ * exist ? 1 : 0) ++ */ ++ deptsiz.b.xfersize = _ep->xfer_len; ++ deptsiz.b.pktcnt = (_ep->xfer_len - 1 + _ep->maxpacket) / _ep->maxpacket; ++ } ++ ++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); ++ ++ /* Write the DMA register */ ++ if (_core_if->dma_enable) { ++#if 1 // winder ++ dma_cache_wback_inv((unsigned long) _ep->xfer_buff, _ep->xfer_len); // winder ++ dwc_write_reg32 (&(in_regs->diepdma), ++ CPHYSADDR((uint32_t)_ep->xfer_buff)); // winder ++#else ++ dwc_write_reg32 (&(in_regs->diepdma), ++ (uint32_t)_ep->dma_addr); ++#endif ++ } else { ++ if (_ep->type != DWC_OTG_EP_TYPE_ISOC) { ++ /** ++ * Enable the Non-Periodic Tx FIFO empty interrupt, ++ * or the Tx FIFO epmty interrupt in dedicated Tx FIFO mode, ++ * the data will be written into the fifo by the ISR. ++ */ ++ if (_core_if->en_multiple_tx_fifo == 0) { ++ intr_mask.b.nptxfempty = 1; ++ dwc_modify_reg32( &_core_if->core_global_regs->gintsts, ++ intr_mask.d32, 0); ++ dwc_modify_reg32( &_core_if->core_global_regs->gintmsk, ++ intr_mask.d32, intr_mask.d32); ++ } else { ++ /* Enable the Tx FIFO Empty Interrupt for this EP */ ++ if (_ep->xfer_len > 0) { ++ uint32_t fifoemptymsk = 0; ++ fifoemptymsk = 1 << _ep->num; ++ dwc_modify_reg32(&_core_if->dev_if->dev_global_regs-> ++ dtknqr4_fifoemptymsk,0,fifoemptymsk); ++ } ++ } ++ } ++ } ++ ++ /* EP enable, IN data in FIFO */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ dwc_write_reg32(&in_regs->diepctl, depctl.d32); ++ ++ if (_core_if->dma_enable) { ++ depctl.d32 = dwc_read_reg32 (&_core_if->dev_if->in_ep_regs[0]->diepctl); ++ depctl.b.nextep = _ep->num; ++ dwc_write_reg32 (&_core_if->dev_if->in_ep_regs[0]->diepctl, depctl.d32); ++ ++ } ++ } else { ++ /* OUT endpoint */ ++ dwc_otg_dev_out_ep_regs_t * out_regs = _core_if->dev_if->out_ep_regs[_ep->num]; ++ ++ depctl.d32 = dwc_read_reg32(&(out_regs->doepctl)); ++ deptsiz.d32 = dwc_read_reg32(&(out_regs->doeptsiz)); ++ ++ /* Program the transfer size and packet count as follows: ++ * ++ * pktcnt = N ++ * xfersize = N * maxpacket ++ */ ++ if (_ep->xfer_len == 0) { ++ /* Zero Length Packet */ ++ deptsiz.b.xfersize = _ep->maxpacket; ++ deptsiz.b.pktcnt = 1; ++ } else { ++ deptsiz.b.pktcnt = (_ep->xfer_len + (_ep->maxpacket - 1)) / _ep->maxpacket; ++ deptsiz.b.xfersize = deptsiz.b.pktcnt * _ep->maxpacket; ++ } ++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); ++ ++ DWC_DEBUGPL(DBG_PCDV, "ep%d xfersize=%d pktcnt=%d\n", ++ _ep->num, deptsiz.b.xfersize, deptsiz.b.pktcnt); ++ ++ if (_core_if->dma_enable) { ++#if 1 // winder ++ dwc_write_reg32 (&(out_regs->doepdma), ++ CPHYSADDR((uint32_t)_ep->xfer_buff)); // winder ++#else ++ dwc_write_reg32 (&(out_regs->doepdma), ++ (uint32_t)_ep->dma_addr); ++#endif ++ } ++ ++ if (_ep->type == DWC_OTG_EP_TYPE_ISOC) { ++ /** @todo NGS: dpid is read-only. Use setd0pid ++ * or setd1pid. */ ++ if (_ep->even_odd_frame) { ++ depctl.b.setd1pid = 1; ++ } else { ++ depctl.b.setd0pid = 1; ++ } ++ } ++ ++ /* EP enable */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ ++ dwc_write_reg32(&out_regs->doepctl, depctl.d32); ++ ++ DWC_DEBUGPL(DBG_PCD, "DOEPCTL=%08x DOEPTSIZ=%08x\n", ++ dwc_read_reg32(&out_regs->doepctl), ++ dwc_read_reg32(&out_regs->doeptsiz)); ++ DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n", ++ dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daintmsk), ++ dwc_read_reg32(&_core_if->core_global_regs->gintmsk)); ++ } ++} ++ ++ ++/** ++ * This function does the setup for a data transfer for EP0 and starts ++ * the transfer. For an IN transfer, the packets will be loaded into ++ * the appropriate Tx FIFO in the ISR. For OUT transfers, the packets are ++ * unloaded from the Rx FIFO in the ISR. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _ep The EP0 data. ++ */ ++void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep) ++{ ++ volatile depctl_data_t depctl; ++ volatile deptsiz0_data_t deptsiz; ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ ++ DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d " ++ "xfer_buff=%p start_xfer_buff=%p total_len=%d\n", ++ _ep->num, (_ep->is_in?"IN":"OUT"), _ep->xfer_len, ++ _ep->xfer_count, _ep->xfer_buff, _ep->start_xfer_buff, ++ _ep->total_len); ++ _ep->total_len = _ep->xfer_len; ++ ++ /* IN endpoint */ ++ if (_ep->is_in == 1) { ++ dwc_otg_dev_in_ep_regs_t * in_regs = _core_if->dev_if->in_ep_regs[0]; ++ gnptxsts_data_t gtxstatus; ++ gtxstatus.d32 = dwc_read_reg32(&_core_if->core_global_regs->gnptxsts); ++ if (_core_if->en_multiple_tx_fifo == 0 && ++ gtxstatus.b.nptxqspcavail == 0) { ++#ifdef DEBUG ++ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz); ++ DWC_DEBUGPL(DBG_PCD,"DIEPCTL0=%0x\n", ++ dwc_read_reg32(&in_regs->diepctl)); ++ DWC_DEBUGPL(DBG_PCD, "DIEPTSIZ0=%0x (sz=%d, pcnt=%d)\n", ++ deptsiz.d32, deptsiz.b.xfersize,deptsiz.b.pktcnt); ++ DWC_PRINT("TX Queue or FIFO Full (0x%0x)\n", gtxstatus.d32); ++#endif /* */ ++ printk("TX Queue or FIFO Full!!!!\n"); // test-only ++ //return; ++ MDELAY(100); //james ++ } ++ ++ depctl.d32 = dwc_read_reg32(&in_regs->diepctl); ++ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz); ++ ++ /* Zero Length Packet? */ ++ if (_ep->xfer_len == 0) { ++ deptsiz.b.xfersize = 0; ++ deptsiz.b.pktcnt = 1; ++ } else { ++ /* Program the transfer size and packet count ++ * as follows: xfersize = N * maxpacket + ++ * short_packet pktcnt = N + (short_packet ++ * exist ? 1 : 0) ++ */ ++ if (_ep->xfer_len > _ep->maxpacket) { ++ _ep->xfer_len = _ep->maxpacket; ++ deptsiz.b.xfersize = _ep->maxpacket; ++ } ++ else { ++ deptsiz.b.xfersize = _ep->xfer_len; ++ } ++ deptsiz.b.pktcnt = 1; ++ ++ } ++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); ++ DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n", ++ _ep->xfer_len, deptsiz.b.xfersize,deptsiz.b.pktcnt, deptsiz.d32); ++ ++ /* Write the DMA register */ ++ if (_core_if->dma_enable) { ++ dwc_write_reg32(&(in_regs->diepdma), (uint32_t) _ep->dma_addr); ++ } ++ ++ /* EP enable, IN data in FIFO */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ dwc_write_reg32(&in_regs->diepctl, depctl.d32); ++ ++ /** ++ * Enable the Non-Periodic Tx FIFO empty interrupt, the ++ * data will be written into the fifo by the ISR. ++ */ ++ if (!_core_if->dma_enable) { ++ if (_core_if->en_multiple_tx_fifo == 0) { ++ intr_mask.b.nptxfempty = 1; ++ dwc_modify_reg32(&_core_if->core_global_regs->gintsts, intr_mask.d32, 0); ++ dwc_modify_reg32(&_core_if->core_global_regs->gintmsk, intr_mask.d32, ++ intr_mask.d32); ++ } else { ++ /* Enable the Tx FIFO Empty Interrupt for this EP */ ++ if (_ep->xfer_len > 0) { ++ uint32_t fifoemptymsk = 0; ++ fifoemptymsk |= 1 << _ep->num; ++ dwc_modify_reg32(&_core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk, ++ 0, fifoemptymsk); ++ } ++ ++ } ++ } ++ } else { ++ /* OUT endpoint */ ++ dwc_otg_dev_out_ep_regs_t * out_regs = _core_if->dev_if->out_ep_regs[_ep->num]; ++ ++ depctl.d32 = dwc_read_reg32(&out_regs->doepctl); ++ deptsiz.d32 = dwc_read_reg32(&out_regs->doeptsiz); ++ ++ /* Program the transfer size and packet count as follows: ++ * xfersize = N * (maxpacket + 4 - (maxpacket % 4)) ++ * pktcnt = N */ ++ if (_ep->xfer_len == 0) { ++ /* Zero Length Packet */ ++ deptsiz.b.xfersize = _ep->maxpacket; ++ deptsiz.b.pktcnt = 1; ++ } else { ++ deptsiz.b.pktcnt = (_ep->xfer_len + (_ep->maxpacket - 1)) / _ep->maxpacket; ++ deptsiz.b.xfersize = deptsiz.b.pktcnt * _ep->maxpacket; ++ } ++ ++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); ++ DWC_DEBUGPL(DBG_PCDV, "len=%d xfersize=%d pktcnt=%d\n", ++ _ep->xfer_len, deptsiz.b.xfersize,deptsiz.b.pktcnt); ++ ++ if (_core_if->dma_enable) { ++ dwc_write_reg32(&(out_regs->doepdma), (uint32_t) _ep->dma_addr); ++ } ++ ++ /* EP enable */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ dwc_write_reg32 (&(out_regs->doepctl), depctl.d32); ++ } ++} ++ ++/** ++ * This function continues control IN transfers started by ++ * dwc_otg_ep0_start_transfer, when the transfer does not fit in a ++ * single packet. NOTE: The DIEPCTL0/DOEPCTL0 registers only have one ++ * bit for the packet count. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _ep The EP0 data. ++ */ ++void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep) ++{ ++ depctl_data_t depctl; ++ deptsiz0_data_t deptsiz; ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ ++ if (_ep->is_in == 1) { ++ dwc_otg_dev_in_ep_regs_t *in_regs = ++ _core_if->dev_if->in_ep_regs[0]; ++ gnptxsts_data_t tx_status = {.d32 = 0}; ++ ++ tx_status.d32 = dwc_read_reg32( &_core_if->core_global_regs->gnptxsts ); ++ /** @todo Should there be check for room in the Tx ++ * Status Queue. If not remove the code above this comment. */ ++ ++ depctl.d32 = dwc_read_reg32(&in_regs->diepctl); ++ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz); ++ ++ /* Program the transfer size and packet count ++ * as follows: xfersize = N * maxpacket + ++ * short_packet pktcnt = N + (short_packet ++ * exist ? 1 : 0) ++ */ ++ deptsiz.b.xfersize = (_ep->total_len - _ep->xfer_count) > _ep->maxpacket ? _ep->maxpacket : ++ (_ep->total_len - _ep->xfer_count); ++ deptsiz.b.pktcnt = 1; ++ _ep->xfer_len += deptsiz.b.xfersize; ++ ++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); ++ DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n", ++ _ep->xfer_len, ++ deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32); ++ ++ /* Write the DMA register */ ++ if (_core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) { ++ dwc_write_reg32 (&(in_regs->diepdma), ++ CPHYSADDR((uint32_t)_ep->dma_addr)); // winder ++ } ++ ++ /* EP enable, IN data in FIFO */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ dwc_write_reg32(&in_regs->diepctl, depctl.d32); ++ ++ /** ++ * Enable the Non-Periodic Tx FIFO empty interrupt, the ++ * data will be written into the fifo by the ISR. ++ */ ++ if (!_core_if->dma_enable) { ++ /* First clear it from GINTSTS */ ++ intr_mask.b.nptxfempty = 1; ++ dwc_write_reg32( &_core_if->core_global_regs->gintsts, ++ intr_mask.d32 ); ++ ++ dwc_modify_reg32( &_core_if->core_global_regs->gintmsk, ++ intr_mask.d32, intr_mask.d32); ++ } ++ ++ } ++ ++} ++ ++#ifdef DEBUG ++void dump_msg(const u8 *buf, unsigned int length) ++{ ++ unsigned int start, num, i; ++ char line[52], *p; ++ ++ if (length >= 512) ++ return; ++ start = 0; ++ while (length > 0) { ++ num = min(length, 16u); ++ p = line; ++ for (i = 0; i < num; ++i) { ++ if (i == 8) ++ *p++ = ' '; ++ sprintf(p, " %02x", buf[i]); ++ p += 3; ++ } ++ *p = 0; ++ DWC_PRINT( "%6x: %s\n", start, line); ++ buf += num; ++ start += num; ++ length -= num; ++ } ++} ++#else ++static inline void dump_msg(const u8 *buf, unsigned int length) ++{ ++} ++#endif ++ ++/** ++ * This function writes a packet into the Tx FIFO associated with the ++ * EP. For non-periodic EPs the non-periodic Tx FIFO is written. For ++ * periodic EPs the periodic Tx FIFO associated with the EP is written ++ * with all packets for the next micro-frame. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _ep The EP to write packet for. ++ * @param _dma Indicates if DMA is being used. ++ */ ++void dwc_otg_ep_write_packet(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep, int _dma) ++{ ++ /** ++ * The buffer is padded to DWORD on a per packet basis in ++ * slave/dma mode if the MPS is not DWORD aligned. The last ++ * packet, if short, is also padded to a multiple of DWORD. ++ * ++ * ep->xfer_buff always starts DWORD aligned in memory and is a ++ * multiple of DWORD in length ++ * ++ * ep->xfer_len can be any number of bytes ++ * ++ * ep->xfer_count is a multiple of ep->maxpacket until the last ++ * packet ++ * ++ * FIFO access is DWORD */ ++ ++ uint32_t i; ++ uint32_t byte_count; ++ uint32_t dword_count; ++ uint32_t *fifo; ++ uint32_t *data_buff = (uint32_t *)_ep->xfer_buff; ++ ++ //DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p)\n", __func__, _core_if, _ep); ++ if (_ep->xfer_count >= _ep->xfer_len) { ++ DWC_WARN("%s() No data for EP%d!!!\n", __func__, _ep->num); ++ return; ++ } ++ ++ /* Find the byte length of the packet either short packet or MPS */ ++ if ((_ep->xfer_len - _ep->xfer_count) < _ep->maxpacket) { ++ byte_count = _ep->xfer_len - _ep->xfer_count; ++ } ++ else { ++ byte_count = _ep->maxpacket; ++ } ++ ++ /* Find the DWORD length, padded by extra bytes as neccessary if MPS ++ * is not a multiple of DWORD */ ++ dword_count = (byte_count + 3) / 4; ++ ++#ifdef VERBOSE ++ dump_msg(_ep->xfer_buff, byte_count); ++#endif ++ if (_ep->type == DWC_OTG_EP_TYPE_ISOC) { ++ /**@todo NGS Where are the Periodic Tx FIFO addresses ++ * intialized? What should this be? */ ++ fifo = _core_if->data_fifo[_ep->tx_fifo_num]; ++ } else { ++ fifo = _core_if->data_fifo[_ep->num]; ++ } ++ ++ DWC_DEBUGPL((DBG_PCDV|DBG_CILV), "fifo=%p buff=%p *p=%08x bc=%d\n", ++ fifo, data_buff, *data_buff, byte_count); ++ ++ ++ if (!_dma) { ++ for (i=0; i<dword_count; i++, data_buff++) { ++ dwc_write_reg32( fifo, *data_buff ); ++ } ++ } ++ ++ _ep->xfer_count += byte_count; ++ _ep->xfer_buff += byte_count; ++#if 1 // winder, why do we need this?? ++ _ep->dma_addr += byte_count; ++#endif ++} ++ ++/** ++ * Set the EP STALL. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _ep The EP to set the stall on. ++ */ ++void dwc_otg_ep_set_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep) ++{ ++ depctl_data_t depctl; ++ volatile uint32_t *depctl_addr; ++ ++ DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, _ep->num, ++ (_ep->is_in?"IN":"OUT")); ++ ++ if (_ep->is_in == 1) { ++ depctl_addr = &(_core_if->dev_if->in_ep_regs[_ep->num]->diepctl); ++ depctl.d32 = dwc_read_reg32(depctl_addr); ++ ++ /* set the disable and stall bits */ ++ if (depctl.b.epena) { ++ depctl.b.epdis = 1; ++ } ++ depctl.b.stall = 1; ++ dwc_write_reg32(depctl_addr, depctl.d32); ++ ++ } else { ++ depctl_addr = &(_core_if->dev_if->out_ep_regs[_ep->num]->doepctl); ++ depctl.d32 = dwc_read_reg32(depctl_addr); ++ ++ /* set the stall bit */ ++ depctl.b.stall = 1; ++ dwc_write_reg32(depctl_addr, depctl.d32); ++ } ++ DWC_DEBUGPL(DBG_PCD,"DEPCTL=%0x\n",dwc_read_reg32(depctl_addr)); ++ return; ++} ++ ++/** ++ * Clear the EP STALL. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _ep The EP to clear stall from. ++ */ ++void dwc_otg_ep_clear_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep) ++{ ++ depctl_data_t depctl; ++ volatile uint32_t *depctl_addr; ++ ++ DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, _ep->num, ++ (_ep->is_in?"IN":"OUT")); ++ ++ if (_ep->is_in == 1) { ++ depctl_addr = &(_core_if->dev_if->in_ep_regs[_ep->num]->diepctl); ++ } else { ++ depctl_addr = &(_core_if->dev_if->out_ep_regs[_ep->num]->doepctl); ++ } ++ ++ depctl.d32 = dwc_read_reg32(depctl_addr); ++ ++ /* clear the stall bits */ ++ depctl.b.stall = 0; ++ ++ /* ++ * USB Spec 9.4.5: For endpoints using data toggle, regardless ++ * of whether an endpoint has the Halt feature set, a ++ * ClearFeature(ENDPOINT_HALT) request always results in the ++ * data toggle being reinitialized to DATA0. ++ */ ++ if (_ep->type == DWC_OTG_EP_TYPE_INTR || ++ _ep->type == DWC_OTG_EP_TYPE_BULK) { ++ depctl.b.setd0pid = 1; /* DATA0 */ ++ } ++ ++ dwc_write_reg32(depctl_addr, depctl.d32); ++ DWC_DEBUGPL(DBG_PCD,"DEPCTL=%0x\n",dwc_read_reg32(depctl_addr)); ++ return; ++} ++ ++/** ++ * This function reads a packet from the Rx FIFO into the destination ++ * buffer. To read SETUP data use dwc_otg_read_setup_packet. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _dest Destination buffer for the packet. ++ * @param _bytes Number of bytes to copy to the destination. ++ */ ++void dwc_otg_read_packet(dwc_otg_core_if_t *_core_if, ++ uint8_t *_dest, ++ uint16_t _bytes) ++{ ++ int i; ++ int word_count = (_bytes + 3) / 4; ++ ++ volatile uint32_t *fifo = _core_if->data_fifo[0]; ++ uint32_t *data_buff = (uint32_t *)_dest; ++ ++ /** ++ * @todo Account for the case where _dest is not dword aligned. This ++ * requires reading data from the FIFO into a uint32_t temp buffer, ++ * then moving it into the data buffer. ++ */ ++ ++ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p,%d)\n", __func__, ++ _core_if, _dest, _bytes); ++ ++ for (i=0; i<word_count; i++, data_buff++) { ++ *data_buff = dwc_read_reg32(fifo); ++ } ++ ++ return; ++} ++ ++ ++#ifdef DEBUG ++/** ++ * This functions reads the device registers and prints them ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ */ ++void dwc_otg_dump_dev_registers(dwc_otg_core_if_t *_core_if) ++{ ++ int i; ++ volatile uint32_t *addr; ++ ++ DWC_PRINT("Device Global Registers\n"); ++ addr=&_core_if->dev_if->dev_global_regs->dcfg; ++ DWC_PRINT("DCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->dev_if->dev_global_regs->dctl; ++ DWC_PRINT("DCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->dev_if->dev_global_regs->dsts; ++ DWC_PRINT("DSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->dev_if->dev_global_regs->diepmsk; ++ DWC_PRINT("DIEPMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->dev_if->dev_global_regs->doepmsk; ++ DWC_PRINT("DOEPMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->dev_if->dev_global_regs->daint; ++ DWC_PRINT("DAINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->dev_if->dev_global_regs->dtknqr1; ++ DWC_PRINT("DTKNQR1 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ if (_core_if->hwcfg2.b.dev_token_q_depth > 6) { ++ addr=&_core_if->dev_if->dev_global_regs->dtknqr2; ++ DWC_PRINT("DTKNQR2 @0x%08X : 0x%08X\n", ++ (uint32_t)addr,dwc_read_reg32(addr)); ++ } ++ ++ addr=&_core_if->dev_if->dev_global_regs->dvbusdis; ++ DWC_PRINT("DVBUSID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ ++ addr=&_core_if->dev_if->dev_global_regs->dvbuspulse; ++ DWC_PRINT("DVBUSPULSE @0x%08X : 0x%08X\n", ++ (uint32_t)addr,dwc_read_reg32(addr)); ++ ++ if (_core_if->hwcfg2.b.dev_token_q_depth > 14) { ++ addr = &_core_if->dev_if->dev_global_regs->dtknqr3_dthrctl; ++ DWC_PRINT("DTKNQR3 @0x%08X : 0x%08X\n", ++ (uint32_t)addr, dwc_read_reg32(addr)); ++ } ++ ++ if (_core_if->hwcfg2.b.dev_token_q_depth > 22) { ++ addr = &_core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk; ++ DWC_PRINT("DTKNQR4 @0x%08X : 0x%08X\n", (uint32_t) addr, ++ dwc_read_reg32(addr)); ++ } ++ for (i = 0; i <= _core_if->dev_if->num_in_eps; i++) { ++ DWC_PRINT("Device IN EP %d Registers\n", i); ++ addr=&_core_if->dev_if->in_ep_regs[i]->diepctl; ++ DWC_PRINT("DIEPCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->dev_if->in_ep_regs[i]->diepint; ++ DWC_PRINT("DIEPINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->dev_if->in_ep_regs[i]->dieptsiz; ++ DWC_PRINT("DIETSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->dev_if->in_ep_regs[i]->diepdma; ++ DWC_PRINT("DIEPDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ ++addr = &_core_if->dev_if->in_ep_regs[i]->dtxfsts; ++ DWC_PRINT("DTXFSTS @0x%08X : 0x%08X\n", (uint32_t) addr, ++ dwc_read_reg32(addr)); ++ } ++ for (i = 0; i <= _core_if->dev_if->num_out_eps; i++) { ++ DWC_PRINT("Device OUT EP %d Registers\n", i); ++ addr=&_core_if->dev_if->out_ep_regs[i]->doepctl; ++ DWC_PRINT("DOEPCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->dev_if->out_ep_regs[i]->doepfn; ++ DWC_PRINT("DOEPFN @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->dev_if->out_ep_regs[i]->doepint; ++ DWC_PRINT("DOEPINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->dev_if->out_ep_regs[i]->doeptsiz; ++ DWC_PRINT("DOETSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->dev_if->out_ep_regs[i]->doepdma; ++ DWC_PRINT("DOEPDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ } ++ return; ++} ++ ++/** ++ * This function reads the host registers and prints them ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ */ ++void dwc_otg_dump_host_registers(dwc_otg_core_if_t *_core_if) ++{ ++ int i; ++ volatile uint32_t *addr; ++ ++ DWC_PRINT("Host Global Registers\n"); ++ addr=&_core_if->host_if->host_global_regs->hcfg; ++ DWC_PRINT("HCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->host_if->host_global_regs->hfir; ++ DWC_PRINT("HFIR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->host_if->host_global_regs->hfnum; ++ DWC_PRINT("HFNUM @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->host_if->host_global_regs->hptxsts; ++ DWC_PRINT("HPTXSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->host_if->host_global_regs->haint; ++ DWC_PRINT("HAINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->host_if->host_global_regs->haintmsk; ++ DWC_PRINT("HAINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=_core_if->host_if->hprt0; ++ DWC_PRINT("HPRT0 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ ++ for (i=0; i<_core_if->core_params->host_channels; i++) { ++ DWC_PRINT("Host Channel %d Specific Registers\n", i); ++ addr=&_core_if->host_if->hc_regs[i]->hcchar; ++ DWC_PRINT("HCCHAR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->host_if->hc_regs[i]->hcsplt; ++ DWC_PRINT("HCSPLT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->host_if->hc_regs[i]->hcint; ++ DWC_PRINT("HCINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->host_if->hc_regs[i]->hcintmsk; ++ DWC_PRINT("HCINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->host_if->hc_regs[i]->hctsiz; ++ DWC_PRINT("HCTSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->host_if->hc_regs[i]->hcdma; ++ DWC_PRINT("HCDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ ++ } ++ return; ++} ++ ++/** ++ * This function reads the core global registers and prints them ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ */ ++void dwc_otg_dump_global_registers(dwc_otg_core_if_t *_core_if) ++{ ++ int i; ++ volatile uint32_t *addr; ++ ++ DWC_PRINT("Core Global Registers\n"); ++ addr=&_core_if->core_global_regs->gotgctl; ++ DWC_PRINT("GOTGCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->gotgint; ++ DWC_PRINT("GOTGINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->gahbcfg; ++ DWC_PRINT("GAHBCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->gusbcfg; ++ DWC_PRINT("GUSBCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->grstctl; ++ DWC_PRINT("GRSTCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->gintsts; ++ DWC_PRINT("GINTSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->gintmsk; ++ DWC_PRINT("GINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->grxstsr; ++ DWC_PRINT("GRXSTSR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ //addr=&_core_if->core_global_regs->grxstsp; ++ //DWC_PRINT("GRXSTSP @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->grxfsiz; ++ DWC_PRINT("GRXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->gnptxfsiz; ++ DWC_PRINT("GNPTXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->gnptxsts; ++ DWC_PRINT("GNPTXSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->gi2cctl; ++ DWC_PRINT("GI2CCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->gpvndctl; ++ DWC_PRINT("GPVNDCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->ggpio; ++ DWC_PRINT("GGPIO @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->guid; ++ DWC_PRINT("GUID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->gsnpsid; ++ DWC_PRINT("GSNPSID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->ghwcfg1; ++ DWC_PRINT("GHWCFG1 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->ghwcfg2; ++ DWC_PRINT("GHWCFG2 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->ghwcfg3; ++ DWC_PRINT("GHWCFG3 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->ghwcfg4; ++ DWC_PRINT("GHWCFG4 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->hptxfsiz; ++ DWC_PRINT("HPTXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ ++ for (i=0; i<_core_if->hwcfg4.b.num_dev_perio_in_ep; i++) { ++ addr=&_core_if->core_global_regs->dptxfsiz_dieptxf[i]; ++ DWC_PRINT("DPTXFSIZ[%d] @0x%08X : 0x%08X\n",i,(uint32_t)addr,dwc_read_reg32(addr)); ++ } ++ ++} ++#endif ++ ++/** ++ * Flush a Tx FIFO. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _num Tx FIFO to flush. ++ */ ++extern void dwc_otg_flush_tx_fifo( dwc_otg_core_if_t *_core_if, ++ const int _num ) ++{ ++ dwc_otg_core_global_regs_t *global_regs = _core_if->core_global_regs; ++ volatile grstctl_t greset = { .d32 = 0}; ++ int count = 0; ++ ++ DWC_DEBUGPL((DBG_CIL|DBG_PCDV), "Flush Tx FIFO %d\n", _num); ++ ++ greset.b.txfflsh = 1; ++ greset.b.txfnum = _num; ++ dwc_write_reg32( &global_regs->grstctl, greset.d32 ); ++ ++ do { ++ greset.d32 = dwc_read_reg32( &global_regs->grstctl); ++ if (++count > 10000){ ++ DWC_WARN("%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n", ++ __func__, greset.d32, ++ dwc_read_reg32( &global_regs->gnptxsts)); ++ break; ++ } ++ ++ udelay(1); ++ } while (greset.b.txfflsh == 1); ++ /* Wait for 3 PHY Clocks*/ ++ UDELAY(1); ++} ++ ++/** ++ * Flush Rx FIFO. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ */ ++extern void dwc_otg_flush_rx_fifo( dwc_otg_core_if_t *_core_if ) ++{ ++ dwc_otg_core_global_regs_t *global_regs = _core_if->core_global_regs; ++ volatile grstctl_t greset = { .d32 = 0}; ++ int count = 0; ++ ++ DWC_DEBUGPL((DBG_CIL|DBG_PCDV), "%s\n", __func__); ++ /* ++ * ++ */ ++ greset.b.rxfflsh = 1; ++ dwc_write_reg32( &global_regs->grstctl, greset.d32 ); ++ ++ do { ++ greset.d32 = dwc_read_reg32( &global_regs->grstctl); ++ if (++count > 10000){ ++ DWC_WARN("%s() HANG! GRSTCTL=%0x\n", __func__, ++ greset.d32); ++ break; ++ } ++ } while (greset.b.rxfflsh == 1); ++ /* Wait for 3 PHY Clocks*/ ++ UDELAY(1); ++} ++ ++/** ++ * Do core a soft reset of the core. Be careful with this because it ++ * resets all the internal state machines of the core. ++ */ ++ ++void dwc_otg_core_reset(dwc_otg_core_if_t *_core_if) ++{ ++ dwc_otg_core_global_regs_t *global_regs = _core_if->core_global_regs; ++ volatile grstctl_t greset = { .d32 = 0}; ++ int count = 0; ++ ++ DWC_DEBUGPL(DBG_CILV, "%s\n", __func__); ++ /* Wait for AHB master IDLE state. */ ++ do { ++ UDELAY(10); ++ greset.d32 = dwc_read_reg32( &global_regs->grstctl); ++ if (++count > 100000){ ++ DWC_WARN("%s() HANG! AHB Idle GRSTCTL=%0x %x\n", __func__, ++ greset.d32, greset.b.ahbidle); ++ return; ++ } ++ } while (greset.b.ahbidle == 0); ++ ++// winder add. ++#if 1 ++ /* Note: Actually, I don't exactly why we need to put delay here. */ ++ MDELAY(100); ++#endif ++ /* Core Soft Reset */ ++ count = 0; ++ greset.b.csftrst = 1; ++ dwc_write_reg32( &global_regs->grstctl, greset.d32 ); ++// winder add. ++#if 1 ++ /* Note: Actually, I don't exactly why we need to put delay here. */ ++ MDELAY(100); ++#endif ++ do { ++ greset.d32 = dwc_read_reg32( &global_regs->grstctl); ++ if (++count > 10000){ ++ DWC_WARN("%s() HANG! Soft Reset GRSTCTL=%0x\n", __func__, ++ greset.d32); ++ break; ++ } ++ udelay(1); ++ } while (greset.b.csftrst == 1); ++ /* Wait for 3 PHY Clocks*/ ++ //DWC_PRINT("100ms\n"); ++ MDELAY(100); ++} ++ ++ ++ ++/** ++ * Register HCD callbacks. The callbacks are used to start and stop ++ * the HCD for interrupt processing. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _cb the HCD callback structure. ++ * @param _p pointer to be passed to callback function (usb_hcd*). ++ */ ++extern void dwc_otg_cil_register_hcd_callbacks( dwc_otg_core_if_t *_core_if, ++ dwc_otg_cil_callbacks_t *_cb, ++ void *_p) ++{ ++ _core_if->hcd_cb = _cb; ++ _cb->p = _p; ++} ++ ++/** ++ * Register PCD callbacks. The callbacks are used to start and stop ++ * the PCD for interrupt processing. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _cb the PCD callback structure. ++ * @param _p pointer to be passed to callback function (pcd*). ++ */ ++extern void dwc_otg_cil_register_pcd_callbacks( dwc_otg_core_if_t *_core_if, ++ dwc_otg_cil_callbacks_t *_cb, ++ void *_p) ++{ ++ _core_if->pcd_cb = _cb; ++ _cb->p = _p; ++} ++ +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_cil.h +@@ -0,0 +1,911 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_cil.h $ ++ * $Revision: 1.1.1.1 $ ++ * $Date: 2009-04-17 06:15:34 $ ++ * $Change: 631780 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++#if !defined(__DWC_CIL_H__) ++#define __DWC_CIL_H__ ++ ++#include "dwc_otg_plat.h" ++ ++#include "dwc_otg_regs.h" ++#ifdef DEBUG ++#include "linux/timer.h" ++#endif ++ ++/* the OTG capabilities. */ ++#define DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE 0 ++#define DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE 1 ++#define DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE 2 ++/* the maximum speed of operation in host and device mode. */ ++#define DWC_SPEED_PARAM_HIGH 0 ++#define DWC_SPEED_PARAM_FULL 1 ++/* the PHY clock rate in low power mode when connected to a ++ * Low Speed device in host mode. */ ++#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0 ++#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1 ++/* the type of PHY interface to use. */ ++#define DWC_PHY_TYPE_PARAM_FS 0 ++#define DWC_PHY_TYPE_PARAM_UTMI 1 ++#define DWC_PHY_TYPE_PARAM_ULPI 2 ++/* whether to use the internal or external supply to ++ * drive the vbus with a ULPI phy. */ ++#define DWC_PHY_ULPI_INTERNAL_VBUS 0 ++#define DWC_PHY_ULPI_EXTERNAL_VBUS 1 ++/* EP type. */ ++ ++/** ++ * @file ++ * This file contains the interface to the Core Interface Layer. ++ */ ++ ++/** ++ * The <code>dwc_ep</code> structure represents the state of a single ++ * endpoint when acting in device mode. It contains the data items ++ * needed for an endpoint to be activated and transfer packets. ++ */ ++typedef struct dwc_ep { ++ /** EP number used for register address lookup */ ++ uint8_t num; ++ /** EP direction 0 = OUT */ ++ unsigned is_in : 1; ++ /** EP active. */ ++ unsigned active : 1; ++ ++ /** Periodic Tx FIFO # for IN EPs For INTR EP set to 0 to use non-periodic Tx FIFO ++ If dedicated Tx FIFOs are enabled for all IN Eps - Tx FIFO # FOR IN EPs*/ ++ unsigned tx_fifo_num : 4; ++ /** EP type: 0 - Control, 1 - ISOC, 2 - BULK, 3 - INTR */ ++ unsigned type : 2; ++#define DWC_OTG_EP_TYPE_CONTROL 0 ++#define DWC_OTG_EP_TYPE_ISOC 1 ++#define DWC_OTG_EP_TYPE_BULK 2 ++#define DWC_OTG_EP_TYPE_INTR 3 ++ ++ /** DATA start PID for INTR and BULK EP */ ++ unsigned data_pid_start : 1; ++ /** Frame (even/odd) for ISOC EP */ ++ unsigned even_odd_frame : 1; ++ /** Max Packet bytes */ ++ unsigned maxpacket : 11; ++ ++ /** @name Transfer state */ ++ /** @{ */ ++ ++ /** ++ * Pointer to the beginning of the transfer buffer -- do not modify ++ * during transfer. ++ */ ++ ++ uint32_t dma_addr; ++ ++ uint8_t *start_xfer_buff; ++ /** pointer to the transfer buffer */ ++ uint8_t *xfer_buff; ++ /** Number of bytes to transfer */ ++ unsigned xfer_len : 19; ++ /** Number of bytes transferred. */ ++ unsigned xfer_count : 19; ++ /** Sent ZLP */ ++ unsigned sent_zlp : 1; ++ /** Total len for control transfer */ ++ unsigned total_len : 19; ++ ++ /** stall clear flag */ ++ unsigned stall_clear_flag : 1; ++ ++ /** @} */ ++} dwc_ep_t; ++ ++/* ++ * Reasons for halting a host channel. ++ */ ++typedef enum dwc_otg_halt_status { ++ DWC_OTG_HC_XFER_NO_HALT_STATUS, ++ DWC_OTG_HC_XFER_COMPLETE, ++ DWC_OTG_HC_XFER_URB_COMPLETE, ++ DWC_OTG_HC_XFER_ACK, ++ DWC_OTG_HC_XFER_NAK, ++ DWC_OTG_HC_XFER_NYET, ++ DWC_OTG_HC_XFER_STALL, ++ DWC_OTG_HC_XFER_XACT_ERR, ++ DWC_OTG_HC_XFER_FRAME_OVERRUN, ++ DWC_OTG_HC_XFER_BABBLE_ERR, ++ DWC_OTG_HC_XFER_DATA_TOGGLE_ERR, ++ DWC_OTG_HC_XFER_AHB_ERR, ++ DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE, ++ DWC_OTG_HC_XFER_URB_DEQUEUE ++} dwc_otg_halt_status_e; ++ ++/** ++ * Host channel descriptor. This structure represents the state of a single ++ * host channel when acting in host mode. It contains the data items needed to ++ * transfer packets to an endpoint via a host channel. ++ */ ++typedef struct dwc_hc { ++ /** Host channel number used for register address lookup */ ++ uint8_t hc_num; ++ ++ /** Device to access */ ++ unsigned dev_addr : 7; ++ ++ /** EP to access */ ++ unsigned ep_num : 4; ++ ++ /** EP direction. 0: OUT, 1: IN */ ++ unsigned ep_is_in : 1; ++ ++ /** ++ * EP speed. ++ * One of the following values: ++ * - DWC_OTG_EP_SPEED_LOW ++ * - DWC_OTG_EP_SPEED_FULL ++ * - DWC_OTG_EP_SPEED_HIGH ++ */ ++ unsigned speed : 2; ++#define DWC_OTG_EP_SPEED_LOW 0 ++#define DWC_OTG_EP_SPEED_FULL 1 ++#define DWC_OTG_EP_SPEED_HIGH 2 ++ ++ /** ++ * Endpoint type. ++ * One of the following values: ++ * - DWC_OTG_EP_TYPE_CONTROL: 0 ++ * - DWC_OTG_EP_TYPE_ISOC: 1 ++ * - DWC_OTG_EP_TYPE_BULK: 2 ++ * - DWC_OTG_EP_TYPE_INTR: 3 ++ */ ++ unsigned ep_type : 2; ++ ++ /** Max packet size in bytes */ ++ unsigned max_packet : 11; ++ ++ /** ++ * PID for initial transaction. ++ * 0: DATA0,<br> ++ * 1: DATA2,<br> ++ * 2: DATA1,<br> ++ * 3: MDATA (non-Control EP), ++ * SETUP (Control EP) ++ */ ++ unsigned data_pid_start : 2; ++#define DWC_OTG_HC_PID_DATA0 0 ++#define DWC_OTG_HC_PID_DATA2 1 ++#define DWC_OTG_HC_PID_DATA1 2 ++#define DWC_OTG_HC_PID_MDATA 3 ++#define DWC_OTG_HC_PID_SETUP 3 ++ ++ /** Number of periodic transactions per (micro)frame */ ++ unsigned multi_count: 2; ++ ++ /** @name Transfer State */ ++ /** @{ */ ++ ++ /** Pointer to the current transfer buffer position. */ ++ uint8_t *xfer_buff; ++ /** Total number of bytes to transfer. */ ++ uint32_t xfer_len; ++ /** Number of bytes transferred so far. */ ++ uint32_t xfer_count; ++ /** Packet count at start of transfer.*/ ++ uint16_t start_pkt_count; ++ ++ /** ++ * Flag to indicate whether the transfer has been started. Set to 1 if ++ * it has been started, 0 otherwise. ++ */ ++ uint8_t xfer_started; ++ ++ /** ++ * Set to 1 to indicate that a PING request should be issued on this ++ * channel. If 0, process normally. ++ */ ++ uint8_t do_ping; ++ ++ /** ++ * Set to 1 to indicate that the error count for this transaction is ++ * non-zero. Set to 0 if the error count is 0. ++ */ ++ uint8_t error_state; ++ ++ /** ++ * Set to 1 to indicate that this channel should be halted the next ++ * time a request is queued for the channel. This is necessary in ++ * slave mode if no request queue space is available when an attempt ++ * is made to halt the channel. ++ */ ++ uint8_t halt_on_queue; ++ ++ /** ++ * Set to 1 if the host channel has been halted, but the core is not ++ * finished flushing queued requests. Otherwise 0. ++ */ ++ uint8_t halt_pending; ++ ++ /** ++ * Reason for halting the host channel. ++ */ ++ dwc_otg_halt_status_e halt_status; ++ ++ /* ++ * Split settings for the host channel ++ */ ++ uint8_t do_split; /**< Enable split for the channel */ ++ uint8_t complete_split; /**< Enable complete split */ ++ uint8_t hub_addr; /**< Address of high speed hub */ ++ ++ uint8_t port_addr; /**< Port of the low/full speed device */ ++ /** Split transaction position ++ * One of the following values: ++ * - DWC_HCSPLIT_XACTPOS_MID ++ * - DWC_HCSPLIT_XACTPOS_BEGIN ++ * - DWC_HCSPLIT_XACTPOS_END ++ * - DWC_HCSPLIT_XACTPOS_ALL */ ++ uint8_t xact_pos; ++ ++ /** Set when the host channel does a short read. */ ++ uint8_t short_read; ++ ++ /** ++ * Number of requests issued for this channel since it was assigned to ++ * the current transfer (not counting PINGs). ++ */ ++ uint8_t requests; ++ ++ /** ++ * Queue Head for the transfer being processed by this channel. ++ */ ++ struct dwc_otg_qh *qh; ++ ++ /** @} */ ++ ++ /** Entry in list of host channels. */ ++ struct list_head hc_list_entry; ++} dwc_hc_t; ++ ++/** ++ * The following parameters may be specified when starting the module. These ++ * parameters define how the DWC_otg controller should be configured. ++ * Parameter values are passed to the CIL initialization function ++ * dwc_otg_cil_init. ++ */ ++ ++typedef struct dwc_otg_core_params ++{ ++ int32_t opt; ++//#define dwc_param_opt_default 1 ++ /** ++ * Specifies the OTG capabilities. The driver will automatically ++ * detect the value for this parameter if none is specified. ++ * 0 - HNP and SRP capable (default) ++ * 1 - SRP Only capable ++ * 2 - No HNP/SRP capable ++ */ ++ int32_t otg_cap; ++#define DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE 0 ++#define DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE 1 ++#define DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE 2 ++//#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE ++ /** ++ * Specifies whether to use slave or DMA mode for accessing the data ++ * FIFOs. The driver will automatically detect the value for this ++ * parameter if none is specified. ++ * 0 - Slave ++ * 1 - DMA (default, if available) ++ */ ++ int32_t dma_enable; ++//#define dwc_param_dma_enable_default 1 ++ /** The DMA Burst size (applicable only for External DMA ++ * Mode). 1, 4, 8 16, 32, 64, 128, 256 (default 32) ++ */ ++ int32_t dma_burst_size; /* Translate this to GAHBCFG values */ ++//#define dwc_param_dma_burst_size_default 32 ++ /** ++ * Specifies the maximum speed of operation in host and device mode. ++ * The actual speed depends on the speed of the attached device and ++ * the value of phy_type. The actual speed depends on the speed of the ++ * attached device. ++ * 0 - High Speed (default) ++ * 1 - Full Speed ++ */ ++ int32_t speed; ++//#define dwc_param_speed_default 0 ++#define DWC_SPEED_PARAM_HIGH 0 ++#define DWC_SPEED_PARAM_FULL 1 ++ ++ /** Specifies whether low power mode is supported when attached ++ * to a Full Speed or Low Speed device in host mode. ++ * 0 - Don't support low power mode (default) ++ * 1 - Support low power mode ++ */ ++ int32_t host_support_fs_ls_low_power; ++//#define dwc_param_host_support_fs_ls_low_power_default 0 ++ /** Specifies the PHY clock rate in low power mode when connected to a ++ * Low Speed device in host mode. This parameter is applicable only if ++ * HOST_SUPPORT_FS_LS_LOW_POWER is enabled. If PHY_TYPE is set to FS ++ * then defaults to 6 MHZ otherwise 48 MHZ. ++ * ++ * 0 - 48 MHz ++ * 1 - 6 MHz ++ */ ++ int32_t host_ls_low_power_phy_clk; ++//#define dwc_param_host_ls_low_power_phy_clk_default 0 ++#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0 ++#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1 ++ /** ++ * 0 - Use cC FIFO size parameters ++ * 1 - Allow dynamic FIFO sizing (default) ++ */ ++ int32_t enable_dynamic_fifo; ++//#define dwc_param_enable_dynamic_fifo_default 1 ++ /** Total number of 4-byte words in the data FIFO memory. This ++ * memory includes the Rx FIFO, non-periodic Tx FIFO, and periodic ++ * Tx FIFOs. ++ * 32 to 32768 (default 8192) ++ * Note: The total FIFO memory depth in the FPGA configuration is 8192. ++ */ ++ int32_t data_fifo_size; ++//#define dwc_param_data_fifo_size_default 8192 ++ /** Number of 4-byte words in the Rx FIFO in device mode when dynamic ++ * FIFO sizing is enabled. ++ * 16 to 32768 (default 1064) ++ */ ++ int32_t dev_rx_fifo_size; ++//#define dwc_param_dev_rx_fifo_size_default 1064 ++ /** Number of 4-byte words in the non-periodic Tx FIFO in device mode ++ * when dynamic FIFO sizing is enabled. ++ * 16 to 32768 (default 1024) ++ */ ++ int32_t dev_nperio_tx_fifo_size; ++//#define dwc_param_dev_nperio_tx_fifo_size_default 1024 ++ /** Number of 4-byte words in each of the periodic Tx FIFOs in device ++ * mode when dynamic FIFO sizing is enabled. ++ * 4 to 768 (default 256) ++ */ ++ uint32_t dev_perio_tx_fifo_size[MAX_PERIO_FIFOS]; ++//#define dwc_param_dev_perio_tx_fifo_size_default 256 ++ /** Number of 4-byte words in the Rx FIFO in host mode when dynamic ++ * FIFO sizing is enabled. ++ * 16 to 32768 (default 1024) ++ */ ++ int32_t host_rx_fifo_size; ++//#define dwc_param_host_rx_fifo_size_default 1024 ++ /** Number of 4-byte words in the non-periodic Tx FIFO in host mode ++ * when Dynamic FIFO sizing is enabled in the core. ++ * 16 to 32768 (default 1024) ++ */ ++ int32_t host_nperio_tx_fifo_size; ++//#define dwc_param_host_nperio_tx_fifo_size_default 1024 ++ /** Number of 4-byte words in the host periodic Tx FIFO when dynamic ++ * FIFO sizing is enabled. ++ * 16 to 32768 (default 1024) ++ */ ++ int32_t host_perio_tx_fifo_size; ++//#define dwc_param_host_perio_tx_fifo_size_default 1024 ++ /** The maximum transfer size supported in bytes. ++ * 2047 to 65,535 (default 65,535) ++ */ ++ int32_t max_transfer_size; ++//#define dwc_param_max_transfer_size_default 65535 ++ /** The maximum number of packets in a transfer. ++ * 15 to 511 (default 511) ++ */ ++ int32_t max_packet_count; ++//#define dwc_param_max_packet_count_default 511 ++ /** The number of host channel registers to use. ++ * 1 to 16 (default 12) ++ * Note: The FPGA configuration supports a maximum of 12 host channels. ++ */ ++ int32_t host_channels; ++//#define dwc_param_host_channels_default 12 ++ /** The number of endpoints in addition to EP0 available for device ++ * mode operations. ++ * 1 to 15 (default 6 IN and OUT) ++ * Note: The FPGA configuration supports a maximum of 6 IN and OUT ++ * endpoints in addition to EP0. ++ */ ++ int32_t dev_endpoints; ++//#define dwc_param_dev_endpoints_default 6 ++ /** ++ * Specifies the type of PHY interface to use. By default, the driver ++ * will automatically detect the phy_type. ++ * ++ * 0 - Full Speed PHY ++ * 1 - UTMI+ (default) ++ * 2 - ULPI ++ */ ++ int32_t phy_type; ++#define DWC_PHY_TYPE_PARAM_FS 0 ++#define DWC_PHY_TYPE_PARAM_UTMI 1 ++#define DWC_PHY_TYPE_PARAM_ULPI 2 ++//#define dwc_param_phy_type_default DWC_PHY_TYPE_PARAM_UTMI ++ /** ++ * Specifies the UTMI+ Data Width. This parameter is ++ * applicable for a PHY_TYPE of UTMI+ or ULPI. (For a ULPI ++ * PHY_TYPE, this parameter indicates the data width between ++ * the MAC and the ULPI Wrapper.) Also, this parameter is ++ * applicable only if the OTG_HSPHY_WIDTH cC parameter was set ++ * to "8 and 16 bits", meaning that the core has been ++ * configured to work at either data path width. ++ * ++ * 8 or 16 bits (default 16) ++ */ ++ int32_t phy_utmi_width; ++//#define dwc_param_phy_utmi_width_default 16 ++ /** ++ * Specifies whether the ULPI operates at double or single ++ * data rate. This parameter is only applicable if PHY_TYPE is ++ * ULPI. ++ * ++ * 0 - single data rate ULPI interface with 8 bit wide data ++ * bus (default) ++ * 1 - double data rate ULPI interface with 4 bit wide data ++ * bus ++ */ ++ int32_t phy_ulpi_ddr; ++//#define dwc_param_phy_ulpi_ddr_default 0 ++ /** ++ * Specifies whether to use the internal or external supply to ++ * drive the vbus with a ULPI phy. ++ */ ++ int32_t phy_ulpi_ext_vbus; ++#define DWC_PHY_ULPI_INTERNAL_VBUS 0 ++#define DWC_PHY_ULPI_EXTERNAL_VBUS 1 ++//#define dwc_param_phy_ulpi_ext_vbus_default DWC_PHY_ULPI_INTERNAL_VBUS ++ /** ++ * Specifies whether to use the I2Cinterface for full speed PHY. This ++ * parameter is only applicable if PHY_TYPE is FS. ++ * 0 - No (default) ++ * 1 - Yes ++ */ ++ int32_t i2c_enable; ++//#define dwc_param_i2c_enable_default 0 ++ ++ int32_t ulpi_fs_ls; ++//#define dwc_param_ulpi_fs_ls_default 0 ++ ++ int32_t ts_dline; ++//#define dwc_param_ts_dline_default 0 ++ ++ /** ++ * Specifies whether dedicated transmit FIFOs are ++ * enabled for non periodic IN endpoints in device mode ++ * 0 - No ++ * 1 - Yes ++ */ ++ int32_t en_multiple_tx_fifo; ++#define dwc_param_en_multiple_tx_fifo_default 1 ++ ++ /** Number of 4-byte words in each of the Tx FIFOs in device ++ * mode when dynamic FIFO sizing is enabled. ++ * 4 to 768 (default 256) ++ */ ++ uint32_t dev_tx_fifo_size[MAX_TX_FIFOS]; ++#define dwc_param_dev_tx_fifo_size_default 256 ++ ++ /** Thresholding enable flag- ++ * bit 0 - enable non-ISO Tx thresholding ++ * bit 1 - enable ISO Tx thresholding ++ * bit 2 - enable Rx thresholding ++ */ ++ uint32_t thr_ctl; ++#define dwc_param_thr_ctl_default 0 ++ ++ /** Thresholding length for Tx ++ * FIFOs in 32 bit DWORDs ++ */ ++ uint32_t tx_thr_length; ++#define dwc_param_tx_thr_length_default 64 ++ ++ /** Thresholding length for Rx ++ * FIFOs in 32 bit DWORDs ++ */ ++ uint32_t rx_thr_length; ++#define dwc_param_rx_thr_length_default 64 ++} dwc_otg_core_params_t; ++ ++#ifdef DEBUG ++struct dwc_otg_core_if; ++typedef struct hc_xfer_info ++{ ++ struct dwc_otg_core_if *core_if; ++ dwc_hc_t *hc; ++} hc_xfer_info_t; ++#endif ++ ++/** ++ * The <code>dwc_otg_core_if</code> structure contains information needed to manage ++ * the DWC_otg controller acting in either host or device mode. It ++ * represents the programming view of the controller as a whole. ++ */ ++typedef struct dwc_otg_core_if ++{ ++ /** Parameters that define how the core should be configured.*/ ++ dwc_otg_core_params_t *core_params; ++ ++ /** Core Global registers starting at offset 000h. */ ++ dwc_otg_core_global_regs_t *core_global_regs; ++ ++ /** Device-specific information */ ++ dwc_otg_dev_if_t *dev_if; ++ /** Host-specific information */ ++ dwc_otg_host_if_t *host_if; ++ ++ /* ++ * Set to 1 if the core PHY interface bits in USBCFG have been ++ * initialized. ++ */ ++ uint8_t phy_init_done; ++ ++ /* ++ * SRP Success flag, set by srp success interrupt in FS I2C mode ++ */ ++ uint8_t srp_success; ++ uint8_t srp_timer_started; ++ ++ /* Common configuration information */ ++ /** Power and Clock Gating Control Register */ ++ volatile uint32_t *pcgcctl; ++#define DWC_OTG_PCGCCTL_OFFSET 0xE00 ++ ++ /** Push/pop addresses for endpoints or host channels.*/ ++ uint32_t *data_fifo[MAX_EPS_CHANNELS]; ++#define DWC_OTG_DATA_FIFO_OFFSET 0x1000 ++#define DWC_OTG_DATA_FIFO_SIZE 0x1000 ++ ++ /** Total RAM for FIFOs (Bytes) */ ++ uint16_t total_fifo_size; ++ /** Size of Rx FIFO (Bytes) */ ++ uint16_t rx_fifo_size; ++ /** Size of Non-periodic Tx FIFO (Bytes) */ ++ uint16_t nperio_tx_fifo_size; ++ ++ /** 1 if DMA is enabled, 0 otherwise. */ ++ uint8_t dma_enable; ++ ++ /** 1 if dedicated Tx FIFOs are enabled, 0 otherwise. */ ++ uint8_t en_multiple_tx_fifo; ++ ++ /** Set to 1 if multiple packets of a high-bandwidth transfer is in ++ * process of being queued */ ++ uint8_t queuing_high_bandwidth; ++ ++ /** Hardware Configuration -- stored here for convenience.*/ ++ hwcfg1_data_t hwcfg1; ++ hwcfg2_data_t hwcfg2; ++ hwcfg3_data_t hwcfg3; ++ hwcfg4_data_t hwcfg4; ++ ++ /** The operational State, during transations ++ * (a_host>>a_peripherial and b_device=>b_host) this may not ++ * match the core but allows the software to determine ++ * transitions. ++ */ ++ uint8_t op_state; ++ ++ /** ++ * Set to 1 if the HCD needs to be restarted on a session request ++ * interrupt. This is required if no connector ID status change has ++ * occurred since the HCD was last disconnected. ++ */ ++ uint8_t restart_hcd_on_session_req; ++ ++ /** HCD callbacks */ ++ /** A-Device is a_host */ ++#define A_HOST (1) ++ /** A-Device is a_suspend */ ++#define A_SUSPEND (2) ++ /** A-Device is a_peripherial */ ++#define A_PERIPHERAL (3) ++ /** B-Device is operating as a Peripheral. */ ++#define B_PERIPHERAL (4) ++ /** B-Device is operating as a Host. */ ++#define B_HOST (5) ++ ++ /** HCD callbacks */ ++ struct dwc_otg_cil_callbacks *hcd_cb; ++ /** PCD callbacks */ ++ struct dwc_otg_cil_callbacks *pcd_cb; ++ ++ /** Device mode Periodic Tx FIFO Mask */ ++ uint32_t p_tx_msk; ++ /** Device mode Periodic Tx FIFO Mask */ ++ uint32_t tx_msk; ++ ++#ifdef DEBUG ++ uint32_t start_hcchar_val[MAX_EPS_CHANNELS]; ++ ++ hc_xfer_info_t hc_xfer_info[MAX_EPS_CHANNELS]; ++ struct timer_list hc_xfer_timer[MAX_EPS_CHANNELS]; ++ ++#if 1 // winder ++ uint32_t hfnum_7_samples; ++ uint32_t hfnum_7_frrem_accum; ++ uint32_t hfnum_0_samples; ++ uint32_t hfnum_0_frrem_accum; ++ uint32_t hfnum_other_samples; ++ uint32_t hfnum_other_frrem_accum; ++#else ++ uint32_t hfnum_7_samples; ++ uint64_t hfnum_7_frrem_accum; ++ uint32_t hfnum_0_samples; ++ uint64_t hfnum_0_frrem_accum; ++ uint32_t hfnum_other_samples; ++ uint64_t hfnum_other_frrem_accum; ++#endif ++ resource_size_t phys_addr; /* Added to support PLB DMA : phys-virt mapping */ ++#endif ++ ++} dwc_otg_core_if_t; ++ ++/* ++ * The following functions support initialization of the CIL driver component ++ * and the DWC_otg controller. ++ */ ++extern dwc_otg_core_if_t *dwc_otg_cil_init(const uint32_t *_reg_base_addr, ++ dwc_otg_core_params_t *_core_params); ++extern void dwc_otg_cil_remove(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_core_init(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_core_host_init(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_core_dev_init(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_enable_global_interrupts( dwc_otg_core_if_t *_core_if ); ++extern void dwc_otg_disable_global_interrupts( dwc_otg_core_if_t *_core_if ); ++ ++/** @name Device CIL Functions ++ * The following functions support managing the DWC_otg controller in device ++ * mode. ++ */ ++/**@{*/ ++extern void dwc_otg_wakeup(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_read_setup_packet (dwc_otg_core_if_t *_core_if, uint32_t *_dest); ++extern uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_ep0_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_ep_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_ep_deactivate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_ep_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_ep_write_packet(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep, int _dma); ++extern void dwc_otg_ep_set_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_ep_clear_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_dump_dev_registers(dwc_otg_core_if_t *_core_if); ++/**@}*/ ++ ++/** @name Host CIL Functions ++ * The following functions support managing the DWC_otg controller in host ++ * mode. ++ */ ++/**@{*/ ++extern void dwc_otg_hc_init(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc); ++extern void dwc_otg_hc_halt(dwc_otg_core_if_t *_core_if, ++ dwc_hc_t *_hc, ++ dwc_otg_halt_status_e _halt_status); ++extern void dwc_otg_hc_cleanup(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc); ++extern void dwc_otg_hc_start_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc); ++extern int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc); ++extern void dwc_otg_hc_do_ping(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc); ++extern void dwc_otg_hc_write_packet(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc); ++extern void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t *_core_if); ++ ++/** ++ * This function Reads HPRT0 in preparation to modify. It keeps the ++ * WC bits 0 so that if they are read as 1, they won't clear when you ++ * write it back ++ */ ++static inline uint32_t dwc_otg_read_hprt0(dwc_otg_core_if_t *_core_if) ++{ ++ hprt0_data_t hprt0; ++ hprt0.d32 = dwc_read_reg32(_core_if->host_if->hprt0); ++ hprt0.b.prtena = 0; ++ hprt0.b.prtconndet = 0; ++ hprt0.b.prtenchng = 0; ++ hprt0.b.prtovrcurrchng = 0; ++ return hprt0.d32; ++} ++ ++extern void dwc_otg_dump_host_registers(dwc_otg_core_if_t *_core_if); ++/**@}*/ ++ ++/** @name Common CIL Functions ++ * The following functions support managing the DWC_otg controller in either ++ * device or host mode. ++ */ ++/**@{*/ ++ ++extern void dwc_otg_read_packet(dwc_otg_core_if_t *core_if, ++ uint8_t *dest, ++ uint16_t bytes); ++ ++extern void dwc_otg_dump_global_registers(dwc_otg_core_if_t *_core_if); ++ ++extern void dwc_otg_flush_tx_fifo( dwc_otg_core_if_t *_core_if, ++ const int _num ); ++extern void dwc_otg_flush_rx_fifo( dwc_otg_core_if_t *_core_if ); ++extern void dwc_otg_core_reset( dwc_otg_core_if_t *_core_if ); ++ ++#define NP_TXFIFO_EMPTY -1 ++#define MAX_NP_TXREQUEST_Q_SLOTS 8 ++/** ++ * This function returns the endpoint number of the request at ++ * the top of non-periodic TX FIFO, or -1 if the request FIFO is ++ * empty. ++ */ ++static inline int dwc_otg_top_nptxfifo_epnum(dwc_otg_core_if_t *_core_if) { ++ gnptxsts_data_t txstatus = {.d32 = 0}; ++ ++ txstatus.d32 = dwc_read_reg32(&_core_if->core_global_regs->gnptxsts); ++ return (txstatus.b.nptxqspcavail == MAX_NP_TXREQUEST_Q_SLOTS ? ++ -1 : txstatus.b.nptxqtop_chnep); ++} ++/** ++ * This function returns the Core Interrupt register. ++ */ ++static inline uint32_t dwc_otg_read_core_intr(dwc_otg_core_if_t *_core_if) { ++ return (dwc_read_reg32(&_core_if->core_global_regs->gintsts) & ++ dwc_read_reg32(&_core_if->core_global_regs->gintmsk)); ++} ++ ++/** ++ * This function returns the OTG Interrupt register. ++ */ ++static inline uint32_t dwc_otg_read_otg_intr (dwc_otg_core_if_t *_core_if) { ++ return (dwc_read_reg32 (&_core_if->core_global_regs->gotgint)); ++} ++ ++/** ++ * This function reads the Device All Endpoints Interrupt register and ++ * returns the IN endpoint interrupt bits. ++ */ ++static inline uint32_t dwc_otg_read_dev_all_in_ep_intr(dwc_otg_core_if_t *_core_if) { ++ uint32_t v; ++ v = dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daint) & ++ dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daintmsk); ++ return (v & 0xffff); ++ ++} ++ ++/** ++ * This function reads the Device All Endpoints Interrupt register and ++ * returns the OUT endpoint interrupt bits. ++ */ ++static inline uint32_t dwc_otg_read_dev_all_out_ep_intr(dwc_otg_core_if_t *_core_if) { ++ uint32_t v; ++ v = dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daint) & ++ dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daintmsk); ++ return ((v & 0xffff0000) >> 16); ++} ++ ++/** ++ * This function returns the Device IN EP Interrupt register ++ */ ++static inline uint32_t dwc_otg_read_dev_in_ep_intr(dwc_otg_core_if_t *_core_if, ++ dwc_ep_t *_ep) ++{ ++ dwc_otg_dev_if_t *dev_if = _core_if->dev_if; ++ uint32_t v, msk, emp; ++ msk = dwc_read_reg32(&dev_if->dev_global_regs->diepmsk); ++ emp = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk); ++ msk |= ((emp >> _ep->num) & 0x1) << 7; ++ v = dwc_read_reg32(&dev_if->in_ep_regs[_ep->num]->diepint) & msk; ++/* ++ dwc_otg_dev_if_t *dev_if = _core_if->dev_if; ++ uint32_t v; ++ v = dwc_read_reg32(&dev_if->in_ep_regs[_ep->num]->diepint) & ++ dwc_read_reg32(&dev_if->dev_global_regs->diepmsk); ++*/ ++ return v; ++} ++/** ++ * This function returns the Device OUT EP Interrupt register ++ */ ++static inline uint32_t dwc_otg_read_dev_out_ep_intr(dwc_otg_core_if_t *_core_if, ++ dwc_ep_t *_ep) ++{ ++ dwc_otg_dev_if_t *dev_if = _core_if->dev_if; ++ uint32_t v; ++ v = dwc_read_reg32( &dev_if->out_ep_regs[_ep->num]->doepint) & ++ dwc_read_reg32(&dev_if->dev_global_regs->doepmsk); ++ return v; ++} ++ ++/** ++ * This function returns the Host All Channel Interrupt register ++ */ ++static inline uint32_t dwc_otg_read_host_all_channels_intr (dwc_otg_core_if_t *_core_if) ++{ ++ return (dwc_read_reg32 (&_core_if->host_if->host_global_regs->haint)); ++} ++ ++static inline uint32_t dwc_otg_read_host_channel_intr (dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc) ++{ ++ return (dwc_read_reg32 (&_core_if->host_if->hc_regs[_hc->hc_num]->hcint)); ++} ++ ++ ++/** ++ * This function returns the mode of the operation, host or device. ++ * ++ * @return 0 - Device Mode, 1 - Host Mode ++ */ ++static inline uint32_t dwc_otg_mode(dwc_otg_core_if_t *_core_if) { ++ return (dwc_read_reg32( &_core_if->core_global_regs->gintsts ) & 0x1); ++} ++ ++static inline uint8_t dwc_otg_is_device_mode(dwc_otg_core_if_t *_core_if) ++{ ++ return (dwc_otg_mode(_core_if) != DWC_HOST_MODE); ++} ++static inline uint8_t dwc_otg_is_host_mode(dwc_otg_core_if_t *_core_if) ++{ ++ return (dwc_otg_mode(_core_if) == DWC_HOST_MODE); ++} ++ ++extern int32_t dwc_otg_handle_common_intr( dwc_otg_core_if_t *_core_if ); ++ ++ ++/**@}*/ ++ ++/** ++ * DWC_otg CIL callback structure. This structure allows the HCD and ++ * PCD to register functions used for starting and stopping the PCD ++ * and HCD for role change on for a DRD. ++ */ ++typedef struct dwc_otg_cil_callbacks ++{ ++ /** Start function for role change */ ++ int (*start) (void *_p); ++ /** Stop Function for role change */ ++ int (*stop) (void *_p); ++ /** Disconnect Function for role change */ ++ int (*disconnect) (void *_p); ++ /** Resume/Remote wakeup Function */ ++ int (*resume_wakeup) (void *_p); ++ /** Suspend function */ ++ int (*suspend) (void *_p); ++ /** Session Start (SRP) */ ++ int (*session_start) (void *_p); ++ /** Pointer passed to start() and stop() */ ++ void *p; ++} dwc_otg_cil_callbacks_t; ++ ++ ++ ++extern void dwc_otg_cil_register_pcd_callbacks( dwc_otg_core_if_t *_core_if, ++ dwc_otg_cil_callbacks_t *_cb, ++ void *_p); ++extern void dwc_otg_cil_register_hcd_callbacks( dwc_otg_core_if_t *_core_if, ++ dwc_otg_cil_callbacks_t *_cb, ++ void *_p); ++ ++ ++#endif +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_cil_ifx.h +@@ -0,0 +1,58 @@ ++/****************************************************************************** ++** ++** FILE NAME : dwc_otg_cil_ifx.h ++** PROJECT : Twinpass/Danube ++** MODULES : DWC OTG USB ++** ++** DATE : 07 Sep. 2007 ++** AUTHOR : Sung Winder ++** DESCRIPTION : Default param value. ++** COPYRIGHT : Copyright (c) 2007 ++** Infineon Technologies AG ++** 2F, No.2, Li-Hsin Rd., Hsinchu Science Park, ++** Hsin-chu City, 300 Taiwan. ++** ++** This program is free software; you can redistribute it and/or modify ++** it under the terms of the GNU General Public License as published by ++** the Free Software Foundation; either version 2 of the License, or ++** (at your option) any later version. ++** ++** HISTORY ++** $Date $Author $Comment ++** 12 April 2007 Sung Winder Initiate Version ++*******************************************************************************/ ++#if !defined(__DWC_OTG_CIL_IFX_H__) ++#define __DWC_OTG_CIL_IFX_H__ ++ ++/* ================ Default param value ================== */ ++#define dwc_param_opt_default 1 ++#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE ++#define dwc_param_dma_enable_default 1 ++#define dwc_param_dma_burst_size_default 32 ++#define dwc_param_speed_default DWC_SPEED_PARAM_HIGH ++#define dwc_param_host_support_fs_ls_low_power_default 0 ++#define dwc_param_host_ls_low_power_phy_clk_default DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ ++#define dwc_param_enable_dynamic_fifo_default 1 ++#define dwc_param_data_fifo_size_default 2048 ++#define dwc_param_dev_rx_fifo_size_default 1024 ++#define dwc_param_dev_nperio_tx_fifo_size_default 1024 ++#define dwc_param_dev_perio_tx_fifo_size_default 768 ++#define dwc_param_host_rx_fifo_size_default 640 ++#define dwc_param_host_nperio_tx_fifo_size_default 640 ++#define dwc_param_host_perio_tx_fifo_size_default 768 ++#define dwc_param_max_transfer_size_default 65535 ++#define dwc_param_max_packet_count_default 511 ++#define dwc_param_host_channels_default 16 ++#define dwc_param_dev_endpoints_default 6 ++#define dwc_param_phy_type_default DWC_PHY_TYPE_PARAM_UTMI ++#define dwc_param_phy_utmi_width_default 16 ++#define dwc_param_phy_ulpi_ddr_default 0 ++#define dwc_param_phy_ulpi_ext_vbus_default DWC_PHY_ULPI_INTERNAL_VBUS ++#define dwc_param_i2c_enable_default 0 ++#define dwc_param_ulpi_fs_ls_default 0 ++#define dwc_param_ts_dline_default 0 ++ ++/* ======================================================= */ ++ ++#endif // __DWC_OTG_CIL_IFX_H__ ++ +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_cil_intr.c +@@ -0,0 +1,708 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_cil_intr.c $ ++ * $Revision: 1.1.1.1 $ ++ * $Date: 2009-04-17 06:15:34 $ ++ * $Change: 553126 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++/** @file ++ * ++ * The Core Interface Layer provides basic services for accessing and ++ * managing the DWC_otg hardware. These services are used by both the ++ * Host Controller Driver and the Peripheral Controller Driver. ++ * ++ * This file contains the Common Interrupt handlers. ++ */ ++#include "dwc_otg_plat.h" ++#include "dwc_otg_regs.h" ++#include "dwc_otg_cil.h" ++ ++#ifdef DEBUG ++inline const char *op_state_str( dwc_otg_core_if_t *_core_if ) ++{ ++ return (_core_if->op_state==A_HOST?"a_host": ++ (_core_if->op_state==A_SUSPEND?"a_suspend": ++ (_core_if->op_state==A_PERIPHERAL?"a_peripheral": ++ (_core_if->op_state==B_PERIPHERAL?"b_peripheral": ++ (_core_if->op_state==B_HOST?"b_host": ++ "unknown"))))); ++} ++#endif ++ ++/** This function will log a debug message ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ */ ++int32_t dwc_otg_handle_mode_mismatch_intr (dwc_otg_core_if_t *_core_if) ++{ ++ gintsts_data_t gintsts; ++ DWC_WARN("Mode Mismatch Interrupt: currently in %s mode\n", ++ dwc_otg_mode(_core_if) ? "Host" : "Device"); ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.modemismatch = 1; ++ dwc_write_reg32 (&_core_if->core_global_regs->gintsts, gintsts.d32); ++ return 1; ++} ++ ++/** Start the HCD. Helper function for using the HCD callbacks. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ */ ++static inline void hcd_start( dwc_otg_core_if_t *_core_if ) ++{ ++ if (_core_if->hcd_cb && _core_if->hcd_cb->start) { ++ _core_if->hcd_cb->start( _core_if->hcd_cb->p ); ++ } ++} ++/** Stop the HCD. Helper function for using the HCD callbacks. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ */ ++static inline void hcd_stop( dwc_otg_core_if_t *_core_if ) ++{ ++ if (_core_if->hcd_cb && _core_if->hcd_cb->stop) { ++ _core_if->hcd_cb->stop( _core_if->hcd_cb->p ); ++ } ++} ++/** Disconnect the HCD. Helper function for using the HCD callbacks. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ */ ++static inline void hcd_disconnect( dwc_otg_core_if_t *_core_if ) ++{ ++ if (_core_if->hcd_cb && _core_if->hcd_cb->disconnect) { ++ _core_if->hcd_cb->disconnect( _core_if->hcd_cb->p ); ++ } ++} ++/** Inform the HCD the a New Session has begun. Helper function for ++ * using the HCD callbacks. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ */ ++static inline void hcd_session_start( dwc_otg_core_if_t *_core_if ) ++{ ++ if (_core_if->hcd_cb && _core_if->hcd_cb->session_start) { ++ _core_if->hcd_cb->session_start( _core_if->hcd_cb->p ); ++ } ++} ++ ++/** Start the PCD. Helper function for using the PCD callbacks. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ */ ++static inline void pcd_start( dwc_otg_core_if_t *_core_if ) ++{ ++ if (_core_if->pcd_cb && _core_if->pcd_cb->start ) { ++ _core_if->pcd_cb->start( _core_if->pcd_cb->p ); ++ } ++} ++/** Stop the PCD. Helper function for using the PCD callbacks. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ */ ++static inline void pcd_stop( dwc_otg_core_if_t *_core_if ) ++{ ++ if (_core_if->pcd_cb && _core_if->pcd_cb->stop ) { ++ _core_if->pcd_cb->stop( _core_if->pcd_cb->p ); ++ } ++} ++/** Suspend the PCD. Helper function for using the PCD callbacks. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ */ ++static inline void pcd_suspend( dwc_otg_core_if_t *_core_if ) ++{ ++ if (_core_if->pcd_cb && _core_if->pcd_cb->suspend ) { ++ _core_if->pcd_cb->suspend( _core_if->pcd_cb->p ); ++ } ++} ++/** Resume the PCD. Helper function for using the PCD callbacks. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ */ ++static inline void pcd_resume( dwc_otg_core_if_t *_core_if ) ++{ ++ if (_core_if->pcd_cb && _core_if->pcd_cb->resume_wakeup ) { ++ _core_if->pcd_cb->resume_wakeup( _core_if->pcd_cb->p ); ++ } ++} ++ ++/** ++ * This function handles the OTG Interrupts. It reads the OTG ++ * Interrupt Register (GOTGINT) to determine what interrupt has ++ * occurred. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ */ ++int32_t dwc_otg_handle_otg_intr(dwc_otg_core_if_t *_core_if) ++{ ++ dwc_otg_core_global_regs_t *global_regs = ++ _core_if->core_global_regs; ++ gotgint_data_t gotgint; ++ gotgctl_data_t gotgctl; ++ gintmsk_data_t gintmsk; ++ ++ gotgint.d32 = dwc_read_reg32( &global_regs->gotgint); ++ gotgctl.d32 = dwc_read_reg32( &global_regs->gotgctl); ++ DWC_DEBUGPL(DBG_CIL, "++OTG Interrupt gotgint=%0x [%s]\n", gotgint.d32, ++ op_state_str(_core_if)); ++ //DWC_DEBUGPL(DBG_CIL, "gotgctl=%08x\n", gotgctl.d32 ); ++ ++ if (gotgint.b.sesenddet) { ++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " ++ "Session End Detected++ (%s)\n", ++ op_state_str(_core_if)); ++ gotgctl.d32 = dwc_read_reg32( &global_regs->gotgctl); ++ ++ if (_core_if->op_state == B_HOST) { ++ pcd_start( _core_if ); ++ _core_if->op_state = B_PERIPHERAL; ++ } else { ++ /* If not B_HOST and Device HNP still set. HNP ++ * Did not succeed!*/ ++ if (gotgctl.b.devhnpen) { ++ DWC_DEBUGPL(DBG_ANY, "Session End Detected\n"); ++ DWC_ERROR( "Device Not Connected/Responding!\n" ); ++ } ++ ++ /* If Session End Detected the B-Cable has ++ * been disconnected. */ ++ /* Reset PCD and Gadget driver to a ++ * clean state. */ ++ pcd_stop(_core_if); ++ } ++ gotgctl.d32 = 0; ++ gotgctl.b.devhnpen = 1; ++ dwc_modify_reg32( &global_regs->gotgctl, ++ gotgctl.d32, 0); ++ } ++ if (gotgint.b.sesreqsucstschng) { ++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " ++ "Session Reqeust Success Status Change++\n"); ++ gotgctl.d32 = dwc_read_reg32( &global_regs->gotgctl); ++ if (gotgctl.b.sesreqscs) { ++ if ((_core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS) && ++ (_core_if->core_params->i2c_enable)) { ++ _core_if->srp_success = 1; ++ } ++ else { ++ pcd_resume( _core_if ); ++ /* Clear Session Request */ ++ gotgctl.d32 = 0; ++ gotgctl.b.sesreq = 1; ++ dwc_modify_reg32( &global_regs->gotgctl, ++ gotgctl.d32, 0); ++ } ++ } ++ } ++ if (gotgint.b.hstnegsucstschng) { ++ /* Print statements during the HNP interrupt handling ++ * can cause it to fail.*/ ++ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl); ++ if (gotgctl.b.hstnegscs) { ++ if (dwc_otg_is_host_mode(_core_if) ) { ++ _core_if->op_state = B_HOST; ++ /* ++ * Need to disable SOF interrupt immediately. ++ * When switching from device to host, the PCD ++ * interrupt handler won't handle the ++ * interrupt if host mode is already set. The ++ * HCD interrupt handler won't get called if ++ * the HCD state is HALT. This means that the ++ * interrupt does not get handled and Linux ++ * complains loudly. ++ */ ++ gintmsk.d32 = 0; ++ gintmsk.b.sofintr = 1; ++ dwc_modify_reg32(&global_regs->gintmsk, ++ gintmsk.d32, 0); ++ pcd_stop(_core_if); ++ /* ++ * Initialize the Core for Host mode. ++ */ ++ hcd_start( _core_if ); ++ _core_if->op_state = B_HOST; ++ } ++ } else { ++ gotgctl.d32 = 0; ++ gotgctl.b.hnpreq = 1; ++ gotgctl.b.devhnpen = 1; ++ dwc_modify_reg32( &global_regs->gotgctl, ++ gotgctl.d32, 0); ++ DWC_DEBUGPL( DBG_ANY, "HNP Failed\n"); ++ DWC_ERROR( "Device Not Connected/Responding\n" ); ++ } ++ } ++ if (gotgint.b.hstnegdet) { ++ /* The disconnect interrupt is set at the same time as ++ * Host Negotiation Detected. During the mode ++ * switch all interrupts are cleared so the disconnect ++ * interrupt handler will not get executed. ++ */ ++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " ++ "Host Negotiation Detected++ (%s)\n", ++ (dwc_otg_is_host_mode(_core_if)?"Host":"Device")); ++ if (dwc_otg_is_device_mode(_core_if)){ ++ DWC_DEBUGPL(DBG_ANY, "a_suspend->a_peripheral (%d)\n",_core_if->op_state); ++ hcd_disconnect( _core_if ); ++ pcd_start( _core_if ); ++ _core_if->op_state = A_PERIPHERAL; ++ } else { ++ /* ++ * Need to disable SOF interrupt immediately. When ++ * switching from device to host, the PCD interrupt ++ * handler won't handle the interrupt if host mode is ++ * already set. The HCD interrupt handler won't get ++ * called if the HCD state is HALT. This means that ++ * the interrupt does not get handled and Linux ++ * complains loudly. ++ */ ++ gintmsk.d32 = 0; ++ gintmsk.b.sofintr = 1; ++ dwc_modify_reg32(&global_regs->gintmsk, ++ gintmsk.d32, 0); ++ pcd_stop( _core_if ); ++ hcd_start( _core_if ); ++ _core_if->op_state = A_HOST; ++ } ++ } ++ if (gotgint.b.adevtoutchng) { ++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " ++ "A-Device Timeout Change++\n"); ++ } ++ if (gotgint.b.debdone) { ++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " ++ "Debounce Done++\n"); ++ } ++ ++ /* Clear GOTGINT */ ++ dwc_write_reg32 (&_core_if->core_global_regs->gotgint, gotgint.d32); ++ ++ return 1; ++} ++ ++/** ++ * This function handles the Connector ID Status Change Interrupt. It ++ * reads the OTG Interrupt Register (GOTCTL) to determine whether this ++ * is a Device to Host Mode transition or a Host Mode to Device ++ * Transition. ++ * ++ * This only occurs when the cable is connected/removed from the PHY ++ * connector. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ */ ++int32_t dwc_otg_handle_conn_id_status_change_intr(dwc_otg_core_if_t *_core_if) ++{ ++ uint32_t count = 0; ++ ++ gintsts_data_t gintsts = { .d32 = 0 }; ++ gintmsk_data_t gintmsk = { .d32 = 0 }; ++ gotgctl_data_t gotgctl = { .d32 = 0 }; ++ ++ /* ++ * Need to disable SOF interrupt immediately. If switching from device ++ * to host, the PCD interrupt handler won't handle the interrupt if ++ * host mode is already set. The HCD interrupt handler won't get ++ * called if the HCD state is HALT. This means that the interrupt does ++ * not get handled and Linux complains loudly. ++ */ ++ gintmsk.b.sofintr = 1; ++ dwc_modify_reg32(&_core_if->core_global_regs->gintmsk, gintmsk.d32, 0); ++ ++ DWC_DEBUGPL(DBG_CIL, " ++Connector ID Status Change Interrupt++ (%s)\n", ++ (dwc_otg_is_host_mode(_core_if)?"Host":"Device")); ++ gotgctl.d32 = dwc_read_reg32(&_core_if->core_global_regs->gotgctl); ++ DWC_DEBUGPL(DBG_CIL, "gotgctl=%0x\n", gotgctl.d32); ++ DWC_DEBUGPL(DBG_CIL, "gotgctl.b.conidsts=%d\n", gotgctl.b.conidsts); ++ ++ /* B-Device connector (Device Mode) */ ++ if (gotgctl.b.conidsts) { ++ /* Wait for switch to device mode. */ ++ while (!dwc_otg_is_device_mode(_core_if) ){ ++ DWC_PRINT("Waiting for Peripheral Mode, Mode=%s\n", ++ (dwc_otg_is_host_mode(_core_if)?"Host":"Peripheral")); ++ MDELAY(100); ++ if (++count > 10000) *(uint32_t*)NULL=0; ++ } ++ _core_if->op_state = B_PERIPHERAL; ++ dwc_otg_core_init(_core_if); ++ dwc_otg_enable_global_interrupts(_core_if); ++ pcd_start( _core_if ); ++ } else { ++ /* A-Device connector (Host Mode) */ ++ while (!dwc_otg_is_host_mode(_core_if) ) { ++ DWC_PRINT("Waiting for Host Mode, Mode=%s\n", ++ (dwc_otg_is_host_mode(_core_if)?"Host":"Peripheral")); ++ MDELAY(100); ++ if (++count > 10000) *(uint32_t*)NULL=0; ++ } ++ _core_if->op_state = A_HOST; ++ /* ++ * Initialize the Core for Host mode. ++ */ ++ dwc_otg_core_init(_core_if); ++ dwc_otg_enable_global_interrupts(_core_if); ++ hcd_start( _core_if ); ++ } ++ ++ /* Set flag and clear interrupt */ ++ gintsts.b.conidstschng = 1; ++ dwc_write_reg32 (&_core_if->core_global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++/** ++ * This interrupt indicates that a device is initiating the Session ++ * Request Protocol to request the host to turn on bus power so a new ++ * session can begin. The handler responds by turning on bus power. If ++ * the DWC_otg controller is in low power mode, the handler brings the ++ * controller out of low power mode before turning on bus power. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ */ ++int32_t dwc_otg_handle_session_req_intr( dwc_otg_core_if_t *_core_if ) ++{ ++#ifndef DWC_HOST_ONLY // winder ++ hprt0_data_t hprt0; ++#endif ++ gintsts_data_t gintsts; ++ ++#ifndef DWC_HOST_ONLY ++ DWC_DEBUGPL(DBG_ANY, "++Session Request Interrupt++\n"); ++ ++ if (dwc_otg_is_device_mode(_core_if) ) { ++ DWC_PRINT("SRP: Device mode\n"); ++ } else { ++ DWC_PRINT("SRP: Host mode\n"); ++ ++ /* Turn on the port power bit. */ ++ hprt0.d32 = dwc_otg_read_hprt0( _core_if ); ++ hprt0.b.prtpwr = 1; ++ dwc_write_reg32(_core_if->host_if->hprt0, hprt0.d32); ++ ++ /* Start the Connection timer. So a message can be displayed ++ * if connect does not occur within 10 seconds. */ ++ hcd_session_start( _core_if ); ++ } ++#endif ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.sessreqintr = 1; ++ dwc_write_reg32 (&_core_if->core_global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++/** ++ * This interrupt indicates that the DWC_otg controller has detected a ++ * resume or remote wakeup sequence. If the DWC_otg controller is in ++ * low power mode, the handler must brings the controller out of low ++ * power mode. The controller automatically begins resume ++ * signaling. The handler schedules a time to stop resume signaling. ++ */ ++int32_t dwc_otg_handle_wakeup_detected_intr( dwc_otg_core_if_t *_core_if ) ++{ ++ gintsts_data_t gintsts; ++ ++ DWC_DEBUGPL(DBG_ANY, "++Resume and Remote Wakeup Detected Interrupt++\n"); ++ ++ if (dwc_otg_is_device_mode(_core_if) ) { ++ dctl_data_t dctl = {.d32=0}; ++ DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n", ++ dwc_read_reg32( &_core_if->dev_if->dev_global_regs->dsts)); ++#ifdef PARTIAL_POWER_DOWN ++ if (_core_if->hwcfg4.b.power_optimiz) { ++ pcgcctl_data_t power = {.d32=0}; ++ ++ power.d32 = dwc_read_reg32( _core_if->pcgcctl ); ++ DWC_DEBUGPL(DBG_CIL, "PCGCCTL=%0x\n", power.d32); ++ ++ power.b.stoppclk = 0; ++ dwc_write_reg32( _core_if->pcgcctl, power.d32); ++ ++ power.b.pwrclmp = 0; ++ dwc_write_reg32( _core_if->pcgcctl, power.d32); ++ ++ power.b.rstpdwnmodule = 0; ++ dwc_write_reg32( _core_if->pcgcctl, power.d32); ++ } ++#endif ++ /* Clear the Remote Wakeup Signalling */ ++ dctl.b.rmtwkupsig = 1; ++ dwc_modify_reg32( &_core_if->dev_if->dev_global_regs->dctl, ++ dctl.d32, 0 ); ++ ++ if (_core_if->pcd_cb && _core_if->pcd_cb->resume_wakeup) { ++ _core_if->pcd_cb->resume_wakeup( _core_if->pcd_cb->p ); ++ } ++ ++ } else { ++ /* ++ * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms ++ * so that OPT tests pass with all PHYs). ++ */ ++ hprt0_data_t hprt0 = {.d32=0}; ++ pcgcctl_data_t pcgcctl = {.d32=0}; ++ /* Restart the Phy Clock */ ++ pcgcctl.b.stoppclk = 1; ++ dwc_modify_reg32(_core_if->pcgcctl, pcgcctl.d32, 0); ++ UDELAY(10); ++ ++ /* Now wait for 70 ms. */ ++ hprt0.d32 = dwc_otg_read_hprt0( _core_if ); ++ DWC_DEBUGPL(DBG_ANY,"Resume: HPRT0=%0x\n", hprt0.d32); ++ MDELAY(70); ++ hprt0.b.prtres = 0; /* Resume */ ++ dwc_write_reg32(_core_if->host_if->hprt0, hprt0.d32); ++ DWC_DEBUGPL(DBG_ANY,"Clear Resume: HPRT0=%0x\n", dwc_read_reg32(_core_if->host_if->hprt0)); ++ } ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.wkupintr = 1; ++ dwc_write_reg32 (&_core_if->core_global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++/** ++ * This interrupt indicates that a device has been disconnected from ++ * the root port. ++ */ ++int32_t dwc_otg_handle_disconnect_intr( dwc_otg_core_if_t *_core_if) ++{ ++ gintsts_data_t gintsts; ++ ++ DWC_DEBUGPL(DBG_ANY, "++Disconnect Detected Interrupt++ (%s) %s\n", ++ (dwc_otg_is_host_mode(_core_if)?"Host":"Device"), ++ op_state_str(_core_if)); ++ ++/** @todo Consolidate this if statement. */ ++#ifndef DWC_HOST_ONLY ++ if (_core_if->op_state == B_HOST) { ++ /* If in device mode Disconnect and stop the HCD, then ++ * start the PCD. */ ++ hcd_disconnect( _core_if ); ++ pcd_start( _core_if ); ++ _core_if->op_state = B_PERIPHERAL; ++ } else if (dwc_otg_is_device_mode(_core_if)) { ++ gotgctl_data_t gotgctl = { .d32 = 0 }; ++ gotgctl.d32 = dwc_read_reg32(&_core_if->core_global_regs->gotgctl); ++ if (gotgctl.b.hstsethnpen==1) { ++ /* Do nothing, if HNP in process the OTG ++ * interrupt "Host Negotiation Detected" ++ * interrupt will do the mode switch. ++ */ ++ } else if (gotgctl.b.devhnpen == 0) { ++ /* If in device mode Disconnect and stop the HCD, then ++ * start the PCD. */ ++ hcd_disconnect( _core_if ); ++ pcd_start( _core_if ); ++ _core_if->op_state = B_PERIPHERAL; ++ } else { ++ DWC_DEBUGPL(DBG_ANY,"!a_peripheral && !devhnpen\n"); ++ } ++ } else { ++ if (_core_if->op_state == A_HOST) { ++ /* A-Cable still connected but device disconnected. */ ++ hcd_disconnect( _core_if ); ++ } ++ } ++#endif ++/* Without OTG, we should use the disconnect function!? winder added.*/ ++#if 1 // NO OTG, so host only!! ++ hcd_disconnect( _core_if ); ++#endif ++ ++ gintsts.d32 = 0; ++ gintsts.b.disconnect = 1; ++ dwc_write_reg32 (&_core_if->core_global_regs->gintsts, gintsts.d32); ++ return 1; ++} ++/** ++ * This interrupt indicates that SUSPEND state has been detected on ++ * the USB. ++ * ++ * For HNP the USB Suspend interrupt signals the change from ++ * "a_peripheral" to "a_host". ++ * ++ * When power management is enabled the core will be put in low power ++ * mode. ++ */ ++int32_t dwc_otg_handle_usb_suspend_intr(dwc_otg_core_if_t *_core_if ) ++{ ++ dsts_data_t dsts; ++ gintsts_data_t gintsts; ++ ++ //805141:<IFTW-fchang>.removed DWC_DEBUGPL(DBG_ANY,"USB SUSPEND\n"); ++ ++ if (dwc_otg_is_device_mode( _core_if ) ) { ++ /* Check the Device status register to determine if the Suspend ++ * state is active. */ ++ dsts.d32 = dwc_read_reg32( &_core_if->dev_if->dev_global_regs->dsts); ++ DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n", dsts.d32); ++ DWC_DEBUGPL(DBG_PCD, "DSTS.Suspend Status=%d " ++ "HWCFG4.power Optimize=%d\n", ++ dsts.b.suspsts, _core_if->hwcfg4.b.power_optimiz); ++ ++ ++#ifdef PARTIAL_POWER_DOWN ++/** @todo Add a module parameter for power management. */ ++ ++ if (dsts.b.suspsts && _core_if->hwcfg4.b.power_optimiz) { ++ pcgcctl_data_t power = {.d32=0}; ++ DWC_DEBUGPL(DBG_CIL, "suspend\n"); ++ ++ power.b.pwrclmp = 1; ++ dwc_write_reg32( _core_if->pcgcctl, power.d32); ++ ++ power.b.rstpdwnmodule = 1; ++ dwc_modify_reg32( _core_if->pcgcctl, 0, power.d32); ++ ++ power.b.stoppclk = 1; ++ dwc_modify_reg32( _core_if->pcgcctl, 0, power.d32); ++ ++ } else { ++ DWC_DEBUGPL(DBG_ANY,"disconnect?\n"); ++ } ++#endif ++ /* PCD callback for suspend. */ ++ pcd_suspend(_core_if); ++ } else { ++ if (_core_if->op_state == A_PERIPHERAL) { ++ DWC_DEBUGPL(DBG_ANY,"a_peripheral->a_host\n"); ++ /* Clear the a_peripheral flag, back to a_host. */ ++ pcd_stop( _core_if ); ++ hcd_start( _core_if ); ++ _core_if->op_state = A_HOST; ++ } ++ } ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.usbsuspend = 1; ++ dwc_write_reg32( &_core_if->core_global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++ ++/** ++ * This function returns the Core Interrupt register. ++ */ ++static inline uint32_t dwc_otg_read_common_intr(dwc_otg_core_if_t *_core_if) ++{ ++ gintsts_data_t gintsts; ++ gintmsk_data_t gintmsk; ++ gintmsk_data_t gintmsk_common = {.d32=0}; ++ gintmsk_common.b.wkupintr = 1; ++ gintmsk_common.b.sessreqintr = 1; ++ gintmsk_common.b.conidstschng = 1; ++ gintmsk_common.b.otgintr = 1; ++ gintmsk_common.b.modemismatch = 1; ++ gintmsk_common.b.disconnect = 1; ++ gintmsk_common.b.usbsuspend = 1; ++ /** @todo: The port interrupt occurs while in device ++ * mode. Added code to CIL to clear the interrupt for now! ++ */ ++ gintmsk_common.b.portintr = 1; ++ ++ gintsts.d32 = dwc_read_reg32(&_core_if->core_global_regs->gintsts); ++ gintmsk.d32 = dwc_read_reg32(&_core_if->core_global_regs->gintmsk); ++#ifdef DEBUG ++ /* if any common interrupts set */ ++ if (gintsts.d32 & gintmsk_common.d32) { ++ DWC_DEBUGPL(DBG_ANY, "gintsts=%08x gintmsk=%08x\n", ++ gintsts.d32, gintmsk.d32); ++ } ++#endif ++ ++ return ((gintsts.d32 & gintmsk.d32 ) & gintmsk_common.d32); ++ ++} ++ ++/** ++ * Common interrupt handler. ++ * ++ * The common interrupts are those that occur in both Host and Device mode. ++ * This handler handles the following interrupts: ++ * - Mode Mismatch Interrupt ++ * - Disconnect Interrupt ++ * - OTG Interrupt ++ * - Connector ID Status Change Interrupt ++ * - Session Request Interrupt. ++ * - Resume / Remote Wakeup Detected Interrupt. ++ * ++ */ ++extern int32_t dwc_otg_handle_common_intr( dwc_otg_core_if_t *_core_if ) ++{ ++ int retval = 0; ++ gintsts_data_t gintsts; ++ ++ gintsts.d32 = dwc_otg_read_common_intr(_core_if); ++ ++ if (gintsts.b.modemismatch) { ++ retval |= dwc_otg_handle_mode_mismatch_intr( _core_if ); ++ } ++ if (gintsts.b.otgintr) { ++ retval |= dwc_otg_handle_otg_intr( _core_if ); ++ } ++ if (gintsts.b.conidstschng) { ++ retval |= dwc_otg_handle_conn_id_status_change_intr( _core_if ); ++ } ++ if (gintsts.b.disconnect) { ++ retval |= dwc_otg_handle_disconnect_intr( _core_if ); ++ } ++ if (gintsts.b.sessreqintr) { ++ retval |= dwc_otg_handle_session_req_intr( _core_if ); ++ } ++ if (gintsts.b.wkupintr) { ++ retval |= dwc_otg_handle_wakeup_detected_intr( _core_if ); ++ } ++ if (gintsts.b.usbsuspend) { ++ retval |= dwc_otg_handle_usb_suspend_intr( _core_if ); ++ } ++ if (gintsts.b.portintr && dwc_otg_is_device_mode(_core_if)) { ++ /* The port interrupt occurs while in device mode with HPRT0 ++ * Port Enable/Disable. ++ */ ++ gintsts.d32 = 0; ++ gintsts.b.portintr = 1; ++ dwc_write_reg32(&_core_if->core_global_regs->gintsts, ++ gintsts.d32); ++ retval |= 1; ++ ++ } ++ return retval; ++} +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_driver.c +@@ -0,0 +1,1274 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_driver.c $ ++ * $Revision: 1.1.1.1 $ ++ * $Date: 2009-04-17 06:15:34 $ ++ * $Change: 631780 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++/** @file ++ * The dwc_otg_driver module provides the initialization and cleanup entry ++ * points for the DWC_otg driver. This module will be dynamically installed ++ * after Linux is booted using the insmod command. When the module is ++ * installed, the dwc_otg_init function is called. When the module is ++ * removed (using rmmod), the dwc_otg_cleanup function is called. ++ * ++ * This module also defines a data structure for the dwc_otg_driver, which is ++ * used in conjunction with the standard ARM lm_device structure. These ++ * structures allow the OTG driver to comply with the standard Linux driver ++ * model in which devices and drivers are registered with a bus driver. This ++ * has the benefit that Linux can expose attributes of the driver and device ++ * in its special sysfs file system. Users can then read or write files in ++ * this file system to perform diagnostics on the driver components or the ++ * device. ++ */ ++ ++#include <linux/kernel.h> ++#include <linux/module.h> ++#include <linux/moduleparam.h> ++#include <linux/init.h> ++#include <linux/gpio.h> ++ ++#include <linux/device.h> ++#include <linux/platform_device.h> ++ ++#include <linux/errno.h> ++#include <linux/types.h> ++#include <linux/stat.h> /* permission constants */ ++#include <linux/irq.h> ++#include <asm/io.h> ++ ++#include "dwc_otg_plat.h" ++#include "dwc_otg_attr.h" ++#include "dwc_otg_driver.h" ++#include "dwc_otg_cil.h" ++#include "dwc_otg_cil_ifx.h" ++ ++// #include "dwc_otg_pcd.h" // device ++#include "dwc_otg_hcd.h" // host ++ ++#include "dwc_otg_ifx.h" // for Infineon platform specific. ++ ++#define DWC_DRIVER_VERSION "2.60a 22-NOV-2006" ++#define DWC_DRIVER_DESC "HS OTG USB Controller driver" ++ ++const char dwc_driver_name[] = "dwc_otg"; ++ ++static unsigned long dwc_iomem_base = IFX_USB_IOMEM_BASE; ++int dwc_irq = LTQ_USB_INT; ++//int dwc_irq = 54; ++//int dwc_irq = IFXMIPS_USB_OC_INT; ++ ++extern int ifx_usb_hc_init(unsigned long base_addr, int irq); ++extern void ifx_usb_hc_remove(void); ++ ++/*-------------------------------------------------------------------------*/ ++/* Encapsulate the module parameter settings */ ++ ++static dwc_otg_core_params_t dwc_otg_module_params = { ++ .opt = -1, ++ .otg_cap = -1, ++ .dma_enable = -1, ++ .dma_burst_size = -1, ++ .speed = -1, ++ .host_support_fs_ls_low_power = -1, ++ .host_ls_low_power_phy_clk = -1, ++ .enable_dynamic_fifo = -1, ++ .data_fifo_size = -1, ++ .dev_rx_fifo_size = -1, ++ .dev_nperio_tx_fifo_size = -1, ++ .dev_perio_tx_fifo_size = /* dev_perio_tx_fifo_size_1 */ {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, /* 15 */ ++ .host_rx_fifo_size = -1, ++ .host_nperio_tx_fifo_size = -1, ++ .host_perio_tx_fifo_size = -1, ++ .max_transfer_size = -1, ++ .max_packet_count = -1, ++ .host_channels = -1, ++ .dev_endpoints = -1, ++ .phy_type = -1, ++ .phy_utmi_width = -1, ++ .phy_ulpi_ddr = -1, ++ .phy_ulpi_ext_vbus = -1, ++ .i2c_enable = -1, ++ .ulpi_fs_ls = -1, ++ .ts_dline = -1, ++ .en_multiple_tx_fifo = -1, ++ .dev_tx_fifo_size = { /* dev_tx_fifo_size */ ++ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ++ }, /* 15 */ ++ .thr_ctl = -1, ++ .tx_thr_length = -1, ++ .rx_thr_length = -1, ++}; ++ ++/** ++ * This function shows the Driver Version. ++ */ ++static ssize_t version_show(struct device_driver *dev, char *buf) ++{ ++ return snprintf(buf, sizeof(DWC_DRIVER_VERSION)+2,"%s\n", ++ DWC_DRIVER_VERSION); ++} ++static DRIVER_ATTR(version, S_IRUGO, version_show, NULL); ++ ++/** ++ * Global Debug Level Mask. ++ */ ++uint32_t g_dbg_lvl = 0xff; /* OFF */ ++ ++/** ++ * This function shows the driver Debug Level. ++ */ ++static ssize_t dbg_level_show(struct device_driver *_drv, char *_buf) ++{ ++ return sprintf(_buf, "0x%0x\n", g_dbg_lvl); ++} ++/** ++ * This function stores the driver Debug Level. ++ */ ++static ssize_t dbg_level_store(struct device_driver *_drv, const char *_buf, ++ size_t _count) ++{ ++ g_dbg_lvl = simple_strtoul(_buf, NULL, 16); ++ return _count; ++} ++static DRIVER_ATTR(debuglevel, S_IRUGO|S_IWUSR, dbg_level_show, dbg_level_store); ++ ++/** ++ * This function is called during module intialization to verify that ++ * the module parameters are in a valid state. ++ */ ++static int check_parameters(dwc_otg_core_if_t *core_if) ++{ ++ int i; ++ int retval = 0; ++ ++/* Checks if the parameter is outside of its valid range of values */ ++#define DWC_OTG_PARAM_TEST(_param_,_low_,_high_) \ ++ ((dwc_otg_module_params._param_ < (_low_)) || \ ++ (dwc_otg_module_params._param_ > (_high_))) ++ ++/* If the parameter has been set by the user, check that the parameter value is ++ * within the value range of values. If not, report a module error. */ ++#define DWC_OTG_PARAM_ERR(_param_,_low_,_high_,_string_) \ ++ do { \ ++ if (dwc_otg_module_params._param_ != -1) { \ ++ if (DWC_OTG_PARAM_TEST(_param_,(_low_),(_high_))) { \ ++ DWC_ERROR("`%d' invalid for parameter `%s'\n", \ ++ dwc_otg_module_params._param_, _string_); \ ++ dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \ ++ retval ++; \ ++ } \ ++ } \ ++ } while (0) ++ ++ DWC_OTG_PARAM_ERR(opt,0,1,"opt"); ++ DWC_OTG_PARAM_ERR(otg_cap,0,2,"otg_cap"); ++ DWC_OTG_PARAM_ERR(dma_enable,0,1,"dma_enable"); ++ DWC_OTG_PARAM_ERR(speed,0,1,"speed"); ++ DWC_OTG_PARAM_ERR(host_support_fs_ls_low_power,0,1,"host_support_fs_ls_low_power"); ++ DWC_OTG_PARAM_ERR(host_ls_low_power_phy_clk,0,1,"host_ls_low_power_phy_clk"); ++ DWC_OTG_PARAM_ERR(enable_dynamic_fifo,0,1,"enable_dynamic_fifo"); ++ DWC_OTG_PARAM_ERR(data_fifo_size,32,32768,"data_fifo_size"); ++ DWC_OTG_PARAM_ERR(dev_rx_fifo_size,16,32768,"dev_rx_fifo_size"); ++ DWC_OTG_PARAM_ERR(dev_nperio_tx_fifo_size,16,32768,"dev_nperio_tx_fifo_size"); ++ DWC_OTG_PARAM_ERR(host_rx_fifo_size,16,32768,"host_rx_fifo_size"); ++ DWC_OTG_PARAM_ERR(host_nperio_tx_fifo_size,16,32768,"host_nperio_tx_fifo_size"); ++ DWC_OTG_PARAM_ERR(host_perio_tx_fifo_size,16,32768,"host_perio_tx_fifo_size"); ++ DWC_OTG_PARAM_ERR(max_transfer_size,2047,524288,"max_transfer_size"); ++ DWC_OTG_PARAM_ERR(max_packet_count,15,511,"max_packet_count"); ++ DWC_OTG_PARAM_ERR(host_channels,1,16,"host_channels"); ++ DWC_OTG_PARAM_ERR(dev_endpoints,1,15,"dev_endpoints"); ++ DWC_OTG_PARAM_ERR(phy_type,0,2,"phy_type"); ++ DWC_OTG_PARAM_ERR(phy_ulpi_ddr,0,1,"phy_ulpi_ddr"); ++ DWC_OTG_PARAM_ERR(phy_ulpi_ext_vbus,0,1,"phy_ulpi_ext_vbus"); ++ DWC_OTG_PARAM_ERR(i2c_enable,0,1,"i2c_enable"); ++ DWC_OTG_PARAM_ERR(ulpi_fs_ls,0,1,"ulpi_fs_ls"); ++ DWC_OTG_PARAM_ERR(ts_dline,0,1,"ts_dline"); ++ ++ if (dwc_otg_module_params.dma_burst_size != -1) { ++ if (DWC_OTG_PARAM_TEST(dma_burst_size,1,1) && ++ DWC_OTG_PARAM_TEST(dma_burst_size,4,4) && ++ DWC_OTG_PARAM_TEST(dma_burst_size,8,8) && ++ DWC_OTG_PARAM_TEST(dma_burst_size,16,16) && ++ DWC_OTG_PARAM_TEST(dma_burst_size,32,32) && ++ DWC_OTG_PARAM_TEST(dma_burst_size,64,64) && ++ DWC_OTG_PARAM_TEST(dma_burst_size,128,128) && ++ DWC_OTG_PARAM_TEST(dma_burst_size,256,256)) ++ { ++ DWC_ERROR("`%d' invalid for parameter `dma_burst_size'\n", ++ dwc_otg_module_params.dma_burst_size); ++ dwc_otg_module_params.dma_burst_size = 32; ++ retval ++; ++ } ++ } ++ ++ if (dwc_otg_module_params.phy_utmi_width != -1) { ++ if (DWC_OTG_PARAM_TEST(phy_utmi_width,8,8) && ++ DWC_OTG_PARAM_TEST(phy_utmi_width,16,16)) ++ { ++ DWC_ERROR("`%d' invalid for parameter `phy_utmi_width'\n", ++ dwc_otg_module_params.phy_utmi_width); ++ //dwc_otg_module_params.phy_utmi_width = 16; ++ dwc_otg_module_params.phy_utmi_width = 8; ++ retval ++; ++ } ++ } ++ ++ for (i=0; i<15; i++) { ++ /** @todo should be like above */ ++ //DWC_OTG_PARAM_ERR(dev_perio_tx_fifo_size[i],4,768,"dev_perio_tx_fifo_size"); ++ if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] != -1) { ++ if (DWC_OTG_PARAM_TEST(dev_perio_tx_fifo_size[i],4,768)) { ++ DWC_ERROR("`%d' invalid for parameter `%s_%d'\n", ++ dwc_otg_module_params.dev_perio_tx_fifo_size[i], "dev_perio_tx_fifo_size", i); ++ dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_param_dev_perio_tx_fifo_size_default; ++ retval ++; ++ } ++ } ++ } ++ ++ DWC_OTG_PARAM_ERR(en_multiple_tx_fifo, 0, 1, "en_multiple_tx_fifo"); ++ for (i = 0; i < 15; i++) { ++ /** @todo should be like above */ ++ //DWC_OTG_PARAM_ERR(dev_tx_fifo_size[i],4,768,"dev_tx_fifo_size"); ++ if (dwc_otg_module_params.dev_tx_fifo_size[i] != -1) { ++ if (DWC_OTG_PARAM_TEST(dev_tx_fifo_size[i], 4, 768)) { ++ DWC_ERROR("`%d' invalid for parameter `%s_%d'\n", ++ dwc_otg_module_params.dev_tx_fifo_size[i], ++ "dev_tx_fifo_size", i); ++ dwc_otg_module_params.dev_tx_fifo_size[i] = ++ dwc_param_dev_tx_fifo_size_default; ++ retval++; ++ } ++ } ++ } ++ DWC_OTG_PARAM_ERR(thr_ctl, 0, 7, "thr_ctl"); ++ DWC_OTG_PARAM_ERR(tx_thr_length, 8, 128, "tx_thr_length"); ++ DWC_OTG_PARAM_ERR(rx_thr_length, 8, 128, "rx_thr_length"); ++ ++ /* At this point, all module parameters that have been set by the user ++ * are valid, and those that have not are left unset. Now set their ++ * default values and/or check the parameters against the hardware ++ * configurations of the OTG core. */ ++ ++ ++ ++/* This sets the parameter to the default value if it has not been set by the ++ * user */ ++#define DWC_OTG_PARAM_SET_DEFAULT(_param_) \ ++ ({ \ ++ int changed = 1; \ ++ if (dwc_otg_module_params._param_ == -1) { \ ++ changed = 0; \ ++ dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \ ++ } \ ++ changed; \ ++ }) ++ ++/* This checks the macro agains the hardware configuration to see if it is ++ * valid. It is possible that the default value could be invalid. In this ++ * case, it will report a module error if the user touched the parameter. ++ * Otherwise it will adjust the value without any error. */ ++#define DWC_OTG_PARAM_CHECK_VALID(_param_,_str_,_is_valid_,_set_valid_) \ ++ ({ \ ++ int changed = DWC_OTG_PARAM_SET_DEFAULT(_param_); \ ++ int error = 0; \ ++ if (!(_is_valid_)) { \ ++ if (changed) { \ ++ DWC_ERROR("`%d' invalid for parameter `%s'. Check HW configuration.\n", dwc_otg_module_params._param_,_str_); \ ++ error = 1; \ ++ } \ ++ dwc_otg_module_params._param_ = (_set_valid_); \ ++ } \ ++ error; \ ++ }) ++ ++ /* OTG Cap */ ++ retval += DWC_OTG_PARAM_CHECK_VALID(otg_cap,"otg_cap", ++ ({ ++ int valid; ++ valid = 1; ++ switch (dwc_otg_module_params.otg_cap) { ++ case DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE: ++ if (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) valid = 0; ++ break; ++ case DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE: ++ if ((core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) && ++ (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) && ++ (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) && ++ (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) ++ { ++ valid = 0; ++ } ++ break; ++ case DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE: ++ /* always valid */ ++ break; ++ } ++ valid; ++ }), ++ (((core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) || ++ (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) || ++ (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) || ++ (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) ? ++ DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE : ++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE)); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(dma_enable,"dma_enable", ++ ((dwc_otg_module_params.dma_enable == 1) && (core_if->hwcfg2.b.architecture == 0)) ? 0 : 1, ++ 0); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(opt,"opt", ++ 1, ++ 0); ++ ++ DWC_OTG_PARAM_SET_DEFAULT(dma_burst_size); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(host_support_fs_ls_low_power, ++ "host_support_fs_ls_low_power", ++ 1, 0); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(enable_dynamic_fifo, ++ "enable_dynamic_fifo", ++ ((dwc_otg_module_params.enable_dynamic_fifo == 0) || ++ (core_if->hwcfg2.b.dynamic_fifo == 1)), 0); ++ ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(data_fifo_size, ++ "data_fifo_size", ++ (dwc_otg_module_params.data_fifo_size <= core_if->hwcfg3.b.dfifo_depth), ++ core_if->hwcfg3.b.dfifo_depth); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(dev_rx_fifo_size, ++ "dev_rx_fifo_size", ++ (dwc_otg_module_params.dev_rx_fifo_size <= dwc_read_reg32(&core_if->core_global_regs->grxfsiz)), ++ dwc_read_reg32(&core_if->core_global_regs->grxfsiz)); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(dev_nperio_tx_fifo_size, ++ "dev_nperio_tx_fifo_size", ++ (dwc_otg_module_params.dev_nperio_tx_fifo_size <= (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)), ++ (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(host_rx_fifo_size, ++ "host_rx_fifo_size", ++ (dwc_otg_module_params.host_rx_fifo_size <= dwc_read_reg32(&core_if->core_global_regs->grxfsiz)), ++ dwc_read_reg32(&core_if->core_global_regs->grxfsiz)); ++ ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(host_nperio_tx_fifo_size, ++ "host_nperio_tx_fifo_size", ++ (dwc_otg_module_params.host_nperio_tx_fifo_size <= (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)), ++ (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(host_perio_tx_fifo_size, ++ "host_perio_tx_fifo_size", ++ (dwc_otg_module_params.host_perio_tx_fifo_size <= ((dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16))), ++ ((dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16))); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(max_transfer_size, ++ "max_transfer_size", ++ (dwc_otg_module_params.max_transfer_size < (1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11))), ++ ((1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11)) - 1)); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(max_packet_count, ++ "max_packet_count", ++ (dwc_otg_module_params.max_packet_count < (1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4))), ++ ((1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4)) - 1)); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(host_channels, ++ "host_channels", ++ (dwc_otg_module_params.host_channels <= (core_if->hwcfg2.b.num_host_chan + 1)), ++ (core_if->hwcfg2.b.num_host_chan + 1)); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(dev_endpoints, ++ "dev_endpoints", ++ (dwc_otg_module_params.dev_endpoints <= (core_if->hwcfg2.b.num_dev_ep)), ++ core_if->hwcfg2.b.num_dev_ep); ++ ++/* ++ * Define the following to disable the FS PHY Hardware checking. This is for ++ * internal testing only. ++ * ++ * #define NO_FS_PHY_HW_CHECKS ++ */ ++ ++#ifdef NO_FS_PHY_HW_CHECKS ++ retval += DWC_OTG_PARAM_CHECK_VALID(phy_type, ++ "phy_type", 1, 0); ++#else ++ retval += DWC_OTG_PARAM_CHECK_VALID(phy_type, ++ "phy_type", ++ ({ ++ int valid = 0; ++ if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_UTMI) && ++ ((core_if->hwcfg2.b.hs_phy_type == 1) || ++ (core_if->hwcfg2.b.hs_phy_type == 3))) ++ { ++ valid = 1; ++ } ++ else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_ULPI) && ++ ((core_if->hwcfg2.b.hs_phy_type == 2) || ++ (core_if->hwcfg2.b.hs_phy_type == 3))) ++ { ++ valid = 1; ++ } ++ else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) && ++ (core_if->hwcfg2.b.fs_phy_type == 1)) ++ { ++ valid = 1; ++ } ++ valid; ++ }), ++ ({ ++ int set = DWC_PHY_TYPE_PARAM_FS; ++ if (core_if->hwcfg2.b.hs_phy_type) { ++ if ((core_if->hwcfg2.b.hs_phy_type == 3) || ++ (core_if->hwcfg2.b.hs_phy_type == 1)) { ++ set = DWC_PHY_TYPE_PARAM_UTMI; ++ } ++ else { ++ set = DWC_PHY_TYPE_PARAM_ULPI; ++ } ++ } ++ set; ++ })); ++#endif ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(speed,"speed", ++ (dwc_otg_module_params.speed == 0) && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1, ++ dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS ? 1 : 0); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(host_ls_low_power_phy_clk, ++ "host_ls_low_power_phy_clk", ++ ((dwc_otg_module_params.host_ls_low_power_phy_clk == DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ) && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1), ++ ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ : DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ)); ++ ++ DWC_OTG_PARAM_SET_DEFAULT(phy_ulpi_ddr); ++ DWC_OTG_PARAM_SET_DEFAULT(phy_ulpi_ext_vbus); ++ DWC_OTG_PARAM_SET_DEFAULT(phy_utmi_width); ++ DWC_OTG_PARAM_SET_DEFAULT(ulpi_fs_ls); ++ DWC_OTG_PARAM_SET_DEFAULT(ts_dline); ++ ++#ifdef NO_FS_PHY_HW_CHECKS ++ retval += DWC_OTG_PARAM_CHECK_VALID(i2c_enable, ++ "i2c_enable", 1, 0); ++#else ++ retval += DWC_OTG_PARAM_CHECK_VALID(i2c_enable, ++ "i2c_enable", ++ (dwc_otg_module_params.i2c_enable == 1) && (core_if->hwcfg3.b.i2c == 0) ? 0 : 1, ++ 0); ++#endif ++ ++ for (i=0; i<16; i++) { ++ ++ int changed = 1; ++ int error = 0; ++ ++ if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] == -1) { ++ changed = 0; ++ dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_param_dev_perio_tx_fifo_size_default; ++ } ++ if (!(dwc_otg_module_params.dev_perio_tx_fifo_size[i] <= (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i])))) { ++ if (changed) { ++ DWC_ERROR("`%d' invalid for parameter `dev_perio_fifo_size_%d'. Check HW configuration.\n", dwc_otg_module_params.dev_perio_tx_fifo_size[i],i); ++ error = 1; ++ } ++ dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i]); ++ } ++ retval += error; ++ } ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(en_multiple_tx_fifo, ++ "en_multiple_tx_fifo", ++ ((dwc_otg_module_params.en_multiple_tx_fifo == 1) && ++ (core_if->hwcfg4.b.ded_fifo_en == 0)) ? 0 : 1, 0); ++ ++ for (i = 0; i < 16; i++) { ++ int changed = 1; ++ int error = 0; ++ if (dwc_otg_module_params.dev_tx_fifo_size[i] == -1) { ++ changed = 0; ++ dwc_otg_module_params.dev_tx_fifo_size[i] = ++ dwc_param_dev_tx_fifo_size_default; ++ } ++ if (!(dwc_otg_module_params.dev_tx_fifo_size[i] <= ++ (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i])))) { ++ if (changed) { ++ DWC_ERROR("%d' invalid for parameter `dev_perio_fifo_size_%d'." ++ "Check HW configuration.\n",dwc_otg_module_params.dev_tx_fifo_size[i],i); ++ error = 1; ++ } ++ dwc_otg_module_params.dev_tx_fifo_size[i] = ++ dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i]); ++ } ++ retval += error; ++ } ++ DWC_OTG_PARAM_SET_DEFAULT(thr_ctl); ++ DWC_OTG_PARAM_SET_DEFAULT(tx_thr_length); ++ DWC_OTG_PARAM_SET_DEFAULT(rx_thr_length); ++ return retval; ++} // check_parameters ++ ++ ++/** ++ * This function is the top level interrupt handler for the Common ++ * (Device and host modes) interrupts. ++ */ ++static irqreturn_t dwc_otg_common_irq(int _irq, void *_dev) ++{ ++ dwc_otg_device_t *otg_dev = _dev; ++ int32_t retval = IRQ_NONE; ++ ++ retval = dwc_otg_handle_common_intr( otg_dev->core_if ); ++ ++ mask_and_ack_ifx_irq (_irq); ++ ++ return IRQ_RETVAL(retval); ++} ++ ++ ++/** ++ * This function is called when a DWC_OTG device is unregistered with the ++ * dwc_otg_driver. This happens, for example, when the rmmod command is ++ * executed. The device may or may not be electrically present. If it is ++ * present, the driver stops device processing. Any resources used on behalf ++ * of this device are freed. ++ * ++ * @return ++ */ ++static int ++dwc_otg_driver_remove(struct platform_device *_dev) ++{ ++ //dwc_otg_device_t *otg_dev = dev_get_drvdata(&_dev->dev); ++ dwc_otg_device_t *otg_dev = platform_get_drvdata(_dev); ++ ++ DWC_DEBUGPL(DBG_ANY, "%s(%p)\n", __func__, _dev); ++ ++ if (otg_dev == NULL) { ++ /* Memory allocation for the dwc_otg_device failed. */ ++ return 0; ++ } ++ ++ /* ++ * Free the IRQ ++ */ ++ if (otg_dev->common_irq_installed) { ++ free_irq( otg_dev->irq, otg_dev ); ++ } ++ ++#ifndef DWC_DEVICE_ONLY ++ if (otg_dev->hcd != NULL) { ++ dwc_otg_hcd_remove(&_dev->dev); ++ } ++#endif ++ printk("after removehcd\n"); ++ ++// Note: Integrate HOST and DEVICE(Gadget) is not planned yet. ++#ifndef DWC_HOST_ONLY ++ if (otg_dev->pcd != NULL) { ++ dwc_otg_pcd_remove(otg_dev); ++ } ++#endif ++ if (otg_dev->core_if != NULL) { ++ dwc_otg_cil_remove( otg_dev->core_if ); ++ } ++ printk("after removecil\n"); ++ ++ /* ++ * Remove the device attributes ++ */ ++ dwc_otg_attr_remove(&_dev->dev); ++ printk("after removeattr\n"); ++ ++ /* ++ * Return the memory. ++ */ ++ if (otg_dev->base != NULL) { ++ iounmap(otg_dev->base); ++ } ++ if (otg_dev->phys_addr != 0) { ++ release_mem_region(otg_dev->phys_addr, otg_dev->base_len); ++ } ++ kfree(otg_dev); ++ ++ /* ++ * Clear the drvdata pointer. ++ */ ++ //dev_set_drvdata(&_dev->dev, 0); ++ platform_set_drvdata(_dev, 0); ++ return 0; ++} ++ ++/** ++ * This function is called when an DWC_OTG device is bound to a ++ * dwc_otg_driver. It creates the driver components required to ++ * control the device (CIL, HCD, and PCD) and it initializes the ++ * device. The driver components are stored in a dwc_otg_device ++ * structure. A reference to the dwc_otg_device is saved in the ++ * lm_device. This allows the driver to access the dwc_otg_device ++ * structure on subsequent calls to driver methods for this device. ++ * ++ * @return ++ */ ++static int __devinit ++dwc_otg_driver_probe(struct platform_device *_dev) ++{ ++ int retval = 0; ++ dwc_otg_device_t *dwc_otg_device; ++ int pin = (int)_dev->dev.platform_data; ++ int32_t snpsid; ++ struct resource *res; ++ gusbcfg_data_t usbcfg = {.d32 = 0}; ++ ++ // GPIOs ++ if(pin >= 0) ++ { ++ gpio_request(pin, "usb_power"); ++ gpio_direction_output(pin, 1); ++ gpio_set_value(pin, 1); ++ gpio_export(pin, 0); ++ } ++ dev_dbg(&_dev->dev, "dwc_otg_driver_probe (%p)\n", _dev); ++ ++ dwc_otg_device = kmalloc(sizeof(dwc_otg_device_t), GFP_KERNEL); ++ if (dwc_otg_device == 0) { ++ dev_err(&_dev->dev, "kmalloc of dwc_otg_device failed\n"); ++ retval = -ENOMEM; ++ goto fail; ++ } ++ memset(dwc_otg_device, 0, sizeof(*dwc_otg_device)); ++ dwc_otg_device->reg_offset = 0xFFFFFFFF; ++ ++ /* ++ * Retrieve the memory and IRQ resources. ++ */ ++ dwc_otg_device->irq = platform_get_irq(_dev, 0); ++ if (dwc_otg_device->irq == 0) { ++ dev_err(&_dev->dev, "no device irq\n"); ++ retval = -ENODEV; ++ goto fail; ++ } ++ dev_dbg(&_dev->dev, "OTG - device irq: %d\n", dwc_otg_device->irq); ++ res = platform_get_resource(_dev, IORESOURCE_MEM, 0); ++ if (res == NULL) { ++ dev_err(&_dev->dev, "no CSR address\n"); ++ retval = -ENODEV; ++ goto fail; ++ } ++ dev_dbg(&_dev->dev, "OTG - ioresource_mem start0x%08x: end:0x%08x\n", ++ (unsigned)res->start, (unsigned)res->end); ++ dwc_otg_device->phys_addr = res->start; ++ dwc_otg_device->base_len = res->end - res->start + 1; ++ if (request_mem_region(dwc_otg_device->phys_addr, dwc_otg_device->base_len, ++ dwc_driver_name) == NULL) { ++ dev_err(&_dev->dev, "request_mem_region failed\n"); ++ retval = -EBUSY; ++ goto fail; ++ } ++ ++ /* ++ * Map the DWC_otg Core memory into virtual address space. ++ */ ++ dwc_otg_device->base = ioremap_nocache(dwc_otg_device->phys_addr, dwc_otg_device->base_len); ++ if (dwc_otg_device->base == NULL) { ++ dev_err(&_dev->dev, "ioremap() failed\n"); ++ retval = -ENOMEM; ++ goto fail; ++ } ++ dev_dbg(&_dev->dev, "mapped base=0x%08x\n", (unsigned)dwc_otg_device->base); ++ ++ /* ++ * Attempt to ensure this device is really a DWC_otg Controller. ++ * Read and verify the SNPSID register contents. The value should be ++ * 0x45F42XXX, which corresponds to "OT2", as in "OTG version 2.XX". ++ */ ++ snpsid = dwc_read_reg32((uint32_t *)((uint8_t *)dwc_otg_device->base + 0x40)); ++ if ((snpsid & 0xFFFFF000) != 0x4F542000) { ++ dev_err(&_dev->dev, "Bad value for SNPSID: 0x%08x\n", snpsid); ++ retval = -EINVAL; ++ goto fail; ++ } ++ ++ /* ++ * Initialize driver data to point to the global DWC_otg ++ * Device structure. ++ */ ++ platform_set_drvdata(_dev, dwc_otg_device); ++ dev_dbg(&_dev->dev, "dwc_otg_device=0x%p\n", dwc_otg_device); ++ dwc_otg_device->core_if = dwc_otg_cil_init( dwc_otg_device->base, &dwc_otg_module_params); ++ if (dwc_otg_device->core_if == 0) { ++ dev_err(&_dev->dev, "CIL initialization failed!\n"); ++ retval = -ENOMEM; ++ goto fail; ++ } ++ ++ /* ++ * Validate parameter values. ++ */ ++ if (check_parameters(dwc_otg_device->core_if) != 0) { ++ retval = -EINVAL; ++ goto fail; ++ } ++ ++ /* Added for PLB DMA phys virt mapping */ ++ //dwc_otg_device->core_if->phys_addr = dwc_otg_device->phys_addr; ++ /* ++ * Create Device Attributes in sysfs ++ */ ++ dwc_otg_attr_create (&_dev->dev); ++ ++ /* ++ * Disable the global interrupt until all the interrupt ++ * handlers are installed. ++ */ ++ dwc_otg_disable_global_interrupts( dwc_otg_device->core_if ); ++ /* ++ * Install the interrupt handler for the common interrupts before ++ * enabling common interrupts in core_init below. ++ */ ++ DWC_DEBUGPL( DBG_CIL, "registering (common) handler for irq%d\n", dwc_otg_device->irq); ++ ++ retval = request_irq((unsigned int)dwc_otg_device->irq, dwc_otg_common_irq, ++ //SA_INTERRUPT|SA_SHIRQ, "dwc_otg", (void *)dwc_otg_device ); ++ IRQF_SHARED, "dwc_otg", (void *)dwc_otg_device ); ++ //IRQF_DISABLED, "dwc_otg", (void *)dwc_otg_device ); ++ if (retval != 0) { ++ DWC_ERROR("request of irq%d failed retval: %d\n", dwc_otg_device->irq, retval); ++ retval = -EBUSY; ++ goto fail; ++ } else { ++ dwc_otg_device->common_irq_installed = 1; ++ } ++ ++ /* ++ * Initialize the DWC_otg core. ++ */ ++ dwc_otg_core_init( dwc_otg_device->core_if ); ++ ++ ++#ifndef DWC_HOST_ONLY // otg device mode. (gadget.) ++ /* ++ * Initialize the PCD ++ */ ++ retval = dwc_otg_pcd_init(dwc_otg_device); ++ if (retval != 0) { ++ DWC_ERROR("dwc_otg_pcd_init failed\n"); ++ dwc_otg_device->pcd = NULL; ++ goto fail; ++ } ++#endif // DWC_HOST_ONLY ++ ++#ifndef DWC_DEVICE_ONLY // otg host mode. (HCD) ++ /* ++ * Initialize the HCD ++ */ ++#if 1 /*fscz*/ ++ /* force_host_mode */ ++ usbcfg.d32 = dwc_read_reg32(&dwc_otg_device->core_if->core_global_regs ->gusbcfg); ++ usbcfg.b.force_host_mode = 1; ++ dwc_write_reg32(&dwc_otg_device->core_if->core_global_regs ->gusbcfg, usbcfg.d32); ++#endif ++ retval = dwc_otg_hcd_init(&_dev->dev, dwc_otg_device); ++ if (retval != 0) { ++ DWC_ERROR("dwc_otg_hcd_init failed\n"); ++ dwc_otg_device->hcd = NULL; ++ goto fail; ++ } ++#endif // DWC_DEVICE_ONLY ++ ++ /* ++ * Enable the global interrupt after all the interrupt ++ * handlers are installed. ++ */ ++ dwc_otg_enable_global_interrupts( dwc_otg_device->core_if ); ++#if 0 /*fscz*/ ++ usbcfg.d32 = dwc_read_reg32(&dwc_otg_device->core_if->core_global_regs ->gusbcfg); ++ usbcfg.b.force_host_mode = 0; ++ dwc_write_reg32(&dwc_otg_device->core_if->core_global_regs ->gusbcfg, usbcfg.d32); ++#endif ++ ++ ++ return 0; ++ ++fail: ++ dwc_otg_driver_remove(_dev); ++ return retval; ++} ++ ++/** ++ * This structure defines the methods to be called by a bus driver ++ * during the lifecycle of a device on that bus. Both drivers and ++ * devices are registered with a bus driver. The bus driver matches ++ * devices to drivers based on information in the device and driver ++ * structures. ++ * ++ * The probe function is called when the bus driver matches a device ++ * to this driver. The remove function is called when a device is ++ * unregistered with the bus driver. ++ */ ++struct platform_driver dwc_otg_driver = { ++ .probe = dwc_otg_driver_probe, ++ .remove = dwc_otg_driver_remove, ++// .suspend = dwc_otg_driver_suspend, ++// .resume = dwc_otg_driver_resume, ++ .driver = { ++ .name = dwc_driver_name, ++ .owner = THIS_MODULE, ++ }, ++}; ++EXPORT_SYMBOL(dwc_otg_driver); ++ ++/** ++ * This function is called when the dwc_otg_driver is installed with the ++ * insmod command. It registers the dwc_otg_driver structure with the ++ * appropriate bus driver. This will cause the dwc_otg_driver_probe function ++ * to be called. In addition, the bus driver will automatically expose ++ * attributes defined for the device and driver in the special sysfs file ++ * system. ++ * ++ * @return ++ */ ++static int __init dwc_otg_init(void) ++{ ++ int retval = 0; ++ ++ printk(KERN_INFO "%s: version %s\n", dwc_driver_name, DWC_DRIVER_VERSION); ++ ++ // ifxmips setup ++ retval = ifx_usb_hc_init(dwc_iomem_base, dwc_irq); ++ if (retval < 0) ++ { ++ printk(KERN_ERR "%s retval=%d\n", __func__, retval); ++ return retval; ++ } ++ dwc_otg_power_on(); // ifx only!! ++ ++ ++ retval = platform_driver_register(&dwc_otg_driver); ++ ++ if (retval < 0) { ++ printk(KERN_ERR "%s retval=%d\n", __func__, retval); ++ goto error1; ++ } ++ ++ retval = driver_create_file(&dwc_otg_driver.driver, &driver_attr_version); ++ if (retval < 0) ++ { ++ printk(KERN_ERR "%s retval=%d\n", __func__, retval); ++ goto error2; ++ } ++ retval = driver_create_file(&dwc_otg_driver.driver, &driver_attr_debuglevel); ++ if (retval < 0) ++ { ++ printk(KERN_ERR "%s retval=%d\n", __func__, retval); ++ goto error3; ++ } ++ return retval; ++ ++ ++error3: ++ driver_remove_file(&dwc_otg_driver.driver, &driver_attr_version); ++error2: ++ driver_unregister(&dwc_otg_driver.driver); ++error1: ++ ifx_usb_hc_remove(); ++ return retval; ++} ++module_init(dwc_otg_init); ++ ++/** ++ * This function is called when the driver is removed from the kernel ++ * with the rmmod command. The driver unregisters itself with its bus ++ * driver. ++ * ++ */ ++static void __exit dwc_otg_cleanup(void) ++{ ++ printk(KERN_DEBUG "dwc_otg_cleanup()\n"); ++ ++ driver_remove_file(&dwc_otg_driver.driver, &driver_attr_debuglevel); ++ driver_remove_file(&dwc_otg_driver.driver, &driver_attr_version); ++ ++ platform_driver_unregister(&dwc_otg_driver); ++ ifx_usb_hc_remove(); ++ ++ printk(KERN_INFO "%s module removed\n", dwc_driver_name); ++} ++module_exit(dwc_otg_cleanup); ++ ++MODULE_DESCRIPTION(DWC_DRIVER_DESC); ++MODULE_AUTHOR("Synopsys Inc."); ++MODULE_LICENSE("GPL"); ++ ++module_param_named(otg_cap, dwc_otg_module_params.otg_cap, int, 0444); ++MODULE_PARM_DESC(otg_cap, "OTG Capabilities 0=HNP&SRP 1=SRP Only 2=None"); ++module_param_named(opt, dwc_otg_module_params.opt, int, 0444); ++MODULE_PARM_DESC(opt, "OPT Mode"); ++module_param_named(dma_enable, dwc_otg_module_params.dma_enable, int, 0444); ++MODULE_PARM_DESC(dma_enable, "DMA Mode 0=Slave 1=DMA enabled"); ++module_param_named(dma_burst_size, dwc_otg_module_params.dma_burst_size, int, 0444); ++MODULE_PARM_DESC(dma_burst_size, "DMA Burst Size 1, 4, 8, 16, 32, 64, 128, 256"); ++module_param_named(speed, dwc_otg_module_params.speed, int, 0444); ++MODULE_PARM_DESC(speed, "Speed 0=High Speed 1=Full Speed"); ++module_param_named(host_support_fs_ls_low_power, dwc_otg_module_params.host_support_fs_ls_low_power, int, 0444); ++MODULE_PARM_DESC(host_support_fs_ls_low_power, "Support Low Power w/FS or LS 0=Support 1=Don't Support"); ++module_param_named(host_ls_low_power_phy_clk, dwc_otg_module_params.host_ls_low_power_phy_clk, int, 0444); ++MODULE_PARM_DESC(host_ls_low_power_phy_clk, "Low Speed Low Power Clock 0=48Mhz 1=6Mhz"); ++module_param_named(enable_dynamic_fifo, dwc_otg_module_params.enable_dynamic_fifo, int, 0444); ++MODULE_PARM_DESC(enable_dynamic_fifo, "0=cC Setting 1=Allow Dynamic Sizing"); ++module_param_named(data_fifo_size, dwc_otg_module_params.data_fifo_size, int, 0444); ++MODULE_PARM_DESC(data_fifo_size, "Total number of words in the data FIFO memory 32-32768"); ++module_param_named(dev_rx_fifo_size, dwc_otg_module_params.dev_rx_fifo_size, int, 0444); ++MODULE_PARM_DESC(dev_rx_fifo_size, "Number of words in the Rx FIFO 16-32768"); ++module_param_named(dev_nperio_tx_fifo_size, dwc_otg_module_params.dev_nperio_tx_fifo_size, int, 0444); ++MODULE_PARM_DESC(dev_nperio_tx_fifo_size, "Number of words in the non-periodic Tx FIFO 16-32768"); ++module_param_named(dev_perio_tx_fifo_size_1, dwc_otg_module_params.dev_perio_tx_fifo_size[0], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_1, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_2, dwc_otg_module_params.dev_perio_tx_fifo_size[1], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_2, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_3, dwc_otg_module_params.dev_perio_tx_fifo_size[2], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_3, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_4, dwc_otg_module_params.dev_perio_tx_fifo_size[3], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_4, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_5, dwc_otg_module_params.dev_perio_tx_fifo_size[4], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_5, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_6, dwc_otg_module_params.dev_perio_tx_fifo_size[5], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_6, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_7, dwc_otg_module_params.dev_perio_tx_fifo_size[6], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_7, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_8, dwc_otg_module_params.dev_perio_tx_fifo_size[7], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_8, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_9, dwc_otg_module_params.dev_perio_tx_fifo_size[8], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_9, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_10, dwc_otg_module_params.dev_perio_tx_fifo_size[9], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_10, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_11, dwc_otg_module_params.dev_perio_tx_fifo_size[10], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_11, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_12, dwc_otg_module_params.dev_perio_tx_fifo_size[11], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_12, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_13, dwc_otg_module_params.dev_perio_tx_fifo_size[12], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_13, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_14, dwc_otg_module_params.dev_perio_tx_fifo_size[13], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_14, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_15, dwc_otg_module_params.dev_perio_tx_fifo_size[14], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_15, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(host_rx_fifo_size, dwc_otg_module_params.host_rx_fifo_size, int, 0444); ++MODULE_PARM_DESC(host_rx_fifo_size, "Number of words in the Rx FIFO 16-32768"); ++module_param_named(host_nperio_tx_fifo_size, dwc_otg_module_params.host_nperio_tx_fifo_size, int, 0444); ++MODULE_PARM_DESC(host_nperio_tx_fifo_size, "Number of words in the non-periodic Tx FIFO 16-32768"); ++module_param_named(host_perio_tx_fifo_size, dwc_otg_module_params.host_perio_tx_fifo_size, int, 0444); ++MODULE_PARM_DESC(host_perio_tx_fifo_size, "Number of words in the host periodic Tx FIFO 16-32768"); ++module_param_named(max_transfer_size, dwc_otg_module_params.max_transfer_size, int, 0444); ++/** @todo Set the max to 512K, modify checks */ ++MODULE_PARM_DESC(max_transfer_size, "The maximum transfer size supported in bytes 2047-65535"); ++module_param_named(max_packet_count, dwc_otg_module_params.max_packet_count, int, 0444); ++MODULE_PARM_DESC(max_packet_count, "The maximum number of packets in a transfer 15-511"); ++module_param_named(host_channels, dwc_otg_module_params.host_channels, int, 0444); ++MODULE_PARM_DESC(host_channels, "The number of host channel registers to use 1-16"); ++module_param_named(dev_endpoints, dwc_otg_module_params.dev_endpoints, int, 0444); ++MODULE_PARM_DESC(dev_endpoints, "The number of endpoints in addition to EP0 available for device mode 1-15"); ++module_param_named(phy_type, dwc_otg_module_params.phy_type, int, 0444); ++MODULE_PARM_DESC(phy_type, "0=Reserved 1=UTMI+ 2=ULPI"); ++module_param_named(phy_utmi_width, dwc_otg_module_params.phy_utmi_width, int, 0444); ++MODULE_PARM_DESC(phy_utmi_width, "Specifies the UTMI+ Data Width 8 or 16 bits"); ++module_param_named(phy_ulpi_ddr, dwc_otg_module_params.phy_ulpi_ddr, int, 0444); ++MODULE_PARM_DESC(phy_ulpi_ddr, "ULPI at double or single data rate 0=Single 1=Double"); ++module_param_named(phy_ulpi_ext_vbus, dwc_otg_module_params.phy_ulpi_ext_vbus, int, 0444); ++MODULE_PARM_DESC(phy_ulpi_ext_vbus, "ULPI PHY using internal or external vbus 0=Internal"); ++module_param_named(i2c_enable, dwc_otg_module_params.i2c_enable, int, 0444); ++MODULE_PARM_DESC(i2c_enable, "FS PHY Interface"); ++module_param_named(ulpi_fs_ls, dwc_otg_module_params.ulpi_fs_ls, int, 0444); ++MODULE_PARM_DESC(ulpi_fs_ls, "ULPI PHY FS/LS mode only"); ++module_param_named(ts_dline, dwc_otg_module_params.ts_dline, int, 0444); ++MODULE_PARM_DESC(ts_dline, "Term select Dline pulsing for all PHYs"); ++module_param_named(debug, g_dbg_lvl, int, 0444); ++MODULE_PARM_DESC(debug, "0"); ++module_param_named(en_multiple_tx_fifo, ++ dwc_otg_module_params.en_multiple_tx_fifo, int, 0444); ++MODULE_PARM_DESC(en_multiple_tx_fifo, ++ "Dedicated Non Periodic Tx FIFOs 0=disabled 1=enabled"); ++module_param_named(dev_tx_fifo_size_1, ++ dwc_otg_module_params.dev_tx_fifo_size[0], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_1, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_2, ++ dwc_otg_module_params.dev_tx_fifo_size[1], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_2, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_3, ++ dwc_otg_module_params.dev_tx_fifo_size[2], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_3, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_4, ++ dwc_otg_module_params.dev_tx_fifo_size[3], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_4, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_5, ++ dwc_otg_module_params.dev_tx_fifo_size[4], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_5, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_6, ++ dwc_otg_module_params.dev_tx_fifo_size[5], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_6, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_7, ++ dwc_otg_module_params.dev_tx_fifo_size[6], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_7, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_8, ++ dwc_otg_module_params.dev_tx_fifo_size[7], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_8, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_9, ++ dwc_otg_module_params.dev_tx_fifo_size[8], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_9, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_10, ++ dwc_otg_module_params.dev_tx_fifo_size[9], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_10, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_11, ++ dwc_otg_module_params.dev_tx_fifo_size[10], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_11, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_12, ++ dwc_otg_module_params.dev_tx_fifo_size[11], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_12, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_13, ++ dwc_otg_module_params.dev_tx_fifo_size[12], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_13, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_14, ++ dwc_otg_module_params.dev_tx_fifo_size[13], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_14, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_15, ++ dwc_otg_module_params.dev_tx_fifo_size[14], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_15, "Number of words in the Tx FIFO 4-768"); ++module_param_named(thr_ctl, dwc_otg_module_params.thr_ctl, int, 0444); ++MODULE_PARM_DESC(thr_ctl, "Thresholding enable flag bit" ++ "0 - non ISO Tx thr., 1 - ISO Tx thr., 2 - Rx thr.- bit 0=disabled 1=enabled"); ++module_param_named(tx_thr_length, dwc_otg_module_params.tx_thr_length, int, 0444); ++MODULE_PARM_DESC(tx_thr_length, "Tx Threshold length in 32 bit DWORDs"); ++module_param_named(rx_thr_length, dwc_otg_module_params.rx_thr_length, int, 0444); ++MODULE_PARM_DESC(rx_thr_length, "Rx Threshold length in 32 bit DWORDs"); ++module_param_named (iomem_base, dwc_iomem_base, ulong, 0444); ++MODULE_PARM_DESC (dwc_iomem_base, "The base address of the DWC_OTG register."); ++module_param_named (irq, dwc_irq, int, 0444); ++MODULE_PARM_DESC (dwc_irq, "The interrupt number"); ++ ++/** @page "Module Parameters" ++ * ++ * The following parameters may be specified when starting the module. ++ * These parameters define how the DWC_otg controller should be ++ * configured. Parameter values are passed to the CIL initialization ++ * function dwc_otg_cil_init ++ * ++ * Example: <code>modprobe dwc_otg speed=1 otg_cap=1</code> ++ * ++ ++ <table> ++ <tr><td>Parameter Name</td><td>Meaning</td></tr> ++ ++ <tr> ++ <td>otg_cap</td> ++ <td>Specifies the OTG capabilities. The driver will automatically detect the ++ value for this parameter if none is specified. ++ - 0: HNP and SRP capable (default, if available) ++ - 1: SRP Only capable ++ - 2: No HNP/SRP capable ++ </td></tr> ++ ++ <tr> ++ <td>dma_enable</td> ++ <td>Specifies whether to use slave or DMA mode for accessing the data FIFOs. ++ The driver will automatically detect the value for this parameter if none is ++ specified. ++ - 0: Slave ++ - 1: DMA (default, if available) ++ </td></tr> ++ ++ <tr> ++ <td>dma_burst_size</td> ++ <td>The DMA Burst size (applicable only for External DMA Mode). ++ - Values: 1, 4, 8 16, 32, 64, 128, 256 (default 32) ++ </td></tr> ++ ++ <tr> ++ <td>speed</td> ++ <td>Specifies the maximum speed of operation in host and device mode. The ++ actual speed depends on the speed of the attached device and the value of ++ phy_type. ++ - 0: High Speed (default) ++ - 1: Full Speed ++ </td></tr> ++ ++ <tr> ++ <td>host_support_fs_ls_low_power</td> ++ <td>Specifies whether low power mode is supported when attached to a Full ++ Speed or Low Speed device in host mode. ++ - 0: Don't support low power mode (default) ++ - 1: Support low power mode ++ </td></tr> ++ ++ <tr> ++ <td>host_ls_low_power_phy_clk</td> ++ <td>Specifies the PHY clock rate in low power mode when connected to a Low ++ Speed device in host mode. This parameter is applicable only if ++ HOST_SUPPORT_FS_LS_LOW_POWER is enabled. ++ - 0: 48 MHz (default) ++ - 1: 6 MHz ++ </td></tr> ++ ++ <tr> ++ <td>enable_dynamic_fifo</td> ++ <td> Specifies whether FIFOs may be resized by the driver software. ++ - 0: Use cC FIFO size parameters ++ - 1: Allow dynamic FIFO sizing (default) ++ </td></tr> ++ ++ <tr> ++ <td>data_fifo_size</td> ++ <td>Total number of 4-byte words in the data FIFO memory. This memory ++ includes the Rx FIFO, non-periodic Tx FIFO, and periodic Tx FIFOs. ++ - Values: 32 to 32768 (default 8192) ++ ++ Note: The total FIFO memory depth in the FPGA configuration is 8192. ++ </td></tr> ++ ++ <tr> ++ <td>dev_rx_fifo_size</td> ++ <td>Number of 4-byte words in the Rx FIFO in device mode when dynamic ++ FIFO sizing is enabled. ++ - Values: 16 to 32768 (default 1064) ++ </td></tr> ++ ++ <tr> ++ <td>dev_nperio_tx_fifo_size</td> ++ <td>Number of 4-byte words in the non-periodic Tx FIFO in device mode when ++ dynamic FIFO sizing is enabled. ++ - Values: 16 to 32768 (default 1024) ++ </td></tr> ++ ++ <tr> ++ <td>dev_perio_tx_fifo_size_n (n = 1 to 15)</td> ++ <td>Number of 4-byte words in each of the periodic Tx FIFOs in device mode ++ when dynamic FIFO sizing is enabled. ++ - Values: 4 to 768 (default 256) ++ </td></tr> ++ ++ <tr> ++ <td>host_rx_fifo_size</td> ++ <td>Number of 4-byte words in the Rx FIFO in host mode when dynamic FIFO ++ sizing is enabled. ++ - Values: 16 to 32768 (default 1024) ++ </td></tr> ++ ++ <tr> ++ <td>host_nperio_tx_fifo_size</td> ++ <td>Number of 4-byte words in the non-periodic Tx FIFO in host mode when ++ dynamic FIFO sizing is enabled in the core. ++ - Values: 16 to 32768 (default 1024) ++ </td></tr> ++ ++ <tr> ++ <td>host_perio_tx_fifo_size</td> ++ <td>Number of 4-byte words in the host periodic Tx FIFO when dynamic FIFO ++ sizing is enabled. ++ - Values: 16 to 32768 (default 1024) ++ </td></tr> ++ ++ <tr> ++ <td>max_transfer_size</td> ++ <td>The maximum transfer size supported in bytes. ++ - Values: 2047 to 65,535 (default 65,535) ++ </td></tr> ++ ++ <tr> ++ <td>max_packet_count</td> ++ <td>The maximum number of packets in a transfer. ++ - Values: 15 to 511 (default 511) ++ </td></tr> ++ ++ <tr> ++ <td>host_channels</td> ++ <td>The number of host channel registers to use. ++ - Values: 1 to 16 (default 12) ++ ++ Note: The FPGA configuration supports a maximum of 12 host channels. ++ </td></tr> ++ ++ <tr> ++ <td>dev_endpoints</td> ++ <td>The number of endpoints in addition to EP0 available for device mode ++ operations. ++ - Values: 1 to 15 (default 6 IN and OUT) ++ ++ Note: The FPGA configuration supports a maximum of 6 IN and OUT endpoints in ++ addition to EP0. ++ </td></tr> ++ ++ <tr> ++ <td>phy_type</td> ++ <td>Specifies the type of PHY interface to use. By default, the driver will ++ automatically detect the phy_type. ++ - 0: Full Speed ++ - 1: UTMI+ (default, if available) ++ - 2: ULPI ++ </td></tr> ++ ++ <tr> ++ <td>phy_utmi_width</td> ++ <td>Specifies the UTMI+ Data Width. This parameter is applicable for a ++ phy_type of UTMI+. Also, this parameter is applicable only if the ++ OTG_HSPHY_WIDTH cC parameter was set to "8 and 16 bits", meaning that the ++ core has been configured to work at either data path width. ++ - Values: 8 or 16 bits (default 16) ++ </td></tr> ++ ++ <tr> ++ <td>phy_ulpi_ddr</td> ++ <td>Specifies whether the ULPI operates at double or single data rate. This ++ parameter is only applicable if phy_type is ULPI. ++ - 0: single data rate ULPI interface with 8 bit wide data bus (default) ++ - 1: double data rate ULPI interface with 4 bit wide data bus ++ </td></tr> ++ ++ <tr> ++ <td>i2c_enable</td> ++ <td>Specifies whether to use the I2C interface for full speed PHY. This ++ parameter is only applicable if PHY_TYPE is FS. ++ - 0: Disabled (default) ++ - 1: Enabled ++ </td></tr> ++ ++ <tr> ++ <td>otg_en_multiple_tx_fifo</td> ++ <td>Specifies whether dedicatedto tx fifos are enabled for non periodic IN EPs. ++ The driver will automatically detect the value for this parameter if none is ++ specified. ++ - 0: Disabled ++ - 1: Enabled (default, if available) ++ </td></tr> ++ ++ <tr> ++ <td>dev_tx_fifo_size_n (n = 1 to 15)</td> ++ <td>Number of 4-byte words in each of the Tx FIFOs in device mode ++ when dynamic FIFO sizing is enabled. ++ - Values: 4 to 768 (default 256) ++ </td></tr> ++ ++*/ +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_driver.h +@@ -0,0 +1,84 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_driver.h $ ++ * $Revision: 1.1.1.1 $ ++ * $Date: 2009-04-17 06:15:34 $ ++ * $Change: 510275 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++#if !defined(__DWC_OTG_DRIVER_H__) ++#define __DWC_OTG_DRIVER_H__ ++ ++/** @file ++ * This file contains the interface to the Linux driver. ++ */ ++#include "dwc_otg_cil.h" ++ ++/* Type declarations */ ++struct dwc_otg_pcd; ++struct dwc_otg_hcd; ++ ++/** ++ * This structure is a wrapper that encapsulates the driver components used to ++ * manage a single DWC_otg controller. ++ */ ++typedef struct dwc_otg_device ++{ ++ /** Base address returned from ioremap() */ ++ void *base; ++ ++ /** Pointer to the core interface structure. */ ++ dwc_otg_core_if_t *core_if; ++ ++ /** Register offset for Diagnostic API.*/ ++ uint32_t reg_offset; ++ ++ /** Pointer to the PCD structure. */ ++ struct dwc_otg_pcd *pcd; ++ ++ /** Pointer to the HCD structure. */ ++ struct dwc_otg_hcd *hcd; ++ ++ /** Flag to indicate whether the common IRQ handler is installed. */ ++ uint8_t common_irq_installed; ++ ++ /** Interrupt request number. */ ++ unsigned int irq; ++ ++ /** Physical address of Control and Status registers, used by ++ * release_mem_region(). ++ */ ++ resource_size_t phys_addr; ++ ++ /** Length of memory region, used by release_mem_region(). */ ++ unsigned long base_len; ++} dwc_otg_device_t; ++ ++//#define dev_dbg(fake, format, arg...) printk(KERN_CRIT __FILE__ ":%d: " format "\n" , __LINE__, ## arg) ++ ++#endif +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_hcd.c +@@ -0,0 +1,2870 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_hcd.c $ ++ * $Revision: 1.1.1.1 $ ++ * $Date: 2009-04-17 06:15:34 $ ++ * $Change: 631780 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++#ifndef DWC_DEVICE_ONLY ++ ++/** ++ * @file ++ * ++ * This file contains the implementation of the HCD. In Linux, the HCD ++ * implements the hc_driver API. ++ */ ++#include <linux/kernel.h> ++#include <linux/module.h> ++#include <linux/moduleparam.h> ++#include <linux/init.h> ++ ++#include <linux/device.h> ++ ++#include <linux/errno.h> ++#include <linux/list.h> ++#include <linux/interrupt.h> ++#include <linux/string.h> ++ ++#include <linux/dma-mapping.h> ++ ++#include "dwc_otg_driver.h" ++#include "dwc_otg_hcd.h" ++#include "dwc_otg_regs.h" ++ ++#include <asm/irq.h> ++#include "dwc_otg_ifx.h" // for Infineon platform specific. ++extern atomic_t release_later; ++ ++static u64 dma_mask = DMA_BIT_MASK(32); ++ ++static const char dwc_otg_hcd_name [] = "dwc_otg_hcd"; ++static const struct hc_driver dwc_otg_hc_driver = ++{ ++ .description = dwc_otg_hcd_name, ++ .product_desc = "DWC OTG Controller", ++ .hcd_priv_size = sizeof(dwc_otg_hcd_t), ++ .irq = dwc_otg_hcd_irq, ++ .flags = HCD_MEMORY | HCD_USB2, ++ //.reset = ++ .start = dwc_otg_hcd_start, ++ //.suspend = ++ //.resume = ++ .stop = dwc_otg_hcd_stop, ++ .urb_enqueue = dwc_otg_hcd_urb_enqueue, ++ .urb_dequeue = dwc_otg_hcd_urb_dequeue, ++ .endpoint_disable = dwc_otg_hcd_endpoint_disable, ++ .get_frame_number = dwc_otg_hcd_get_frame_number, ++ .hub_status_data = dwc_otg_hcd_hub_status_data, ++ .hub_control = dwc_otg_hcd_hub_control, ++ //.hub_suspend = ++ //.hub_resume = ++}; ++ ++ ++/** ++ * Work queue function for starting the HCD when A-Cable is connected. ++ * The dwc_otg_hcd_start() must be called in a process context. ++ */ ++static void hcd_start_func(struct work_struct *work) ++{ ++ struct dwc_otg_hcd *priv = ++ container_of(work, struct dwc_otg_hcd, start_work); ++ struct usb_hcd *usb_hcd = (struct usb_hcd *)priv->_p; ++ DWC_DEBUGPL(DBG_HCDV, "%s() %p\n", __func__, usb_hcd); ++ if (usb_hcd) { ++ dwc_otg_hcd_start(usb_hcd); ++ } ++} ++ ++ ++/** ++ * HCD Callback function for starting the HCD when A-Cable is ++ * connected. ++ * ++ * @param _p void pointer to the <code>struct usb_hcd</code> ++ */ ++static int32_t dwc_otg_hcd_start_cb(void *_p) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_p); ++ dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if; ++ hprt0_data_t hprt0; ++ if (core_if->op_state == B_HOST) { ++ /* ++ * Reset the port. During a HNP mode switch the reset ++ * needs to occur within 1ms and have a duration of at ++ * least 50ms. ++ */ ++ hprt0.d32 = dwc_otg_read_hprt0 (core_if); ++ hprt0.b.prtrst = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ ((struct usb_hcd *)_p)->self.is_b_host = 1; ++ } else { ++ ((struct usb_hcd *)_p)->self.is_b_host = 0; ++ } ++ /* Need to start the HCD in a non-interrupt context. */ ++ INIT_WORK(&dwc_otg_hcd->start_work, hcd_start_func); ++ dwc_otg_hcd->_p = _p; ++ schedule_work(&dwc_otg_hcd->start_work); ++ return 1; ++} ++ ++ ++/** ++ * HCD Callback function for stopping the HCD. ++ * ++ * @param _p void pointer to the <code>struct usb_hcd</code> ++ */ ++static int32_t dwc_otg_hcd_stop_cb( void *_p ) ++{ ++ struct usb_hcd *usb_hcd = (struct usb_hcd *)_p; ++ DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, _p); ++ dwc_otg_hcd_stop( usb_hcd ); ++ return 1; ++} ++static void del_xfer_timers(dwc_otg_hcd_t *_hcd) ++{ ++#ifdef DEBUG ++ int i; ++ int num_channels = _hcd->core_if->core_params->host_channels; ++ for (i = 0; i < num_channels; i++) { ++ del_timer(&_hcd->core_if->hc_xfer_timer[i]); ++ } ++#endif /* */ ++} ++ ++static void del_timers(dwc_otg_hcd_t *_hcd) ++{ ++ del_xfer_timers(_hcd); ++ del_timer(&_hcd->conn_timer); ++} ++ ++/** ++ * Processes all the URBs in a single list of QHs. Completes them with ++ * -ETIMEDOUT and frees the QTD. ++ */ ++static void kill_urbs_in_qh_list(dwc_otg_hcd_t * _hcd, ++ struct list_head *_qh_list) ++{ ++ struct list_head *qh_item; ++ dwc_otg_qh_t *qh; ++ struct list_head *qtd_item; ++ dwc_otg_qtd_t *qtd; ++ ++ list_for_each(qh_item, _qh_list) { ++ qh = list_entry(qh_item, dwc_otg_qh_t, qh_list_entry); ++ for (qtd_item = qh->qtd_list.next; qtd_item != &qh->qtd_list; ++ qtd_item = qh->qtd_list.next) { ++ qtd = list_entry(qtd_item, dwc_otg_qtd_t, qtd_list_entry); ++ if (qtd->urb != NULL) { ++ dwc_otg_hcd_complete_urb(_hcd, qtd->urb,-ETIMEDOUT); ++ } ++ dwc_otg_hcd_qtd_remove_and_free(qtd); ++ } ++ } ++} ++ ++/** ++ * Responds with an error status of ETIMEDOUT to all URBs in the non-periodic ++ * and periodic schedules. The QTD associated with each URB is removed from ++ * the schedule and freed. This function may be called when a disconnect is ++ * detected or when the HCD is being stopped. ++ */ ++static void kill_all_urbs(dwc_otg_hcd_t *_hcd) ++{ ++ kill_urbs_in_qh_list(_hcd, &_hcd->non_periodic_sched_deferred); ++ kill_urbs_in_qh_list(_hcd, &_hcd->non_periodic_sched_inactive); ++ kill_urbs_in_qh_list(_hcd, &_hcd->non_periodic_sched_active); ++ kill_urbs_in_qh_list(_hcd, &_hcd->periodic_sched_inactive); ++ kill_urbs_in_qh_list(_hcd, &_hcd->periodic_sched_ready); ++ kill_urbs_in_qh_list(_hcd, &_hcd->periodic_sched_assigned); ++ kill_urbs_in_qh_list(_hcd, &_hcd->periodic_sched_queued); ++} ++ ++/** ++ * HCD Callback function for disconnect of the HCD. ++ * ++ * @param _p void pointer to the <code>struct usb_hcd</code> ++ */ ++static int32_t dwc_otg_hcd_disconnect_cb( void *_p ) ++{ ++ gintsts_data_t intr; ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_p); ++ ++ DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, _p); ++ ++ /* ++ * Set status flags for the hub driver. ++ */ ++ dwc_otg_hcd->flags.b.port_connect_status_change = 1; ++ dwc_otg_hcd->flags.b.port_connect_status = 0; ++ ++ /* ++ * Shutdown any transfers in process by clearing the Tx FIFO Empty ++ * interrupt mask and status bits and disabling subsequent host ++ * channel interrupts. ++ */ ++ intr.d32 = 0; ++ intr.b.nptxfempty = 1; ++ intr.b.ptxfempty = 1; ++ intr.b.hcintr = 1; ++ dwc_modify_reg32 (&dwc_otg_hcd->core_if->core_global_regs->gintmsk, intr.d32, 0); ++ dwc_modify_reg32 (&dwc_otg_hcd->core_if->core_global_regs->gintsts, intr.d32, 0); ++ ++ del_timers(dwc_otg_hcd); ++ ++ /* ++ * Turn off the vbus power only if the core has transitioned to device ++ * mode. If still in host mode, need to keep power on to detect a ++ * reconnection. ++ */ ++ if (dwc_otg_is_device_mode(dwc_otg_hcd->core_if)) { ++ if (dwc_otg_hcd->core_if->op_state != A_SUSPEND) { ++ hprt0_data_t hprt0 = { .d32=0 }; ++ DWC_PRINT("Disconnect: PortPower off\n"); ++ hprt0.b.prtpwr = 0; ++ dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32); ++ } ++ ++ dwc_otg_disable_host_interrupts( dwc_otg_hcd->core_if ); ++ } ++ ++ /* Respond with an error status to all URBs in the schedule. */ ++ kill_all_urbs(dwc_otg_hcd); ++ ++ if (dwc_otg_is_host_mode(dwc_otg_hcd->core_if)) { ++ /* Clean up any host channels that were in use. */ ++ int num_channels; ++ int i; ++ dwc_hc_t *channel; ++ dwc_otg_hc_regs_t *hc_regs; ++ hcchar_data_t hcchar; ++ ++ num_channels = dwc_otg_hcd->core_if->core_params->host_channels; ++ ++ if (!dwc_otg_hcd->core_if->dma_enable) { ++ /* Flush out any channel requests in slave mode. */ ++ for (i = 0; i < num_channels; i++) { ++ channel = dwc_otg_hcd->hc_ptr_array[i]; ++ if (list_empty(&channel->hc_list_entry)) { ++ hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i]; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chen) { ++ hcchar.b.chen = 0; ++ hcchar.b.chdis = 1; ++ hcchar.b.epdir = 0; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ } ++ } ++ } ++ } ++ ++ for (i = 0; i < num_channels; i++) { ++ channel = dwc_otg_hcd->hc_ptr_array[i]; ++ if (list_empty(&channel->hc_list_entry)) { ++ hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i]; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chen) { ++ /* Halt the channel. */ ++ hcchar.b.chdis = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ } ++ ++ dwc_otg_hc_cleanup(dwc_otg_hcd->core_if, channel); ++ list_add_tail(&channel->hc_list_entry, ++ &dwc_otg_hcd->free_hc_list); ++ } ++ } ++ } ++ ++ /* A disconnect will end the session so the B-Device is no ++ * longer a B-host. */ ++ ((struct usb_hcd *)_p)->self.is_b_host = 0; ++ ++ return 1; ++} ++ ++/** ++ * Connection timeout function. An OTG host is required to display a ++ * message if the device does not connect within 10 seconds. ++ */ ++void dwc_otg_hcd_connect_timeout( unsigned long _ptr ) ++{ ++ DWC_DEBUGPL(DBG_HCDV, "%s(%x)\n", __func__, (int)_ptr); ++ DWC_PRINT( "Connect Timeout\n"); ++ DWC_ERROR( "Device Not Connected/Responding\n" ); ++} ++ ++/** ++ * Start the connection timer. An OTG host is required to display a ++ * message if the device does not connect within 10 seconds. The ++ * timer is deleted if a port connect interrupt occurs before the ++ * timer expires. ++ */ ++static void dwc_otg_hcd_start_connect_timer( dwc_otg_hcd_t *_hcd) ++{ ++ init_timer( &_hcd->conn_timer ); ++ _hcd->conn_timer.function = dwc_otg_hcd_connect_timeout; ++ _hcd->conn_timer.data = (unsigned long)0; ++ _hcd->conn_timer.expires = jiffies + (HZ*10); ++ add_timer( &_hcd->conn_timer ); ++} ++ ++/** ++ * HCD Callback function for disconnect of the HCD. ++ * ++ * @param _p void pointer to the <code>struct usb_hcd</code> ++ */ ++static int32_t dwc_otg_hcd_session_start_cb( void *_p ) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_p); ++ DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, _p); ++ dwc_otg_hcd_start_connect_timer( dwc_otg_hcd ); ++ return 1; ++} ++ ++/** ++ * HCD Callback structure for handling mode switching. ++ */ ++static dwc_otg_cil_callbacks_t hcd_cil_callbacks = { ++ .start = dwc_otg_hcd_start_cb, ++ .stop = dwc_otg_hcd_stop_cb, ++ .disconnect = dwc_otg_hcd_disconnect_cb, ++ .session_start = dwc_otg_hcd_session_start_cb, ++ .p = 0, ++}; ++ ++ ++/** ++ * Reset tasklet function ++ */ ++static void reset_tasklet_func (unsigned long data) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = (dwc_otg_hcd_t*)data; ++ dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if; ++ hprt0_data_t hprt0; ++ ++ DWC_DEBUGPL(DBG_HCDV, "USB RESET tasklet called\n"); ++ ++ hprt0.d32 = dwc_otg_read_hprt0 (core_if); ++ hprt0.b.prtrst = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ mdelay (60); ++ ++ hprt0.b.prtrst = 0; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ dwc_otg_hcd->flags.b.port_reset_change = 1; ++ ++ return; ++} ++ ++static struct tasklet_struct reset_tasklet = { ++ .next = NULL, ++ .state = 0, ++ .count = ATOMIC_INIT(0), ++ .func = reset_tasklet_func, ++ .data = 0, ++}; ++ ++/** ++ * Initializes the HCD. This function allocates memory for and initializes the ++ * static parts of the usb_hcd and dwc_otg_hcd structures. It also registers the ++ * USB bus with the core and calls the hc_driver->start() function. It returns ++ * a negative error on failure. ++ */ ++int init_hcd_usecs(dwc_otg_hcd_t *_hcd); ++ ++int __devinit dwc_otg_hcd_init(struct device *_dev, dwc_otg_device_t * dwc_otg_device) ++{ ++ struct usb_hcd *hcd = NULL; ++ dwc_otg_hcd_t *dwc_otg_hcd = NULL; ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ ++ int num_channels; ++ int i; ++ dwc_hc_t *channel; ++ ++ int retval = 0; ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD INIT\n"); ++ ++ /* ++ * Allocate memory for the base HCD plus the DWC OTG HCD. ++ * Initialize the base HCD. ++ */ ++ hcd = usb_create_hcd(&dwc_otg_hc_driver, _dev, dev_name(_dev)); ++ if (hcd == NULL) { ++ retval = -ENOMEM; ++ goto error1; ++ } ++ dev_set_drvdata(_dev, dwc_otg_device); /* fscz restore */ ++ hcd->regs = otg_dev->base; ++ hcd->rsrc_start = (int)otg_dev->base; ++ ++ hcd->self.otg_port = 1; ++ ++ /* Initialize the DWC OTG HCD. */ ++ dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ dwc_otg_hcd->core_if = otg_dev->core_if; ++ otg_dev->hcd = dwc_otg_hcd; ++ ++ /* Register the HCD CIL Callbacks */ ++ dwc_otg_cil_register_hcd_callbacks(otg_dev->core_if, ++ &hcd_cil_callbacks, hcd); ++ ++ /* Initialize the non-periodic schedule. */ ++ INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_inactive); ++ INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_active); ++ INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_deferred); ++ ++ /* Initialize the periodic schedule. */ ++ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_inactive); ++ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_ready); ++ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_assigned); ++ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_queued); ++ ++ /* ++ * Create a host channel descriptor for each host channel implemented ++ * in the controller. Initialize the channel descriptor array. ++ */ ++ INIT_LIST_HEAD(&dwc_otg_hcd->free_hc_list); ++ num_channels = dwc_otg_hcd->core_if->core_params->host_channels; ++ for (i = 0; i < num_channels; i++) { ++ channel = kmalloc(sizeof(dwc_hc_t), GFP_KERNEL); ++ if (channel == NULL) { ++ retval = -ENOMEM; ++ DWC_ERROR("%s: host channel allocation failed\n", __func__); ++ goto error2; ++ } ++ memset(channel, 0, sizeof(dwc_hc_t)); ++ channel->hc_num = i; ++ dwc_otg_hcd->hc_ptr_array[i] = channel; ++#ifdef DEBUG ++ init_timer(&dwc_otg_hcd->core_if->hc_xfer_timer[i]); ++#endif ++ ++ DWC_DEBUGPL(DBG_HCDV, "HCD Added channel #%d, hc=%p\n", i, channel); ++ } ++ ++ /* Initialize the Connection timeout timer. */ ++ init_timer( &dwc_otg_hcd->conn_timer ); ++ ++ /* Initialize reset tasklet. */ ++ reset_tasklet.data = (unsigned long) dwc_otg_hcd; ++ dwc_otg_hcd->reset_tasklet = &reset_tasklet; ++ ++ /* Set device flags indicating whether the HCD supports DMA. */ ++ if (otg_dev->core_if->dma_enable) { ++ DWC_PRINT("Using DMA mode\n"); ++ //_dev->dma_mask = (void *)~0; ++ //_dev->coherent_dma_mask = ~0; ++ _dev->dma_mask = &dma_mask; ++ _dev->coherent_dma_mask = DMA_BIT_MASK(32); ++ } else { ++ DWC_PRINT("Using Slave mode\n"); ++ _dev->dma_mask = (void *)0; ++ _dev->coherent_dma_mask = 0; ++ } ++ ++ init_hcd_usecs(dwc_otg_hcd); ++ /* ++ * Finish generic HCD initialization and start the HCD. This function ++ * allocates the DMA buffer pool, registers the USB bus, requests the ++ * IRQ line, and calls dwc_otg_hcd_start method. ++ */ ++ retval = usb_add_hcd(hcd, otg_dev->irq, IRQF_SHARED); ++ if (retval < 0) { ++ goto error2; ++ } ++ ++ /* ++ * Allocate space for storing data on status transactions. Normally no ++ * data is sent, but this space acts as a bit bucket. This must be ++ * done after usb_add_hcd since that function allocates the DMA buffer ++ * pool. ++ */ ++ if (otg_dev->core_if->dma_enable) { ++ dwc_otg_hcd->status_buf = ++ dma_alloc_coherent(_dev, ++ DWC_OTG_HCD_STATUS_BUF_SIZE, ++ &dwc_otg_hcd->status_buf_dma, ++ GFP_KERNEL | GFP_DMA); ++ } else { ++ dwc_otg_hcd->status_buf = kmalloc(DWC_OTG_HCD_STATUS_BUF_SIZE, ++ GFP_KERNEL); ++ } ++ if (dwc_otg_hcd->status_buf == NULL) { ++ retval = -ENOMEM; ++ DWC_ERROR("%s: status_buf allocation failed\n", __func__); ++ goto error3; ++ } ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Initialized HCD, bus=%s, usbbus=%d\n", ++ dev_name(_dev), hcd->self.busnum); ++ ++ return 0; ++ ++ /* Error conditions */ ++error3: ++ usb_remove_hcd(hcd); ++error2: ++ dwc_otg_hcd_free(hcd); ++ usb_put_hcd(hcd); ++error1: ++ return retval; ++} ++ ++/** ++ * Removes the HCD. ++ * Frees memory and resources associated with the HCD and deregisters the bus. ++ */ ++void dwc_otg_hcd_remove(struct device *_dev) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ dwc_otg_hcd_t *dwc_otg_hcd = otg_dev->hcd; ++ struct usb_hcd *hcd = dwc_otg_hcd_to_hcd(dwc_otg_hcd); ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD REMOVE\n"); ++ ++ /* Turn off all interrupts */ ++ dwc_write_reg32 (&dwc_otg_hcd->core_if->core_global_regs->gintmsk, 0); ++ dwc_modify_reg32 (&dwc_otg_hcd->core_if->core_global_regs->gahbcfg, 1, 0); ++ ++ usb_remove_hcd(hcd); ++ ++ dwc_otg_hcd_free(hcd); ++ ++ usb_put_hcd(hcd); ++ ++ return; ++} ++ ++ ++/* ========================================================================= ++ * Linux HC Driver Functions ++ * ========================================================================= */ ++ ++/** ++ * Initializes dynamic portions of the DWC_otg HCD state. ++ */ ++static void hcd_reinit(dwc_otg_hcd_t *_hcd) ++{ ++ struct list_head *item; ++ int num_channels; ++ int i; ++ dwc_hc_t *channel; ++ ++ _hcd->flags.d32 = 0; ++ ++ _hcd->non_periodic_qh_ptr = &_hcd->non_periodic_sched_active; ++ _hcd->available_host_channels = _hcd->core_if->core_params->host_channels; ++ ++ /* ++ * Put all channels in the free channel list and clean up channel ++ * states. ++ */ ++ item = _hcd->free_hc_list.next; ++ while (item != &_hcd->free_hc_list) { ++ list_del(item); ++ item = _hcd->free_hc_list.next; ++ } ++ num_channels = _hcd->core_if->core_params->host_channels; ++ for (i = 0; i < num_channels; i++) { ++ channel = _hcd->hc_ptr_array[i]; ++ list_add_tail(&channel->hc_list_entry, &_hcd->free_hc_list); ++ dwc_otg_hc_cleanup(_hcd->core_if, channel); ++ } ++ ++ /* Initialize the DWC core for host mode operation. */ ++ dwc_otg_core_host_init(_hcd->core_if); ++} ++ ++/** Initializes the DWC_otg controller and its root hub and prepares it for host ++ * mode operation. Activates the root port. Returns 0 on success and a negative ++ * error code on failure. */ ++int dwc_otg_hcd_start(struct usb_hcd *_hcd) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_hcd); ++ dwc_otg_core_if_t * core_if = dwc_otg_hcd->core_if; ++ struct usb_bus *bus; ++ ++ // int retval; ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD START\n"); ++ ++ bus = hcd_to_bus(_hcd); ++ ++ /* Initialize the bus state. If the core is in Device Mode ++ * HALT the USB bus and return. */ ++ if (dwc_otg_is_device_mode (core_if)) { ++ _hcd->state = HC_STATE_HALT; ++ return 0; ++ } ++ _hcd->state = HC_STATE_RUNNING; ++ ++ /* Initialize and connect root hub if one is not already attached */ ++ if (bus->root_hub) { ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Has Root Hub\n"); ++ /* Inform the HUB driver to resume. */ ++ usb_hcd_resume_root_hub(_hcd); ++ } ++ else { ++#if 0 ++ struct usb_device *udev; ++ udev = usb_alloc_dev(NULL, bus, 0); ++ if (!udev) { ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Error udev alloc\n"); ++ return -ENODEV; ++ } ++ udev->speed = USB_SPEED_HIGH; ++ /* Not needed - VJ ++ if ((retval = usb_hcd_register_root_hub(udev, _hcd)) != 0) { ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Error registering %d\n", retval); ++ return -ENODEV; ++ } ++ */ ++#else ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Error udev alloc\n"); ++#endif ++ } ++ ++ hcd_reinit(dwc_otg_hcd); ++ ++ return 0; ++} ++ ++static void qh_list_free(dwc_otg_hcd_t *_hcd, struct list_head *_qh_list) ++{ ++ struct list_head *item; ++ dwc_otg_qh_t *qh; ++ ++ if (_qh_list->next == NULL) { ++ /* The list hasn't been initialized yet. */ ++ return; ++ } ++ ++ /* Ensure there are no QTDs or URBs left. */ ++ kill_urbs_in_qh_list(_hcd, _qh_list); ++ ++ for (item = _qh_list->next; item != _qh_list; item = _qh_list->next) { ++ qh = list_entry(item, dwc_otg_qh_t, qh_list_entry); ++ dwc_otg_hcd_qh_remove_and_free(_hcd, qh); ++ } ++} ++ ++/** ++ * Halts the DWC_otg host mode operations in a clean manner. USB transfers are ++ * stopped. ++ */ ++void dwc_otg_hcd_stop(struct usb_hcd *_hcd) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_hcd); ++ hprt0_data_t hprt0 = { .d32=0 }; ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD STOP\n"); ++ ++ /* Turn off all host-specific interrupts. */ ++ dwc_otg_disable_host_interrupts( dwc_otg_hcd->core_if ); ++ ++ /* ++ * The root hub should be disconnected before this function is called. ++ * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue) ++ * and the QH lists (via ..._hcd_endpoint_disable). ++ */ ++ ++ /* Turn off the vbus power */ ++ DWC_PRINT("PortPower off\n"); ++ hprt0.b.prtpwr = 0; ++ dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32); ++ ++ return; ++} ++ ++ ++/** Returns the current frame number. */ ++int dwc_otg_hcd_get_frame_number(struct usb_hcd *_hcd) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_hcd); ++ hfnum_data_t hfnum; ++ ++ hfnum.d32 = dwc_read_reg32(&dwc_otg_hcd->core_if-> ++ host_if->host_global_regs->hfnum); ++ ++#ifdef DEBUG_SOF ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD GET FRAME NUMBER %d\n", hfnum.b.frnum); ++#endif ++ return hfnum.b.frnum; ++} ++ ++/** ++ * Frees secondary storage associated with the dwc_otg_hcd structure contained ++ * in the struct usb_hcd field. ++ */ ++void dwc_otg_hcd_free(struct usb_hcd *_hcd) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_hcd); ++ int i; ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD FREE\n"); ++ ++ del_timers(dwc_otg_hcd); ++ ++ /* Free memory for QH/QTD lists */ ++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_inactive); ++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_deferred); ++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_active); ++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_inactive); ++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_ready); ++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_assigned); ++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_queued); ++ ++ /* Free memory for the host channels. */ ++ for (i = 0; i < MAX_EPS_CHANNELS; i++) { ++ dwc_hc_t *hc = dwc_otg_hcd->hc_ptr_array[i]; ++ if (hc != NULL) { ++ DWC_DEBUGPL(DBG_HCDV, "HCD Free channel #%i, hc=%p\n", i, hc); ++ kfree(hc); ++ } ++ } ++ ++ if (dwc_otg_hcd->core_if->dma_enable) { ++ if (dwc_otg_hcd->status_buf_dma) { ++ dma_free_coherent(_hcd->self.controller, ++ DWC_OTG_HCD_STATUS_BUF_SIZE, ++ dwc_otg_hcd->status_buf, ++ dwc_otg_hcd->status_buf_dma); ++ } ++ } else if (dwc_otg_hcd->status_buf != NULL) { ++ kfree(dwc_otg_hcd->status_buf); ++ } ++ ++ return; ++} ++ ++ ++#ifdef DEBUG ++static void dump_urb_info(struct urb *_urb, char* _fn_name) ++{ ++ DWC_PRINT("%s, urb %p\n", _fn_name, _urb); ++ DWC_PRINT(" Device address: %d\n", usb_pipedevice(_urb->pipe)); ++ DWC_PRINT(" Endpoint: %d, %s\n", usb_pipeendpoint(_urb->pipe), ++ (usb_pipein(_urb->pipe) ? "IN" : "OUT")); ++ DWC_PRINT(" Endpoint type: %s\n", ++ ({char *pipetype; ++ switch (usb_pipetype(_urb->pipe)) { ++ case PIPE_CONTROL: pipetype = "CONTROL"; break; ++ case PIPE_BULK: pipetype = "BULK"; break; ++ case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break; ++ case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break; ++ default: pipetype = "UNKNOWN"; break; ++ }; pipetype;})); ++ DWC_PRINT(" Speed: %s\n", ++ ({char *speed; ++ switch (_urb->dev->speed) { ++ case USB_SPEED_HIGH: speed = "HIGH"; break; ++ case USB_SPEED_FULL: speed = "FULL"; break; ++ case USB_SPEED_LOW: speed = "LOW"; break; ++ default: speed = "UNKNOWN"; break; ++ }; speed;})); ++ DWC_PRINT(" Max packet size: %d\n", ++ usb_maxpacket(_urb->dev, _urb->pipe, usb_pipeout(_urb->pipe))); ++ DWC_PRINT(" Data buffer length: %d\n", _urb->transfer_buffer_length); ++ DWC_PRINT(" Transfer buffer: %p, Transfer DMA: %p\n", ++ _urb->transfer_buffer, (void *)_urb->transfer_dma); ++ DWC_PRINT(" Setup buffer: %p, Setup DMA: %p\n", ++ _urb->setup_packet, (void *)_urb->setup_dma); ++ DWC_PRINT(" Interval: %d\n", _urb->interval); ++ if (usb_pipetype(_urb->pipe) == PIPE_ISOCHRONOUS) { ++ int i; ++ for (i = 0; i < _urb->number_of_packets; i++) { ++ DWC_PRINT(" ISO Desc %d:\n", i); ++ DWC_PRINT(" offset: %d, length %d\n", ++ _urb->iso_frame_desc[i].offset, ++ _urb->iso_frame_desc[i].length); ++ } ++ } ++} ++ ++static void dump_channel_info(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *qh) ++{ ++ if (qh->channel != NULL) { ++ dwc_hc_t *hc = qh->channel; ++ struct list_head *item; ++ dwc_otg_qh_t *qh_item; ++ int num_channels = _hcd->core_if->core_params->host_channels; ++ int i; ++ ++ dwc_otg_hc_regs_t *hc_regs; ++ hcchar_data_t hcchar; ++ hcsplt_data_t hcsplt; ++ hctsiz_data_t hctsiz; ++ uint32_t hcdma; ++ ++ hc_regs = _hcd->core_if->host_if->hc_regs[hc->hc_num]; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt); ++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); ++ hcdma = dwc_read_reg32(&hc_regs->hcdma); ++ ++ DWC_PRINT(" Assigned to channel %p:\n", hc); ++ DWC_PRINT(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32); ++ DWC_PRINT(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma); ++ DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n", ++ hc->dev_addr, hc->ep_num, hc->ep_is_in); ++ DWC_PRINT(" ep_type: %d\n", hc->ep_type); ++ DWC_PRINT(" max_packet: %d\n", hc->max_packet); ++ DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start); ++ DWC_PRINT(" xfer_started: %d\n", hc->xfer_started); ++ DWC_PRINT(" halt_status: %d\n", hc->halt_status); ++ DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff); ++ DWC_PRINT(" xfer_len: %d\n", hc->xfer_len); ++ DWC_PRINT(" qh: %p\n", hc->qh); ++ DWC_PRINT(" NP inactive sched:\n"); ++ list_for_each(item, &_hcd->non_periodic_sched_inactive) { ++ qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry); ++ DWC_PRINT(" %p\n", qh_item); ++ } DWC_PRINT(" NP active sched:\n"); ++ list_for_each(item, &_hcd->non_periodic_sched_deferred) { ++ qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry); ++ DWC_PRINT(" %p\n", qh_item); ++ } DWC_PRINT(" NP deferred sched:\n"); ++ list_for_each(item, &_hcd->non_periodic_sched_active) { ++ qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry); ++ DWC_PRINT(" %p\n", qh_item); ++ } DWC_PRINT(" Channels: \n"); ++ for (i = 0; i < num_channels; i++) { ++ dwc_hc_t *hc = _hcd->hc_ptr_array[i]; ++ DWC_PRINT(" %2d: %p\n", i, hc); ++ } ++ } ++} ++#endif // DEBUG ++ ++/** Starts processing a USB transfer request specified by a USB Request Block ++ * (URB). mem_flags indicates the type of memory allocation to use while ++ * processing this URB. */ ++int dwc_otg_hcd_urb_enqueue(struct usb_hcd *_hcd, ++ struct urb *_urb, ++ gfp_t _mem_flags) ++{ ++ unsigned long flags; ++ int retval; ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_hcd); ++ dwc_otg_qtd_t *qtd; ++ ++ local_irq_save(flags); ++ retval = usb_hcd_link_urb_to_ep(_hcd, _urb); ++ if (retval) { ++ local_irq_restore(flags); ++ return retval; ++ } ++#ifdef DEBUG ++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) { ++ dump_urb_info(_urb, "dwc_otg_hcd_urb_enqueue"); ++ } ++#endif // DEBUG ++ if (!dwc_otg_hcd->flags.b.port_connect_status) { ++ /* No longer connected. */ ++ local_irq_restore(flags); ++ return -ENODEV; ++ } ++ ++ qtd = dwc_otg_hcd_qtd_create (_urb); ++ if (qtd == NULL) { ++ local_irq_restore(flags); ++ DWC_ERROR("DWC OTG HCD URB Enqueue failed creating QTD\n"); ++ return -ENOMEM; ++ } ++ ++ retval = dwc_otg_hcd_qtd_add (qtd, dwc_otg_hcd); ++ if (retval < 0) { ++ DWC_ERROR("DWC OTG HCD URB Enqueue failed adding QTD. " ++ "Error status %d\n", retval); ++ dwc_otg_hcd_qtd_free(qtd); ++ } ++ ++ local_irq_restore (flags); ++ return retval; ++} ++ ++/** Aborts/cancels a USB transfer request. Always returns 0 to indicate ++ * success. */ ++int dwc_otg_hcd_urb_dequeue(struct usb_hcd *_hcd, struct urb *_urb, int _status) ++{ ++ unsigned long flags; ++ dwc_otg_hcd_t *dwc_otg_hcd; ++ dwc_otg_qtd_t *urb_qtd; ++ dwc_otg_qh_t *qh; ++ int retval; ++ //struct usb_host_endpoint *_ep = NULL; ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Dequeue\n"); ++ ++ local_irq_save(flags); ++ ++ retval = usb_hcd_check_unlink_urb(_hcd, _urb, _status); ++ if (retval) { ++ local_irq_restore(flags); ++ return retval; ++ } ++ ++ dwc_otg_hcd = hcd_to_dwc_otg_hcd(_hcd); ++ urb_qtd = (dwc_otg_qtd_t *)_urb->hcpriv; ++ if (urb_qtd == NULL) { ++ printk("urb_qtd is NULL for _urb %08x\n",(unsigned)_urb); ++ goto done; ++ } ++ qh = (dwc_otg_qh_t *) urb_qtd->qtd_qh_ptr; ++ if (qh == NULL) { ++ goto done; ++ } ++ ++#ifdef DEBUG ++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) { ++ dump_urb_info(_urb, "dwc_otg_hcd_urb_dequeue"); ++ if (urb_qtd == qh->qtd_in_process) { ++ dump_channel_info(dwc_otg_hcd, qh); ++ } ++ } ++#endif // DEBUG ++ ++ if (urb_qtd == qh->qtd_in_process) { ++ /* The QTD is in process (it has been assigned to a channel). */ ++ ++ if (dwc_otg_hcd->flags.b.port_connect_status) { ++ /* ++ * If still connected (i.e. in host mode), halt the ++ * channel so it can be used for other transfers. If ++ * no longer connected, the host registers can't be ++ * written to halt the channel since the core is in ++ * device mode. ++ */ ++ dwc_otg_hc_halt(dwc_otg_hcd->core_if, qh->channel, ++ DWC_OTG_HC_XFER_URB_DEQUEUE); ++ } ++ } ++ ++ /* ++ * Free the QTD and clean up the associated QH. Leave the QH in the ++ * schedule if it has any remaining QTDs. ++ */ ++ dwc_otg_hcd_qtd_remove_and_free(urb_qtd); ++ if (urb_qtd == qh->qtd_in_process) { ++ dwc_otg_hcd_qh_deactivate(dwc_otg_hcd, qh, 0); ++ qh->channel = NULL; ++ qh->qtd_in_process = NULL; ++ } else if (list_empty(&qh->qtd_list)) { ++ dwc_otg_hcd_qh_remove(dwc_otg_hcd, qh); ++ } ++ ++done: ++ local_irq_restore(flags); ++ _urb->hcpriv = NULL; ++ ++ /* Higher layer software sets URB status. */ ++ usb_hcd_unlink_urb_from_ep(_hcd, _urb); ++ usb_hcd_giveback_urb(_hcd, _urb, _status); ++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) { ++ DWC_PRINT("Called usb_hcd_giveback_urb()\n"); ++ DWC_PRINT(" urb->status = %d\n", _urb->status); ++ } ++ ++ return 0; ++} ++ ++ ++/** Frees resources in the DWC_otg controller related to a given endpoint. Also ++ * clears state in the HCD related to the endpoint. Any URBs for the endpoint ++ * must already be dequeued. */ ++void dwc_otg_hcd_endpoint_disable(struct usb_hcd *_hcd, ++ struct usb_host_endpoint *_ep) ++ ++{ ++ dwc_otg_qh_t *qh; ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_hcd); ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD EP DISABLE: _bEndpointAddress=0x%02x, " ++ "endpoint=%d\n", _ep->desc.bEndpointAddress, ++ dwc_ep_addr_to_endpoint(_ep->desc.bEndpointAddress)); ++ ++ qh = (dwc_otg_qh_t *)(_ep->hcpriv); ++ if (qh != NULL) { ++#ifdef DEBUG ++ /** Check that the QTD list is really empty */ ++ if (!list_empty(&qh->qtd_list)) { ++ DWC_WARN("DWC OTG HCD EP DISABLE:" ++ " QTD List for this endpoint is not empty\n"); ++ } ++#endif // DEBUG ++ ++ dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd, qh); ++ _ep->hcpriv = NULL; ++ } ++ ++ return; ++} ++extern int dwc_irq; ++/** Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if ++ * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid ++ * interrupt. ++ * ++ * This function is called by the USB core when an interrupt occurs */ ++irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *_hcd) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_hcd); ++ ++ mask_and_ack_ifx_irq (dwc_irq); ++ return IRQ_RETVAL(dwc_otg_hcd_handle_intr(dwc_otg_hcd)); ++} ++ ++/** Creates Status Change bitmap for the root hub and root port. The bitmap is ++ * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1 ++ * is the status change indicator for the single root port. Returns 1 if either ++ * change indicator is 1, otherwise returns 0. */ ++int dwc_otg_hcd_hub_status_data(struct usb_hcd *_hcd, char *_buf) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_hcd); ++ ++ _buf[0] = 0; ++ _buf[0] |= (dwc_otg_hcd->flags.b.port_connect_status_change || ++ dwc_otg_hcd->flags.b.port_reset_change || ++ dwc_otg_hcd->flags.b.port_enable_change || ++ dwc_otg_hcd->flags.b.port_suspend_change || ++ dwc_otg_hcd->flags.b.port_over_current_change) << 1; ++ ++#ifdef DEBUG ++ if (_buf[0]) { ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB STATUS DATA:" ++ " Root port status changed\n"); ++ DWC_DEBUGPL(DBG_HCDV, " port_connect_status_change: %d\n", ++ dwc_otg_hcd->flags.b.port_connect_status_change); ++ DWC_DEBUGPL(DBG_HCDV, " port_reset_change: %d\n", ++ dwc_otg_hcd->flags.b.port_reset_change); ++ DWC_DEBUGPL(DBG_HCDV, " port_enable_change: %d\n", ++ dwc_otg_hcd->flags.b.port_enable_change); ++ DWC_DEBUGPL(DBG_HCDV, " port_suspend_change: %d\n", ++ dwc_otg_hcd->flags.b.port_suspend_change); ++ DWC_DEBUGPL(DBG_HCDV, " port_over_current_change: %d\n", ++ dwc_otg_hcd->flags.b.port_over_current_change); ++ } ++#endif // DEBUG ++ return (_buf[0] != 0); ++} ++ ++#ifdef DWC_HS_ELECT_TST ++/* ++ * Quick and dirty hack to implement the HS Electrical Test ++ * SINGLE_STEP_GET_DEVICE_DESCRIPTOR feature. ++ * ++ * This code was copied from our userspace app "hset". It sends a ++ * Get Device Descriptor control sequence in two parts, first the ++ * Setup packet by itself, followed some time later by the In and ++ * Ack packets. Rather than trying to figure out how to add this ++ * functionality to the normal driver code, we just hijack the ++ * hardware, using these two function to drive the hardware ++ * directly. ++ */ ++ ++dwc_otg_core_global_regs_t *global_regs; ++dwc_otg_host_global_regs_t *hc_global_regs; ++dwc_otg_hc_regs_t *hc_regs; ++uint32_t *data_fifo; ++ ++static void do_setup(void) ++{ ++ gintsts_data_t gintsts; ++ hctsiz_data_t hctsiz; ++ hcchar_data_t hcchar; ++ haint_data_t haint; ++ hcint_data_t hcint; ++ ++ /* Enable HAINTs */ ++ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001); ++ ++ /* Enable HCINTs */ ++ dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ /* ++ * Send Setup packet (Get Device Descriptor) ++ */ ++ ++ /* Make sure channel is disabled */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chen) { ++ //fprintf(stderr, "Channel already enabled 1, HCCHAR = %08x\n", hcchar.d32); ++ hcchar.b.chdis = 1; ++ // hcchar.b.chen = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ //sleep(1); ++ MDELAY(1000); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //if (hcchar.b.chen) { ++ // fprintf(stderr, "** Channel _still_ enabled 1, HCCHAR = %08x **\n", hcchar.d32); ++ //} ++ } ++ ++ /* Set HCTSIZ */ ++ hctsiz.d32 = 0; ++ hctsiz.b.xfersize = 8; ++ hctsiz.b.pktcnt = 1; ++ hctsiz.b.pid = DWC_OTG_HC_PID_SETUP; ++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); ++ ++ /* Set HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL; ++ hcchar.b.epdir = 0; ++ hcchar.b.epnum = 0; ++ hcchar.b.mps = 8; ++ hcchar.b.chen = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ ++ /* Fill FIFO with Setup data for Get Device Descriptor */ ++ data_fifo = (uint32_t *)((char *)global_regs + 0x1000); ++ dwc_write_reg32(data_fifo++, 0x01000680); ++ dwc_write_reg32(data_fifo++, 0x00080000); ++ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "Waiting for HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Wait for host channel interrupt */ ++ do { ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ } while (gintsts.b.hcintr == 0); ++ ++ //fprintf(stderr, "Got HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Disable HCINTs */ ++ dwc_write_reg32(&hc_regs->hcintmsk, 0x0000); ++ ++ /* Disable HAINTs */ ++ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++} ++ ++static void do_in_ack(void) ++{ ++ gintsts_data_t gintsts; ++ hctsiz_data_t hctsiz; ++ hcchar_data_t hcchar; ++ haint_data_t haint; ++ hcint_data_t hcint; ++ host_grxsts_data_t grxsts; ++ ++ /* Enable HAINTs */ ++ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001); ++ ++ /* Enable HCINTs */ ++ dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ /* ++ * Receive Control In packet ++ */ ++ ++ /* Make sure channel is disabled */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chen) { ++ //fprintf(stderr, "Channel already enabled 2, HCCHAR = %08x\n", hcchar.d32); ++ hcchar.b.chdis = 1; ++ hcchar.b.chen = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ //sleep(1); ++ MDELAY(1000); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //if (hcchar.b.chen) { ++ // fprintf(stderr, "** Channel _still_ enabled 2, HCCHAR = %08x **\n", hcchar.d32); ++ //} ++ } ++ ++ /* Set HCTSIZ */ ++ hctsiz.d32 = 0; ++ hctsiz.b.xfersize = 8; ++ hctsiz.b.pktcnt = 1; ++ hctsiz.b.pid = DWC_OTG_HC_PID_DATA1; ++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); ++ ++ /* Set HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL; ++ hcchar.b.epdir = 1; ++ hcchar.b.epnum = 0; ++ hcchar.b.mps = 8; ++ hcchar.b.chen = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "Waiting for RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Wait for receive status queue interrupt */ ++ do { ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ } while (gintsts.b.rxstsqlvl == 0); ++ ++ //fprintf(stderr, "Got RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Read RXSTS */ ++ grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp); ++ //fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32); ++ ++ /* Clear RXSTSQLVL in GINTSTS */ ++ gintsts.d32 = 0; ++ gintsts.b.rxstsqlvl = 1; ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ switch (grxsts.b.pktsts) { ++ case DWC_GRXSTS_PKTSTS_IN: ++ /* Read the data into the host buffer */ ++ if (grxsts.b.bcnt > 0) { ++ int i; ++ int word_count = (grxsts.b.bcnt + 3) / 4; ++ ++ data_fifo = (uint32_t *)((char *)global_regs + 0x1000); ++ ++ for (i = 0; i < word_count; i++) { ++ (void)dwc_read_reg32(data_fifo++); ++ } ++ } ++ ++ //fprintf(stderr, "Received %u bytes\n", (unsigned)grxsts.b.bcnt); ++ break; ++ ++ default: ++ //fprintf(stderr, "** Unexpected GRXSTS packet status 1 **\n"); ++ break; ++ } ++ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "Waiting for RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Wait for receive status queue interrupt */ ++ do { ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ } while (gintsts.b.rxstsqlvl == 0); ++ ++ //fprintf(stderr, "Got RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Read RXSTS */ ++ grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp); ++ //fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32); ++ ++ /* Clear RXSTSQLVL in GINTSTS */ ++ gintsts.d32 = 0; ++ gintsts.b.rxstsqlvl = 1; ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ switch (grxsts.b.pktsts) { ++ case DWC_GRXSTS_PKTSTS_IN_XFER_COMP: ++ break; ++ ++ default: ++ //fprintf(stderr, "** Unexpected GRXSTS packet status 2 **\n"); ++ break; ++ } ++ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "Waiting for HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Wait for host channel interrupt */ ++ do { ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ } while (gintsts.b.hcintr == 0); ++ ++ //fprintf(stderr, "Got HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ // usleep(100000); ++ // mdelay(100); ++ MDELAY(1); ++ ++ /* ++ * Send handshake packet ++ */ ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ /* Make sure channel is disabled */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chen) { ++ //fprintf(stderr, "Channel already enabled 3, HCCHAR = %08x\n", hcchar.d32); ++ hcchar.b.chdis = 1; ++ hcchar.b.chen = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ //sleep(1); ++ MDELAY(1000); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //if (hcchar.b.chen) { ++ // fprintf(stderr, "** Channel _still_ enabled 3, HCCHAR = %08x **\n", hcchar.d32); ++ //} ++ } ++ ++ /* Set HCTSIZ */ ++ hctsiz.d32 = 0; ++ hctsiz.b.xfersize = 0; ++ hctsiz.b.pktcnt = 1; ++ hctsiz.b.pid = DWC_OTG_HC_PID_DATA1; ++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); ++ ++ /* Set HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL; ++ hcchar.b.epdir = 0; ++ hcchar.b.epnum = 0; ++ hcchar.b.mps = 8; ++ hcchar.b.chen = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "Waiting for HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Wait for host channel interrupt */ ++ do { ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ } while (gintsts.b.hcintr == 0); ++ ++ //fprintf(stderr, "Got HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Disable HCINTs */ ++ dwc_write_reg32(&hc_regs->hcintmsk, 0x0000); ++ ++ /* Disable HAINTs */ ++ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++} ++#endif /* DWC_HS_ELECT_TST */ ++ ++/** Handles hub class-specific requests.*/ ++int dwc_otg_hcd_hub_control(struct usb_hcd *_hcd, ++ u16 _typeReq, ++ u16 _wValue, ++ u16 _wIndex, ++ char *_buf, ++ u16 _wLength) ++{ ++ int retval = 0; ++ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_hcd); ++ dwc_otg_core_if_t *core_if = hcd_to_dwc_otg_hcd (_hcd)->core_if; ++ struct usb_hub_descriptor *desc; ++ hprt0_data_t hprt0 = {.d32 = 0}; ++ ++ uint32_t port_status; ++ ++ switch (_typeReq) { ++ case ClearHubFeature: ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearHubFeature 0x%x\n", _wValue); ++ switch (_wValue) { ++ case C_HUB_LOCAL_POWER: ++ case C_HUB_OVER_CURRENT: ++ /* Nothing required here */ ++ break; ++ default: ++ retval = -EINVAL; ++ DWC_ERROR ("DWC OTG HCD - " ++ "ClearHubFeature request %xh unknown\n", _wValue); ++ } ++ break; ++ case ClearPortFeature: ++ if (!_wIndex || _wIndex > 1) ++ goto error; ++ ++ switch (_wValue) { ++ case USB_PORT_FEAT_ENABLE: ++ DWC_DEBUGPL (DBG_ANY, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_ENABLE\n"); ++ hprt0.d32 = dwc_otg_read_hprt0 (core_if); ++ hprt0.b.prtena = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ break; ++ case USB_PORT_FEAT_SUSPEND: ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_SUSPEND\n"); ++ hprt0.d32 = dwc_otg_read_hprt0 (core_if); ++ hprt0.b.prtres = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ /* Clear Resume bit */ ++ mdelay (100); ++ hprt0.b.prtres = 0; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ break; ++ case USB_PORT_FEAT_POWER: ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_POWER\n"); ++ hprt0.d32 = dwc_otg_read_hprt0 (core_if); ++ hprt0.b.prtpwr = 0; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ break; ++ case USB_PORT_FEAT_INDICATOR: ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_INDICATOR\n"); ++ /* Port inidicator not supported */ ++ break; ++ case USB_PORT_FEAT_C_CONNECTION: ++ /* Clears drivers internal connect status change ++ * flag */ ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n"); ++ dwc_otg_hcd->flags.b.port_connect_status_change = 0; ++ break; ++ case USB_PORT_FEAT_C_RESET: ++ /* Clears the driver's internal Port Reset Change ++ * flag */ ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_C_RESET\n"); ++ dwc_otg_hcd->flags.b.port_reset_change = 0; ++ break; ++ case USB_PORT_FEAT_C_ENABLE: ++ /* Clears the driver's internal Port ++ * Enable/Disable Change flag */ ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n"); ++ dwc_otg_hcd->flags.b.port_enable_change = 0; ++ break; ++ case USB_PORT_FEAT_C_SUSPEND: ++ /* Clears the driver's internal Port Suspend ++ * Change flag, which is set when resume signaling on ++ * the host port is complete */ ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n"); ++ dwc_otg_hcd->flags.b.port_suspend_change = 0; ++ break; ++ case USB_PORT_FEAT_C_OVER_CURRENT: ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n"); ++ dwc_otg_hcd->flags.b.port_over_current_change = 0; ++ break; ++ default: ++ retval = -EINVAL; ++ DWC_ERROR ("DWC OTG HCD - " ++ "ClearPortFeature request %xh " ++ "unknown or unsupported\n", _wValue); ++ } ++ break; ++ case GetHubDescriptor: ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "GetHubDescriptor\n"); ++ desc = (struct usb_hub_descriptor *)_buf; ++ desc->bDescLength = 9; ++ desc->bDescriptorType = 0x29; ++ desc->bNbrPorts = 1; ++ desc->wHubCharacteristics = 0x08; ++ desc->bPwrOn2PwrGood = 1; ++ desc->bHubContrCurrent = 0; ++ desc->bitmap[0] = 0; ++ desc->bitmap[1] = 0xff; ++ break; ++ case GetHubStatus: ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "GetHubStatus\n"); ++ memset (_buf, 0, 4); ++ break; ++ case GetPortStatus: ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "GetPortStatus\n"); ++ ++ if (!_wIndex || _wIndex > 1) ++ goto error; ++ ++ port_status = 0; ++ ++ if (dwc_otg_hcd->flags.b.port_connect_status_change) ++ port_status |= (1 << USB_PORT_FEAT_C_CONNECTION); ++ ++ if (dwc_otg_hcd->flags.b.port_enable_change) ++ port_status |= (1 << USB_PORT_FEAT_C_ENABLE); ++ ++ if (dwc_otg_hcd->flags.b.port_suspend_change) ++ port_status |= (1 << USB_PORT_FEAT_C_SUSPEND); ++ ++ if (dwc_otg_hcd->flags.b.port_reset_change) ++ port_status |= (1 << USB_PORT_FEAT_C_RESET); ++ ++ if (dwc_otg_hcd->flags.b.port_over_current_change) { ++ DWC_ERROR("Device Not Supported\n"); ++ port_status |= (1 << USB_PORT_FEAT_C_OVER_CURRENT); ++ } ++ ++ if (!dwc_otg_hcd->flags.b.port_connect_status) { ++ printk("DISCONNECTED PORT\n"); ++ /* ++ * The port is disconnected, which means the core is ++ * either in device mode or it soon will be. Just ++ * return 0's for the remainder of the port status ++ * since the port register can't be read if the core ++ * is in device mode. ++ */ ++#if 1 // winder. ++ *((u32 *) _buf) = cpu_to_le32(port_status); ++#else ++ *((__le32 *) _buf) = cpu_to_le32(port_status); ++#endif ++ break; ++ } ++ ++ hprt0.d32 = dwc_read_reg32(core_if->host_if->hprt0); ++ DWC_DEBUGPL(DBG_HCDV, " HPRT0: 0x%08x\n", hprt0.d32); ++ ++ if (hprt0.b.prtconnsts) ++ port_status |= (1 << USB_PORT_FEAT_CONNECTION); ++ ++ if (hprt0.b.prtena) ++ port_status |= (1 << USB_PORT_FEAT_ENABLE); ++ ++ if (hprt0.b.prtsusp) ++ port_status |= (1 << USB_PORT_FEAT_SUSPEND); ++ ++ if (hprt0.b.prtovrcurract) ++ port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT); ++ ++ if (hprt0.b.prtrst) ++ port_status |= (1 << USB_PORT_FEAT_RESET); ++ ++ if (hprt0.b.prtpwr) ++ port_status |= (1 << USB_PORT_FEAT_POWER); ++ ++ if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED) ++ port_status |= USB_PORT_STAT_HIGH_SPEED; ++ ++ else if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED) ++ port_status |= (1 << USB_PORT_FEAT_LOWSPEED); ++ ++ if (hprt0.b.prttstctl) ++ port_status |= (1 << USB_PORT_FEAT_TEST); ++ ++ /* USB_PORT_FEAT_INDICATOR unsupported always 0 */ ++#if 1 // winder. ++ *((u32 *) _buf) = cpu_to_le32(port_status); ++#else ++ *((__le32 *) _buf) = cpu_to_le32(port_status); ++#endif ++ ++ break; ++ case SetHubFeature: ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "SetHubFeature\n"); ++ /* No HUB features supported */ ++ break; ++ case SetPortFeature: ++ if (_wValue != USB_PORT_FEAT_TEST && (!_wIndex || _wIndex > 1)) ++ goto error; ++ ++ if (!dwc_otg_hcd->flags.b.port_connect_status) { ++ /* ++ * The port is disconnected, which means the core is ++ * either in device mode or it soon will be. Just ++ * return without doing anything since the port ++ * register can't be written if the core is in device ++ * mode. ++ */ ++ break; ++ } ++ ++ switch (_wValue) { ++ case USB_PORT_FEAT_SUSPEND: ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "SetPortFeature - USB_PORT_FEAT_SUSPEND\n"); ++ if (_hcd->self.otg_port == _wIndex ++ && _hcd->self.b_hnp_enable) { ++ gotgctl_data_t gotgctl = {.d32=0}; ++ gotgctl.b.hstsethnpen = 1; ++ dwc_modify_reg32(&core_if->core_global_regs-> ++ gotgctl, 0, gotgctl.d32); ++ core_if->op_state = A_SUSPEND; ++ } ++ hprt0.d32 = dwc_otg_read_hprt0 (core_if); ++ hprt0.b.prtsusp = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ //DWC_PRINT( "SUSPEND: HPRT0=%0x\n", hprt0.d32); ++ /* Suspend the Phy Clock */ ++ { ++ pcgcctl_data_t pcgcctl = {.d32=0}; ++ pcgcctl.b.stoppclk = 1; ++ dwc_write_reg32(core_if->pcgcctl, pcgcctl.d32); ++ } ++ ++ /* For HNP the bus must be suspended for at least 200ms.*/ ++ if (_hcd->self.b_hnp_enable) { ++ mdelay(200); ++ //DWC_PRINT( "SUSPEND: wait complete! (%d)\n", _hcd->state); ++ } ++ break; ++ case USB_PORT_FEAT_POWER: ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "SetPortFeature - USB_PORT_FEAT_POWER\n"); ++ hprt0.d32 = dwc_otg_read_hprt0 (core_if); ++ hprt0.b.prtpwr = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ break; ++ case USB_PORT_FEAT_RESET: ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "SetPortFeature - USB_PORT_FEAT_RESET\n"); ++ hprt0.d32 = dwc_otg_read_hprt0 (core_if); ++ /* TODO: Is this for OTG protocol?? ++ * We shoudl remove OTG totally for Danube system. ++ * But, in the future, maybe we need this. ++ */ ++#if 1 // winder ++ hprt0.b.prtrst = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++#else ++ /* When B-Host the Port reset bit is set in ++ * the Start HCD Callback function, so that ++ * the reset is started within 1ms of the HNP ++ * success interrupt. */ ++ if (!_hcd->self.is_b_host) { ++ hprt0.b.prtrst = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ } ++#endif ++ /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */ ++ MDELAY (60); ++ hprt0.b.prtrst = 0; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ break; ++ ++#ifdef DWC_HS_ELECT_TST ++ case USB_PORT_FEAT_TEST: ++ { ++ uint32_t t; ++ gintmsk_data_t gintmsk; ++ ++ t = (_wIndex >> 8); /* MSB wIndex USB */ ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "SetPortFeature - USB_PORT_FEAT_TEST %d\n", t); ++ printk("USB_PORT_FEAT_TEST %d\n", t); ++ if (t < 6) { ++ hprt0.d32 = dwc_otg_read_hprt0 (core_if); ++ hprt0.b.prttstctl = t; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ } else { ++ /* Setup global vars with reg addresses (quick and ++ * dirty hack, should be cleaned up) ++ */ ++ global_regs = core_if->core_global_regs; ++ hc_global_regs = core_if->host_if->host_global_regs; ++ hc_regs = (dwc_otg_hc_regs_t *)((char *)global_regs + 0x500); ++ data_fifo = (uint32_t *)((char *)global_regs + 0x1000); ++ ++ if (t == 6) { /* HS_HOST_PORT_SUSPEND_RESUME */ ++ /* Save current interrupt mask */ ++ gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk); ++ ++ /* Disable all interrupts while we muck with ++ * the hardware directly ++ */ ++ dwc_write_reg32(&global_regs->gintmsk, 0); ++ ++ /* 15 second delay per the test spec */ ++ mdelay(15000); ++ ++ /* Drive suspend on the root port */ ++ hprt0.d32 = dwc_otg_read_hprt0 (core_if); ++ hprt0.b.prtsusp = 1; ++ hprt0.b.prtres = 0; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ ++ /* 15 second delay per the test spec */ ++ mdelay(15000); ++ ++ /* Drive resume on the root port */ ++ hprt0.d32 = dwc_otg_read_hprt0 (core_if); ++ hprt0.b.prtsusp = 0; ++ hprt0.b.prtres = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ mdelay(100); ++ ++ /* Clear the resume bit */ ++ hprt0.b.prtres = 0; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ ++ /* Restore interrupts */ ++ dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32); ++ } else if (t == 7) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR setup */ ++ /* Save current interrupt mask */ ++ gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk); ++ ++ /* Disable all interrupts while we muck with ++ * the hardware directly ++ */ ++ dwc_write_reg32(&global_regs->gintmsk, 0); ++ ++ /* 15 second delay per the test spec */ ++ mdelay(15000); ++ ++ /* Send the Setup packet */ ++ do_setup(); ++ ++ /* 15 second delay so nothing else happens for awhile */ ++ mdelay(15000); ++ ++ /* Restore interrupts */ ++ dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32); ++ } else if (t == 8) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR execute */ ++ /* Save current interrupt mask */ ++ gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk); ++ ++ /* Disable all interrupts while we muck with ++ * the hardware directly ++ */ ++ dwc_write_reg32(&global_regs->gintmsk, 0); ++ ++ /* Send the Setup packet */ ++ do_setup(); ++ ++ /* 15 second delay so nothing else happens for awhile */ ++ mdelay(15000); ++ ++ /* Send the In and Ack packets */ ++ do_in_ack(); ++ ++ /* 15 second delay so nothing else happens for awhile */ ++ mdelay(15000); ++ ++ /* Restore interrupts */ ++ dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32); ++ } ++ } ++ break; ++ } ++#endif /* DWC_HS_ELECT_TST */ ++ ++ case USB_PORT_FEAT_INDICATOR: ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "SetPortFeature - USB_PORT_FEAT_INDICATOR\n"); ++ /* Not supported */ ++ break; ++ default: ++ retval = -EINVAL; ++ DWC_ERROR ("DWC OTG HCD - " ++ "SetPortFeature request %xh " ++ "unknown or unsupported\n", _wValue); ++ break; ++ } ++ break; ++ default: ++error: ++ retval = -EINVAL; ++ DWC_WARN ("DWC OTG HCD - " ++ "Unknown hub control request type or invalid typeReq: %xh wIndex: %xh wValue: %xh\n", ++ _typeReq, _wIndex, _wValue); ++ break; ++ } ++ ++ return retval; ++} ++ ++ ++/** ++ * Assigns transactions from a QTD to a free host channel and initializes the ++ * host channel to perform the transactions. The host channel is removed from ++ * the free list. ++ * ++ * @param _hcd The HCD state structure. ++ * @param _qh Transactions from the first QTD for this QH are selected and ++ * assigned to a free host channel. ++ */ ++static void assign_and_init_hc(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh) ++{ ++ dwc_hc_t *hc; ++ dwc_otg_qtd_t *qtd; ++ struct urb *urb; ++ ++ DWC_DEBUGPL(DBG_HCDV, "%s(%p,%p)\n", __func__, _hcd, _qh); ++ ++ hc = list_entry(_hcd->free_hc_list.next, dwc_hc_t, hc_list_entry); ++ ++ /* Remove the host channel from the free list. */ ++ list_del_init(&hc->hc_list_entry); ++ ++ qtd = list_entry(_qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); ++ urb = qtd->urb; ++ _qh->channel = hc; ++ _qh->qtd_in_process = qtd; ++ ++ /* ++ * Use usb_pipedevice to determine device address. This address is ++ * 0 before the SET_ADDRESS command and the correct address afterward. ++ */ ++ hc->dev_addr = usb_pipedevice(urb->pipe); ++ hc->ep_num = usb_pipeendpoint(urb->pipe); ++ ++ if (urb->dev->speed == USB_SPEED_LOW) { ++ hc->speed = DWC_OTG_EP_SPEED_LOW; ++ } else if (urb->dev->speed == USB_SPEED_FULL) { ++ hc->speed = DWC_OTG_EP_SPEED_FULL; ++ } else { ++ hc->speed = DWC_OTG_EP_SPEED_HIGH; ++ } ++ hc->max_packet = dwc_max_packet(_qh->maxp); ++ ++ hc->xfer_started = 0; ++ hc->halt_status = DWC_OTG_HC_XFER_NO_HALT_STATUS; ++ hc->error_state = (qtd->error_count > 0); ++ hc->halt_on_queue = 0; ++ hc->halt_pending = 0; ++ hc->requests = 0; ++ ++ /* ++ * The following values may be modified in the transfer type section ++ * below. The xfer_len value may be reduced when the transfer is ++ * started to accommodate the max widths of the XferSize and PktCnt ++ * fields in the HCTSIZn register. ++ */ ++ hc->do_ping = _qh->ping_state; ++ hc->ep_is_in = (usb_pipein(urb->pipe) != 0); ++ hc->data_pid_start = _qh->data_toggle; ++ hc->multi_count = 1; ++ ++ if (_hcd->core_if->dma_enable) { ++ hc->xfer_buff = (uint8_t *)(u32)urb->transfer_dma + urb->actual_length; ++ } else { ++ hc->xfer_buff = (uint8_t *)urb->transfer_buffer + urb->actual_length; ++ } ++ hc->xfer_len = urb->transfer_buffer_length - urb->actual_length; ++ hc->xfer_count = 0; ++ ++ /* ++ * Set the split attributes ++ */ ++ hc->do_split = 0; ++ if (_qh->do_split) { ++ hc->do_split = 1; ++ hc->xact_pos = qtd->isoc_split_pos; ++ hc->complete_split = qtd->complete_split; ++ hc->hub_addr = urb->dev->tt->hub->devnum; ++ hc->port_addr = urb->dev->ttport; ++ } ++ ++ switch (usb_pipetype(urb->pipe)) { ++ case PIPE_CONTROL: ++ hc->ep_type = DWC_OTG_EP_TYPE_CONTROL; ++ switch (qtd->control_phase) { ++ case DWC_OTG_CONTROL_SETUP: ++ DWC_DEBUGPL(DBG_HCDV, " Control setup transaction\n"); ++ hc->do_ping = 0; ++ hc->ep_is_in = 0; ++ hc->data_pid_start = DWC_OTG_HC_PID_SETUP; ++ if (_hcd->core_if->dma_enable) { ++ hc->xfer_buff = (uint8_t *)(u32)urb->setup_dma; ++ } else { ++ hc->xfer_buff = (uint8_t *)urb->setup_packet; ++ } ++ hc->xfer_len = 8; ++ break; ++ case DWC_OTG_CONTROL_DATA: ++ DWC_DEBUGPL(DBG_HCDV, " Control data transaction\n"); ++ hc->data_pid_start = qtd->data_toggle; ++ break; ++ case DWC_OTG_CONTROL_STATUS: ++ /* ++ * Direction is opposite of data direction or IN if no ++ * data. ++ */ ++ DWC_DEBUGPL(DBG_HCDV, " Control status transaction\n"); ++ if (urb->transfer_buffer_length == 0) { ++ hc->ep_is_in = 1; ++ } else { ++ hc->ep_is_in = (usb_pipein(urb->pipe) != USB_DIR_IN); ++ } ++ if (hc->ep_is_in) { ++ hc->do_ping = 0; ++ } ++ hc->data_pid_start = DWC_OTG_HC_PID_DATA1; ++ hc->xfer_len = 0; ++ if (_hcd->core_if->dma_enable) { ++ hc->xfer_buff = (uint8_t *)_hcd->status_buf_dma; ++ } else { ++ hc->xfer_buff = (uint8_t *)_hcd->status_buf; ++ } ++ break; ++ } ++ break; ++ case PIPE_BULK: ++ hc->ep_type = DWC_OTG_EP_TYPE_BULK; ++ break; ++ case PIPE_INTERRUPT: ++ hc->ep_type = DWC_OTG_EP_TYPE_INTR; ++ break; ++ case PIPE_ISOCHRONOUS: ++ { ++ struct usb_iso_packet_descriptor *frame_desc; ++ frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index]; ++ hc->ep_type = DWC_OTG_EP_TYPE_ISOC; ++ if (_hcd->core_if->dma_enable) { ++ hc->xfer_buff = (uint8_t *)(u32)urb->transfer_dma; ++ } else { ++ hc->xfer_buff = (uint8_t *)urb->transfer_buffer; ++ } ++ hc->xfer_buff += frame_desc->offset + qtd->isoc_split_offset; ++ hc->xfer_len = frame_desc->length - qtd->isoc_split_offset; ++ ++ if (hc->xact_pos == DWC_HCSPLIT_XACTPOS_ALL) { ++ if (hc->xfer_len <= 188) { ++ hc->xact_pos = DWC_HCSPLIT_XACTPOS_ALL; ++ } ++ else { ++ hc->xact_pos = DWC_HCSPLIT_XACTPOS_BEGIN; ++ } ++ } ++ } ++ break; ++ } ++ ++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || ++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ /* ++ * This value may be modified when the transfer is started to ++ * reflect the actual transfer length. ++ */ ++ hc->multi_count = dwc_hb_mult(_qh->maxp); ++ } ++ ++ dwc_otg_hc_init(_hcd->core_if, hc); ++ hc->qh = _qh; ++} ++#define DEBUG_HOST_CHANNELS ++#ifdef DEBUG_HOST_CHANNELS ++static int last_sel_trans_num_per_scheduled = 0; ++module_param(last_sel_trans_num_per_scheduled, int, 0444); ++ ++static int last_sel_trans_num_nonper_scheduled = 0; ++module_param(last_sel_trans_num_nonper_scheduled, int, 0444); ++ ++static int last_sel_trans_num_avail_hc_at_start = 0; ++module_param(last_sel_trans_num_avail_hc_at_start, int, 0444); ++ ++static int last_sel_trans_num_avail_hc_at_end = 0; ++module_param(last_sel_trans_num_avail_hc_at_end, int, 0444); ++#endif /* DEBUG_HOST_CHANNELS */ ++ ++/** ++ * This function selects transactions from the HCD transfer schedule and ++ * assigns them to available host channels. It is called from HCD interrupt ++ * handler functions. ++ * ++ * @param _hcd The HCD state structure. ++ * ++ * @return The types of new transactions that were assigned to host channels. ++ */ ++dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *_hcd) ++{ ++ struct list_head *qh_ptr; ++ dwc_otg_qh_t *qh; ++ int num_channels; ++ unsigned long flags; ++ dwc_otg_transaction_type_e ret_val = DWC_OTG_TRANSACTION_NONE; ++ ++#ifdef DEBUG_SOF ++ DWC_DEBUGPL(DBG_HCD, " Select Transactions\n"); ++#endif /* */ ++ ++#ifdef DEBUG_HOST_CHANNELS ++ last_sel_trans_num_per_scheduled = 0; ++ last_sel_trans_num_nonper_scheduled = 0; ++ last_sel_trans_num_avail_hc_at_start = _hcd->available_host_channels; ++#endif /* DEBUG_HOST_CHANNELS */ ++ ++ /* Process entries in the periodic ready list. */ ++ num_channels = _hcd->core_if->core_params->host_channels; ++ qh_ptr = _hcd->periodic_sched_ready.next; ++ while (qh_ptr != &_hcd->periodic_sched_ready ++ && !list_empty(&_hcd->free_hc_list)) { ++ ++ // Make sure we leave one channel for non periodic transactions. ++ local_irq_save(flags); ++ if (_hcd->available_host_channels <= 1) { ++ local_irq_restore(flags); ++ break; ++ } ++ _hcd->available_host_channels--; ++ local_irq_restore(flags); ++#ifdef DEBUG_HOST_CHANNELS ++ last_sel_trans_num_per_scheduled++; ++#endif /* DEBUG_HOST_CHANNELS */ ++ ++ qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry); ++ assign_and_init_hc(_hcd, qh); ++ ++ /* ++ * Move the QH from the periodic ready schedule to the ++ * periodic assigned schedule. ++ */ ++ qh_ptr = qh_ptr->next; ++ local_irq_save(flags); ++ list_move(&qh->qh_list_entry, &_hcd->periodic_sched_assigned); ++ local_irq_restore(flags); ++ ret_val = DWC_OTG_TRANSACTION_PERIODIC; ++ } ++ ++ /* ++ * Process entries in the deferred portion of the non-periodic list. ++ * A NAK put them here and, at the right time, they need to be ++ * placed on the sched_inactive list. ++ */ ++ qh_ptr = _hcd->non_periodic_sched_deferred.next; ++ while (qh_ptr != &_hcd->non_periodic_sched_deferred) { ++ uint16_t frame_number = ++ dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(_hcd)); ++ qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry); ++ qh_ptr = qh_ptr->next; ++ ++ if (dwc_frame_num_le(qh->sched_frame, frame_number)) { ++ // NAK did this ++ /* ++ * Move the QH from the non periodic deferred schedule to ++ * the non periodic inactive schedule. ++ */ ++ local_irq_save(flags); ++ list_move(&qh->qh_list_entry, ++ &_hcd->non_periodic_sched_inactive); ++ local_irq_restore(flags); ++ } ++ } ++ ++ /* ++ * Process entries in the inactive portion of the non-periodic ++ * schedule. Some free host channels may not be used if they are ++ * reserved for periodic transfers. ++ */ ++ qh_ptr = _hcd->non_periodic_sched_inactive.next; ++ num_channels = _hcd->core_if->core_params->host_channels; ++ while (qh_ptr != &_hcd->non_periodic_sched_inactive ++ && !list_empty(&_hcd->free_hc_list)) { ++ ++ local_irq_save(flags); ++ if (_hcd->available_host_channels < 1) { ++ local_irq_restore(flags); ++ break; ++ } ++ _hcd->available_host_channels--; ++ local_irq_restore(flags); ++#ifdef DEBUG_HOST_CHANNELS ++ last_sel_trans_num_nonper_scheduled++; ++#endif /* DEBUG_HOST_CHANNELS */ ++ ++ qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry); ++ assign_and_init_hc(_hcd, qh); ++ ++ /* ++ * Move the QH from the non-periodic inactive schedule to the ++ * non-periodic active schedule. ++ */ ++ qh_ptr = qh_ptr->next; ++ local_irq_save(flags); ++ list_move(&qh->qh_list_entry, &_hcd->non_periodic_sched_active); ++ local_irq_restore(flags); ++ ++ if (ret_val == DWC_OTG_TRANSACTION_NONE) { ++ ret_val = DWC_OTG_TRANSACTION_NON_PERIODIC; ++ } else { ++ ret_val = DWC_OTG_TRANSACTION_ALL; ++ } ++ ++ } ++#ifdef DEBUG_HOST_CHANNELS ++ last_sel_trans_num_avail_hc_at_end = _hcd->available_host_channels; ++#endif /* DEBUG_HOST_CHANNELS */ ++ ++ return ret_val; ++} ++ ++/** ++ * Attempts to queue a single transaction request for a host channel ++ * associated with either a periodic or non-periodic transfer. This function ++ * assumes that there is space available in the appropriate request queue. For ++ * an OUT transfer or SETUP transaction in Slave mode, it checks whether space ++ * is available in the appropriate Tx FIFO. ++ * ++ * @param _hcd The HCD state structure. ++ * @param _hc Host channel descriptor associated with either a periodic or ++ * non-periodic transfer. ++ * @param _fifo_dwords_avail Number of DWORDs available in the periodic Tx ++ * FIFO for periodic transfers or the non-periodic Tx FIFO for non-periodic ++ * transfers. ++ * ++ * @return 1 if a request is queued and more requests may be needed to ++ * complete the transfer, 0 if no more requests are required for this ++ * transfer, -1 if there is insufficient space in the Tx FIFO. ++ */ ++static int queue_transaction(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t *_hc, ++ uint16_t _fifo_dwords_avail) ++{ ++ int retval; ++ ++ if (_hcd->core_if->dma_enable) { ++ if (!_hc->xfer_started) { ++ dwc_otg_hc_start_transfer(_hcd->core_if, _hc); ++ _hc->qh->ping_state = 0; ++ } ++ retval = 0; ++ } else if (_hc->halt_pending) { ++ /* Don't queue a request if the channel has been halted. */ ++ retval = 0; ++ } else if (_hc->halt_on_queue) { ++ dwc_otg_hc_halt(_hcd->core_if, _hc, _hc->halt_status); ++ retval = 0; ++ } else if (_hc->do_ping) { ++ if (!_hc->xfer_started) { ++ dwc_otg_hc_start_transfer(_hcd->core_if, _hc); ++ } ++ retval = 0; ++ } else if (!_hc->ep_is_in || ++ _hc->data_pid_start == DWC_OTG_HC_PID_SETUP) { ++ if ((_fifo_dwords_avail * 4) >= _hc->max_packet) { ++ if (!_hc->xfer_started) { ++ dwc_otg_hc_start_transfer(_hcd->core_if, _hc); ++ retval = 1; ++ } else { ++ retval = dwc_otg_hc_continue_transfer(_hcd->core_if, _hc); ++ } ++ } else { ++ retval = -1; ++ } ++ } else { ++ if (!_hc->xfer_started) { ++ dwc_otg_hc_start_transfer(_hcd->core_if, _hc); ++ retval = 1; ++ } else { ++ retval = dwc_otg_hc_continue_transfer(_hcd->core_if, _hc); ++ } ++ } ++ ++ return retval; ++} ++ ++/** ++ * Processes active non-periodic channels and queues transactions for these ++ * channels to the DWC_otg controller. After queueing transactions, the NP Tx ++ * FIFO Empty interrupt is enabled if there are more transactions to queue as ++ * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx ++ * FIFO Empty interrupt is disabled. ++ */ ++static void process_non_periodic_channels(dwc_otg_hcd_t *_hcd) ++{ ++ gnptxsts_data_t tx_status; ++ struct list_head *orig_qh_ptr; ++ dwc_otg_qh_t *qh; ++ int status; ++ int no_queue_space = 0; ++ int no_fifo_space = 0; ++ int more_to_do = 0; ++ ++ dwc_otg_core_global_regs_t *global_regs = _hcd->core_if->core_global_regs; ++ ++ DWC_DEBUGPL(DBG_HCDV, "Queue non-periodic transactions\n"); ++#ifdef DEBUG ++ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts); ++ DWC_DEBUGPL(DBG_HCDV, " NP Tx Req Queue Space Avail (before queue): %d\n", ++ tx_status.b.nptxqspcavail); ++ DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (before queue): %d\n", ++ tx_status.b.nptxfspcavail); ++#endif ++ /* ++ * Keep track of the starting point. Skip over the start-of-list ++ * entry. ++ */ ++ if (_hcd->non_periodic_qh_ptr == &_hcd->non_periodic_sched_active) { ++ _hcd->non_periodic_qh_ptr = _hcd->non_periodic_qh_ptr->next; ++ } ++ orig_qh_ptr = _hcd->non_periodic_qh_ptr; ++ ++ /* ++ * Process once through the active list or until no more space is ++ * available in the request queue or the Tx FIFO. ++ */ ++ do { ++ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts); ++ if (!_hcd->core_if->dma_enable && tx_status.b.nptxqspcavail == 0) { ++ no_queue_space = 1; ++ break; ++ } ++ ++ qh = list_entry(_hcd->non_periodic_qh_ptr, dwc_otg_qh_t, qh_list_entry); ++ status = queue_transaction(_hcd, qh->channel, tx_status.b.nptxfspcavail); ++ ++ if (status > 0) { ++ more_to_do = 1; ++ } else if (status < 0) { ++ no_fifo_space = 1; ++ break; ++ } ++ ++ /* Advance to next QH, skipping start-of-list entry. */ ++ _hcd->non_periodic_qh_ptr = _hcd->non_periodic_qh_ptr->next; ++ if (_hcd->non_periodic_qh_ptr == &_hcd->non_periodic_sched_active) { ++ _hcd->non_periodic_qh_ptr = _hcd->non_periodic_qh_ptr->next; ++ } ++ ++ } while (_hcd->non_periodic_qh_ptr != orig_qh_ptr); ++ ++ if (!_hcd->core_if->dma_enable) { ++ gintmsk_data_t intr_mask = {.d32 = 0}; ++ intr_mask.b.nptxfempty = 1; ++ ++#ifdef DEBUG ++ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts); ++ DWC_DEBUGPL(DBG_HCDV, " NP Tx Req Queue Space Avail (after queue): %d\n", ++ tx_status.b.nptxqspcavail); ++ DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (after queue): %d\n", ++ tx_status.b.nptxfspcavail); ++#endif ++ if (more_to_do || no_queue_space || no_fifo_space) { ++ /* ++ * May need to queue more transactions as the request ++ * queue or Tx FIFO empties. Enable the non-periodic ++ * Tx FIFO empty interrupt. (Always use the half-empty ++ * level to ensure that new requests are loaded as ++ * soon as possible.) ++ */ ++ dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32); ++ } else { ++ /* ++ * Disable the Tx FIFO empty interrupt since there are ++ * no more transactions that need to be queued right ++ * now. This function is called from interrupt ++ * handlers to queue more transactions as transfer ++ * states change. ++ */ ++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0); ++ } ++ } ++} ++ ++/** ++ * Processes periodic channels for the next frame and queues transactions for ++ * these channels to the DWC_otg controller. After queueing transactions, the ++ * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions ++ * to queue as Periodic Tx FIFO or request queue space becomes available. ++ * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled. ++ */ ++static void process_periodic_channels(dwc_otg_hcd_t *_hcd) ++{ ++ hptxsts_data_t tx_status; ++ struct list_head *qh_ptr; ++ dwc_otg_qh_t *qh; ++ int status; ++ int no_queue_space = 0; ++ int no_fifo_space = 0; ++ ++ dwc_otg_host_global_regs_t *host_regs; ++ host_regs = _hcd->core_if->host_if->host_global_regs; ++ ++ DWC_DEBUGPL(DBG_HCDV, "Queue periodic transactions\n"); ++#ifdef DEBUG ++ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts); ++ DWC_DEBUGPL(DBG_HCDV, " P Tx Req Queue Space Avail (before queue): %d\n", ++ tx_status.b.ptxqspcavail); ++ DWC_DEBUGPL(DBG_HCDV, " P Tx FIFO Space Avail (before queue): %d\n", ++ tx_status.b.ptxfspcavail); ++#endif ++ ++ qh_ptr = _hcd->periodic_sched_assigned.next; ++ while (qh_ptr != &_hcd->periodic_sched_assigned) { ++ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts); ++ if (tx_status.b.ptxqspcavail == 0) { ++ no_queue_space = 1; ++ break; ++ } ++ ++ qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry); ++ ++ /* ++ * Set a flag if we're queuing high-bandwidth in slave mode. ++ * The flag prevents any halts to get into the request queue in ++ * the middle of multiple high-bandwidth packets getting queued. ++ */ ++ if ((!_hcd->core_if->dma_enable) && ++ (qh->channel->multi_count > 1)) ++ { ++ _hcd->core_if->queuing_high_bandwidth = 1; ++ } ++ ++ status = queue_transaction(_hcd, qh->channel, tx_status.b.ptxfspcavail); ++ if (status < 0) { ++ no_fifo_space = 1; ++ break; ++ } ++ ++ /* ++ * In Slave mode, stay on the current transfer until there is ++ * nothing more to do or the high-bandwidth request count is ++ * reached. In DMA mode, only need to queue one request. The ++ * controller automatically handles multiple packets for ++ * high-bandwidth transfers. ++ */ ++ if (_hcd->core_if->dma_enable || ++ (status == 0 || ++ qh->channel->requests == qh->channel->multi_count)) { ++ qh_ptr = qh_ptr->next; ++ /* ++ * Move the QH from the periodic assigned schedule to ++ * the periodic queued schedule. ++ */ ++ list_move(&qh->qh_list_entry, &_hcd->periodic_sched_queued); ++ ++ /* done queuing high bandwidth */ ++ _hcd->core_if->queuing_high_bandwidth = 0; ++ } ++ } ++ ++ if (!_hcd->core_if->dma_enable) { ++ dwc_otg_core_global_regs_t *global_regs; ++ gintmsk_data_t intr_mask = {.d32 = 0}; ++ ++ global_regs = _hcd->core_if->core_global_regs; ++ intr_mask.b.ptxfempty = 1; ++#ifdef DEBUG ++ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts); ++ DWC_DEBUGPL(DBG_HCDV, " P Tx Req Queue Space Avail (after queue): %d\n", ++ tx_status.b.ptxqspcavail); ++ DWC_DEBUGPL(DBG_HCDV, " P Tx FIFO Space Avail (after queue): %d\n", ++ tx_status.b.ptxfspcavail); ++#endif ++ if (!(list_empty(&_hcd->periodic_sched_assigned)) || ++ no_queue_space || no_fifo_space) { ++ /* ++ * May need to queue more transactions as the request ++ * queue or Tx FIFO empties. Enable the periodic Tx ++ * FIFO empty interrupt. (Always use the half-empty ++ * level to ensure that new requests are loaded as ++ * soon as possible.) ++ */ ++ dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32); ++ } else { ++ /* ++ * Disable the Tx FIFO empty interrupt since there are ++ * no more transactions that need to be queued right ++ * now. This function is called from interrupt ++ * handlers to queue more transactions as transfer ++ * states change. ++ */ ++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0); ++ } ++ } ++} ++ ++/** ++ * This function processes the currently active host channels and queues ++ * transactions for these channels to the DWC_otg controller. It is called ++ * from HCD interrupt handler functions. ++ * ++ * @param _hcd The HCD state structure. ++ * @param _tr_type The type(s) of transactions to queue (non-periodic, ++ * periodic, or both). ++ */ ++void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *_hcd, ++ dwc_otg_transaction_type_e _tr_type) ++{ ++#ifdef DEBUG_SOF ++ DWC_DEBUGPL(DBG_HCD, "Queue Transactions\n"); ++#endif ++ /* Process host channels associated with periodic transfers. */ ++ if ((_tr_type == DWC_OTG_TRANSACTION_PERIODIC || ++ _tr_type == DWC_OTG_TRANSACTION_ALL) && ++ !list_empty(&_hcd->periodic_sched_assigned)) { ++ ++ process_periodic_channels(_hcd); ++ } ++ ++ /* Process host channels associated with non-periodic transfers. */ ++ if ((_tr_type == DWC_OTG_TRANSACTION_NON_PERIODIC || ++ _tr_type == DWC_OTG_TRANSACTION_ALL)) { ++ if (!list_empty(&_hcd->non_periodic_sched_active)) { ++ process_non_periodic_channels(_hcd); ++ } else { ++ /* ++ * Ensure NP Tx FIFO empty interrupt is disabled when ++ * there are no non-periodic transfers to process. ++ */ ++ gintmsk_data_t gintmsk = {.d32 = 0}; ++ gintmsk.b.nptxfempty = 1; ++ dwc_modify_reg32(&_hcd->core_if->core_global_regs->gintmsk, gintmsk.d32, 0); ++ } ++ } ++} ++ ++/** ++ * Sets the final status of an URB and returns it to the device driver. Any ++ * required cleanup of the URB is performed. ++ */ ++void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t * _hcd, struct urb *_urb, ++ int _status) ++ __releases(_hcd->lock) ++__acquires(_hcd->lock) ++{ ++#ifdef DEBUG ++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) { ++ DWC_PRINT("%s: urb %p, device %d, ep %d %s, status=%d\n", ++ __func__, _urb, usb_pipedevice(_urb->pipe), ++ usb_pipeendpoint(_urb->pipe), ++ usb_pipein(_urb->pipe) ? "IN" : "OUT", _status); ++ if (usb_pipetype(_urb->pipe) == PIPE_ISOCHRONOUS) { ++ int i; ++ for (i = 0; i < _urb->number_of_packets; i++) { ++ DWC_PRINT(" ISO Desc %d status: %d\n", ++ i, _urb->iso_frame_desc[i].status); ++ } ++ } ++ } ++#endif ++ ++ _urb->status = _status; ++ _urb->hcpriv = NULL; ++ usb_hcd_unlink_urb_from_ep(dwc_otg_hcd_to_hcd(_hcd), _urb); ++ spin_unlock(&_hcd->lock); ++ usb_hcd_giveback_urb(dwc_otg_hcd_to_hcd(_hcd), _urb, _status); ++ spin_lock(&_hcd->lock); ++} ++ ++/* ++ * Returns the Queue Head for an URB. ++ */ ++dwc_otg_qh_t *dwc_urb_to_qh(struct urb *_urb) ++{ ++ struct usb_host_endpoint *ep = dwc_urb_to_endpoint(_urb); ++ return (dwc_otg_qh_t *)ep->hcpriv; ++} ++ ++#ifdef DEBUG ++void dwc_print_setup_data (uint8_t *setup) ++{ ++ int i; ++ if (CHK_DEBUG_LEVEL(DBG_HCD)){ ++ DWC_PRINT("Setup Data = MSB "); ++ for (i=7; i>=0; i--) DWC_PRINT ("%02x ", setup[i]); ++ DWC_PRINT("\n"); ++ DWC_PRINT(" bmRequestType Tranfer = %s\n", (setup[0]&0x80) ? "Device-to-Host" : "Host-to-Device"); ++ DWC_PRINT(" bmRequestType Type = "); ++ switch ((setup[0]&0x60) >> 5) { ++ case 0: DWC_PRINT("Standard\n"); break; ++ case 1: DWC_PRINT("Class\n"); break; ++ case 2: DWC_PRINT("Vendor\n"); break; ++ case 3: DWC_PRINT("Reserved\n"); break; ++ } ++ DWC_PRINT(" bmRequestType Recipient = "); ++ switch (setup[0]&0x1f) { ++ case 0: DWC_PRINT("Device\n"); break; ++ case 1: DWC_PRINT("Interface\n"); break; ++ case 2: DWC_PRINT("Endpoint\n"); break; ++ case 3: DWC_PRINT("Other\n"); break; ++ default: DWC_PRINT("Reserved\n"); break; ++ } ++ DWC_PRINT(" bRequest = 0x%0x\n", setup[1]); ++ DWC_PRINT(" wValue = 0x%0x\n", *((uint16_t *)&setup[2])); ++ DWC_PRINT(" wIndex = 0x%0x\n", *((uint16_t *)&setup[4])); ++ DWC_PRINT(" wLength = 0x%0x\n\n", *((uint16_t *)&setup[6])); ++ } ++} ++#endif ++ ++void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *_hcd) { ++#ifdef DEBUG ++#if 0 ++ DWC_PRINT("Frame remaining at SOF:\n"); ++ DWC_PRINT(" samples %u, accum %llu, avg %llu\n", ++ _hcd->frrem_samples, _hcd->frrem_accum, ++ (_hcd->frrem_samples > 0) ? ++ _hcd->frrem_accum/_hcd->frrem_samples : 0); ++ ++ DWC_PRINT("\n"); ++ DWC_PRINT("Frame remaining at start_transfer (uframe 7):\n"); ++ DWC_PRINT(" samples %u, accum %u, avg %u\n", ++ _hcd->core_if->hfnum_7_samples, _hcd->core_if->hfnum_7_frrem_accum, ++ (_hcd->core_if->hfnum_7_samples > 0) ? ++ _hcd->core_if->hfnum_7_frrem_accum/_hcd->core_if->hfnum_7_samples : 0); ++ DWC_PRINT("Frame remaining at start_transfer (uframe 0):\n"); ++ DWC_PRINT(" samples %u, accum %u, avg %u\n", ++ _hcd->core_if->hfnum_0_samples, _hcd->core_if->hfnum_0_frrem_accum, ++ (_hcd->core_if->hfnum_0_samples > 0) ? ++ _hcd->core_if->hfnum_0_frrem_accum/_hcd->core_if->hfnum_0_samples : 0); ++ DWC_PRINT("Frame remaining at start_transfer (uframe 1-6):\n"); ++ DWC_PRINT(" samples %u, accum %u, avg %u\n", ++ _hcd->core_if->hfnum_other_samples, _hcd->core_if->hfnum_other_frrem_accum, ++ (_hcd->core_if->hfnum_other_samples > 0) ? ++ _hcd->core_if->hfnum_other_frrem_accum/_hcd->core_if->hfnum_other_samples : 0); ++ ++ DWC_PRINT("\n"); ++ DWC_PRINT("Frame remaining at sample point A (uframe 7):\n"); ++ DWC_PRINT(" samples %u, accum %llu, avg %llu\n", ++ _hcd->hfnum_7_samples_a, _hcd->hfnum_7_frrem_accum_a, ++ (_hcd->hfnum_7_samples_a > 0) ? ++ _hcd->hfnum_7_frrem_accum_a/_hcd->hfnum_7_samples_a : 0); ++ DWC_PRINT("Frame remaining at sample point A (uframe 0):\n"); ++ DWC_PRINT(" samples %u, accum %llu, avg %llu\n", ++ _hcd->hfnum_0_samples_a, _hcd->hfnum_0_frrem_accum_a, ++ (_hcd->hfnum_0_samples_a > 0) ? ++ _hcd->hfnum_0_frrem_accum_a/_hcd->hfnum_0_samples_a : 0); ++ DWC_PRINT("Frame remaining at sample point A (uframe 1-6):\n"); ++ DWC_PRINT(" samples %u, accum %llu, avg %llu\n", ++ _hcd->hfnum_other_samples_a, _hcd->hfnum_other_frrem_accum_a, ++ (_hcd->hfnum_other_samples_a > 0) ? ++ _hcd->hfnum_other_frrem_accum_a/_hcd->hfnum_other_samples_a : 0); ++ ++ DWC_PRINT("\n"); ++ DWC_PRINT("Frame remaining at sample point B (uframe 7):\n"); ++ DWC_PRINT(" samples %u, accum %llu, avg %llu\n", ++ _hcd->hfnum_7_samples_b, _hcd->hfnum_7_frrem_accum_b, ++ (_hcd->hfnum_7_samples_b > 0) ? ++ _hcd->hfnum_7_frrem_accum_b/_hcd->hfnum_7_samples_b : 0); ++ DWC_PRINT("Frame remaining at sample point B (uframe 0):\n"); ++ DWC_PRINT(" samples %u, accum %llu, avg %llu\n", ++ _hcd->hfnum_0_samples_b, _hcd->hfnum_0_frrem_accum_b, ++ (_hcd->hfnum_0_samples_b > 0) ? ++ _hcd->hfnum_0_frrem_accum_b/_hcd->hfnum_0_samples_b : 0); ++ DWC_PRINT("Frame remaining at sample point B (uframe 1-6):\n"); ++ DWC_PRINT(" samples %u, accum %llu, avg %llu\n", ++ _hcd->hfnum_other_samples_b, _hcd->hfnum_other_frrem_accum_b, ++ (_hcd->hfnum_other_samples_b > 0) ? ++ _hcd->hfnum_other_frrem_accum_b/_hcd->hfnum_other_samples_b : 0); ++#endif ++#endif ++} ++ ++void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *_hcd) ++{ ++#ifdef DEBUG ++ int num_channels; ++ int i; ++ gnptxsts_data_t np_tx_status; ++ hptxsts_data_t p_tx_status; ++ ++ num_channels = _hcd->core_if->core_params->host_channels; ++ DWC_PRINT("\n"); ++ DWC_PRINT("************************************************************\n"); ++ DWC_PRINT("HCD State:\n"); ++ DWC_PRINT(" Num channels: %d\n", num_channels); ++ for (i = 0; i < num_channels; i++) { ++ dwc_hc_t *hc = _hcd->hc_ptr_array[i]; ++ DWC_PRINT(" Channel %d:\n", i); ++ DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n", ++ hc->dev_addr, hc->ep_num, hc->ep_is_in); ++ DWC_PRINT(" speed: %d\n", hc->speed); ++ DWC_PRINT(" ep_type: %d\n", hc->ep_type); ++ DWC_PRINT(" max_packet: %d\n", hc->max_packet); ++ DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start); ++ DWC_PRINT(" multi_count: %d\n", hc->multi_count); ++ DWC_PRINT(" xfer_started: %d\n", hc->xfer_started); ++ DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff); ++ DWC_PRINT(" xfer_len: %d\n", hc->xfer_len); ++ DWC_PRINT(" xfer_count: %d\n", hc->xfer_count); ++ DWC_PRINT(" halt_on_queue: %d\n", hc->halt_on_queue); ++ DWC_PRINT(" halt_pending: %d\n", hc->halt_pending); ++ DWC_PRINT(" halt_status: %d\n", hc->halt_status); ++ DWC_PRINT(" do_split: %d\n", hc->do_split); ++ DWC_PRINT(" complete_split: %d\n", hc->complete_split); ++ DWC_PRINT(" hub_addr: %d\n", hc->hub_addr); ++ DWC_PRINT(" port_addr: %d\n", hc->port_addr); ++ DWC_PRINT(" xact_pos: %d\n", hc->xact_pos); ++ DWC_PRINT(" requests: %d\n", hc->requests); ++ DWC_PRINT(" qh: %p\n", hc->qh); ++ if (hc->xfer_started) { ++ hfnum_data_t hfnum; ++ hcchar_data_t hcchar; ++ hctsiz_data_t hctsiz; ++ hcint_data_t hcint; ++ hcintmsk_data_t hcintmsk; ++ hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum); ++ hcchar.d32 = dwc_read_reg32(&_hcd->core_if->host_if->hc_regs[i]->hcchar); ++ hctsiz.d32 = dwc_read_reg32(&_hcd->core_if->host_if->hc_regs[i]->hctsiz); ++ hcint.d32 = dwc_read_reg32(&_hcd->core_if->host_if->hc_regs[i]->hcint); ++ hcintmsk.d32 = dwc_read_reg32(&_hcd->core_if->host_if->hc_regs[i]->hcintmsk); ++ DWC_PRINT(" hfnum: 0x%08x\n", hfnum.d32); ++ DWC_PRINT(" hcchar: 0x%08x\n", hcchar.d32); ++ DWC_PRINT(" hctsiz: 0x%08x\n", hctsiz.d32); ++ DWC_PRINT(" hcint: 0x%08x\n", hcint.d32); ++ DWC_PRINT(" hcintmsk: 0x%08x\n", hcintmsk.d32); ++ } ++ if (hc->xfer_started && (hc->qh != NULL) && (hc->qh->qtd_in_process != NULL)) { ++ dwc_otg_qtd_t *qtd; ++ struct urb *urb; ++ qtd = hc->qh->qtd_in_process; ++ urb = qtd->urb; ++ DWC_PRINT(" URB Info:\n"); ++ DWC_PRINT(" qtd: %p, urb: %p\n", qtd, urb); ++ if (urb != NULL) { ++ DWC_PRINT(" Dev: %d, EP: %d %s\n", ++ usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe), ++ usb_pipein(urb->pipe) ? "IN" : "OUT"); ++ DWC_PRINT(" Max packet size: %d\n", ++ usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))); ++ DWC_PRINT(" transfer_buffer: %p\n", urb->transfer_buffer); ++ DWC_PRINT(" transfer_dma: %p\n", (void *)urb->transfer_dma); ++ DWC_PRINT(" transfer_buffer_length: %d\n", urb->transfer_buffer_length); ++ DWC_PRINT(" actual_length: %d\n", urb->actual_length); ++ } ++ } ++ } ++ //DWC_PRINT(" non_periodic_channels: %d\n", _hcd->non_periodic_channels); ++ //DWC_PRINT(" periodic_channels: %d\n", _hcd->periodic_channels); ++ DWC_PRINT(" available_channels: %d\n", _hcd->available_host_channels); ++ DWC_PRINT(" periodic_usecs: %d\n", _hcd->periodic_usecs); ++ np_tx_status.d32 = dwc_read_reg32(&_hcd->core_if->core_global_regs->gnptxsts); ++ DWC_PRINT(" NP Tx Req Queue Space Avail: %d\n", np_tx_status.b.nptxqspcavail); ++ DWC_PRINT(" NP Tx FIFO Space Avail: %d\n", np_tx_status.b.nptxfspcavail); ++ p_tx_status.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hptxsts); ++ DWC_PRINT(" P Tx Req Queue Space Avail: %d\n", p_tx_status.b.ptxqspcavail); ++ DWC_PRINT(" P Tx FIFO Space Avail: %d\n", p_tx_status.b.ptxfspcavail); ++ dwc_otg_hcd_dump_frrem(_hcd); ++ dwc_otg_dump_global_registers(_hcd->core_if); ++ dwc_otg_dump_host_registers(_hcd->core_if); ++ DWC_PRINT("************************************************************\n"); ++ DWC_PRINT("\n"); ++#endif ++} ++#endif /* DWC_DEVICE_ONLY */ +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_hcd.h +@@ -0,0 +1,677 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_hcd.h $ ++ * $Revision: 1.1.1.1 $ ++ * $Date: 2009-04-17 06:15:34 $ ++ * $Change: 537387 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++#ifndef DWC_DEVICE_ONLY ++#if !defined(__DWC_HCD_H__) ++#define __DWC_HCD_H__ ++ ++#include <linux/list.h> ++#include <linux/usb.h> ++//#include <linux/usb/hcd.h> ++#include "../core/hcd.h" ++ ++struct lm_device; ++struct dwc_otg_device; ++ ++#include "dwc_otg_cil.h" ++//#include "dwc_otg_ifx.h" // winder ++ ++ ++/** ++ * @file ++ * ++ * This file contains the structures, constants, and interfaces for ++ * the Host Contoller Driver (HCD). ++ * ++ * The Host Controller Driver (HCD) is responsible for translating requests ++ * from the USB Driver into the appropriate actions on the DWC_otg controller. ++ * It isolates the USBD from the specifics of the controller by providing an ++ * API to the USBD. ++ */ ++ ++/** ++ * Phases for control transfers. ++ */ ++typedef enum dwc_otg_control_phase { ++ DWC_OTG_CONTROL_SETUP, ++ DWC_OTG_CONTROL_DATA, ++ DWC_OTG_CONTROL_STATUS ++} dwc_otg_control_phase_e; ++ ++/** Transaction types. */ ++typedef enum dwc_otg_transaction_type { ++ DWC_OTG_TRANSACTION_NONE, ++ DWC_OTG_TRANSACTION_PERIODIC, ++ DWC_OTG_TRANSACTION_NON_PERIODIC, ++ DWC_OTG_TRANSACTION_ALL ++} dwc_otg_transaction_type_e; ++ ++/** ++ * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control, ++ * interrupt, or isochronous transfer. A single QTD is created for each URB ++ * (of one of these types) submitted to the HCD. The transfer associated with ++ * a QTD may require one or multiple transactions. ++ * ++ * A QTD is linked to a Queue Head, which is entered in either the ++ * non-periodic or periodic schedule for execution. When a QTD is chosen for ++ * execution, some or all of its transactions may be executed. After ++ * execution, the state of the QTD is updated. The QTD may be retired if all ++ * its transactions are complete or if an error occurred. Otherwise, it ++ * remains in the schedule so more transactions can be executed later. ++ */ ++struct dwc_otg_qh; ++typedef struct dwc_otg_qtd { ++ /** ++ * Determines the PID of the next data packet for the data phase of ++ * control transfers. Ignored for other transfer types.<br> ++ * One of the following values: ++ * - DWC_OTG_HC_PID_DATA0 ++ * - DWC_OTG_HC_PID_DATA1 ++ */ ++ uint8_t data_toggle; ++ ++ /** Current phase for control transfers (Setup, Data, or Status). */ ++ dwc_otg_control_phase_e control_phase; ++ ++ /** Keep track of the current split type ++ * for FS/LS endpoints on a HS Hub */ ++ uint8_t complete_split; ++ ++ /** How many bytes transferred during SSPLIT OUT */ ++ uint32_t ssplit_out_xfer_count; ++ ++ /** ++ * Holds the number of bus errors that have occurred for a transaction ++ * within this transfer. ++ */ ++ uint8_t error_count; ++ ++ /** ++ * Index of the next frame descriptor for an isochronous transfer. A ++ * frame descriptor describes the buffer position and length of the ++ * data to be transferred in the next scheduled (micro)frame of an ++ * isochronous transfer. It also holds status for that transaction. ++ * The frame index starts at 0. ++ */ ++ int isoc_frame_index; ++ ++ /** Position of the ISOC split on full/low speed */ ++ uint8_t isoc_split_pos; ++ ++ /** Position of the ISOC split in the buffer for the current frame */ ++ uint16_t isoc_split_offset; ++ ++ /** URB for this transfer */ ++ struct urb *urb; ++ ++ /** This list of QTDs */ ++ struct list_head qtd_list_entry; ++ ++ /* Field to track the qh pointer */ ++ struct dwc_otg_qh *qtd_qh_ptr; ++} dwc_otg_qtd_t; ++ ++/** ++ * A Queue Head (QH) holds the static characteristics of an endpoint and ++ * maintains a list of transfers (QTDs) for that endpoint. A QH structure may ++ * be entered in either the non-periodic or periodic schedule. ++ */ ++typedef struct dwc_otg_qh { ++ /** ++ * Endpoint type. ++ * One of the following values: ++ * - USB_ENDPOINT_XFER_CONTROL ++ * - USB_ENDPOINT_XFER_ISOC ++ * - USB_ENDPOINT_XFER_BULK ++ * - USB_ENDPOINT_XFER_INT ++ */ ++ uint8_t ep_type; ++ uint8_t ep_is_in; ++ ++ /** wMaxPacketSize Field of Endpoint Descriptor. */ ++ uint16_t maxp; ++ ++ /** ++ * Determines the PID of the next data packet for non-control ++ * transfers. Ignored for control transfers.<br> ++ * One of the following values: ++ * - DWC_OTG_HC_PID_DATA0 ++ * - DWC_OTG_HC_PID_DATA1 ++ */ ++ uint8_t data_toggle; ++ ++ /** Ping state if 1. */ ++ uint8_t ping_state; ++ ++ /** ++ * List of QTDs for this QH. ++ */ ++ struct list_head qtd_list; ++ ++ /** Host channel currently processing transfers for this QH. */ ++ dwc_hc_t *channel; ++ ++ /** QTD currently assigned to a host channel for this QH. */ ++ dwc_otg_qtd_t *qtd_in_process; ++ ++ /** Full/low speed endpoint on high-speed hub requires split. */ ++ uint8_t do_split; ++ ++ /** @name Periodic schedule information */ ++ /** @{ */ ++ ++ /** Bandwidth in microseconds per (micro)frame. */ ++ uint8_t usecs; ++ ++ /** Interval between transfers in (micro)frames. */ ++ uint16_t interval; ++ ++ /** ++ * (micro)frame to initialize a periodic transfer. The transfer ++ * executes in the following (micro)frame. ++ */ ++ uint16_t sched_frame; ++ ++ /** (micro)frame at which last start split was initialized. */ ++ uint16_t start_split_frame; ++ ++ /** @} */ ++ ++ uint16_t speed; ++ uint16_t frame_usecs[8]; ++ /** Entry for QH in either the periodic or non-periodic schedule. */ ++ struct list_head qh_list_entry; ++} dwc_otg_qh_t; ++ ++/** ++ * This structure holds the state of the HCD, including the non-periodic and ++ * periodic schedules. ++ */ ++typedef struct dwc_otg_hcd { ++ spinlock_t lock; ++ ++ /** DWC OTG Core Interface Layer */ ++ dwc_otg_core_if_t *core_if; ++ ++ /** Internal DWC HCD Flags */ ++ volatile union dwc_otg_hcd_internal_flags { ++ uint32_t d32; ++ struct { ++ unsigned port_connect_status_change : 1; ++ unsigned port_connect_status : 1; ++ unsigned port_reset_change : 1; ++ unsigned port_enable_change : 1; ++ unsigned port_suspend_change : 1; ++ unsigned port_over_current_change : 1; ++ unsigned reserved : 27; ++ } b; ++ } flags; ++ ++ /** ++ * Inactive items in the non-periodic schedule. This is a list of ++ * Queue Heads. Transfers associated with these Queue Heads are not ++ * currently assigned to a host channel. ++ */ ++ struct list_head non_periodic_sched_inactive; ++ ++ /** ++ * Deferred items in the non-periodic schedule. This is a list of ++ * Queue Heads. Transfers associated with these Queue Heads are not ++ * currently assigned to a host channel. ++ * When we get an NAK, the QH goes here. ++ */ ++ struct list_head non_periodic_sched_deferred; ++ ++ /** ++ * Active items in the non-periodic schedule. This is a list of ++ * Queue Heads. Transfers associated with these Queue Heads are ++ * currently assigned to a host channel. ++ */ ++ struct list_head non_periodic_sched_active; ++ ++ /** ++ * Pointer to the next Queue Head to process in the active ++ * non-periodic schedule. ++ */ ++ struct list_head *non_periodic_qh_ptr; ++ ++ /** ++ * Inactive items in the periodic schedule. This is a list of QHs for ++ * periodic transfers that are _not_ scheduled for the next frame. ++ * Each QH in the list has an interval counter that determines when it ++ * needs to be scheduled for execution. This scheduling mechanism ++ * allows only a simple calculation for periodic bandwidth used (i.e. ++ * must assume that all periodic transfers may need to execute in the ++ * same frame). However, it greatly simplifies scheduling and should ++ * be sufficient for the vast majority of OTG hosts, which need to ++ * connect to a small number of peripherals at one time. ++ * ++ * Items move from this list to periodic_sched_ready when the QH ++ * interval counter is 0 at SOF. ++ */ ++ struct list_head periodic_sched_inactive; ++ ++ /** ++ * List of periodic QHs that are ready for execution in the next ++ * frame, but have not yet been assigned to host channels. ++ * ++ * Items move from this list to periodic_sched_assigned as host ++ * channels become available during the current frame. ++ */ ++ struct list_head periodic_sched_ready; ++ ++ /** ++ * List of periodic QHs to be executed in the next frame that are ++ * assigned to host channels. ++ * ++ * Items move from this list to periodic_sched_queued as the ++ * transactions for the QH are queued to the DWC_otg controller. ++ */ ++ struct list_head periodic_sched_assigned; ++ ++ /** ++ * List of periodic QHs that have been queued for execution. ++ * ++ * Items move from this list to either periodic_sched_inactive or ++ * periodic_sched_ready when the channel associated with the transfer ++ * is released. If the interval for the QH is 1, the item moves to ++ * periodic_sched_ready because it must be rescheduled for the next ++ * frame. Otherwise, the item moves to periodic_sched_inactive. ++ */ ++ struct list_head periodic_sched_queued; ++ ++ /** ++ * Total bandwidth claimed so far for periodic transfers. This value ++ * is in microseconds per (micro)frame. The assumption is that all ++ * periodic transfers may occur in the same (micro)frame. ++ */ ++ uint16_t periodic_usecs; ++ ++ /** ++ * Total bandwidth claimed so far for all periodic transfers ++ * in a frame. ++ * This will include a mixture of HS and FS transfers. ++ * Units are microseconds per (micro)frame. ++ * We have a budget per frame and have to schedule ++ * transactions accordingly. ++ * Watch out for the fact that things are actually scheduled for the ++ * "next frame". ++ */ ++ uint16_t frame_usecs[8]; ++ ++ /** ++ * Frame number read from the core at SOF. The value ranges from 0 to ++ * DWC_HFNUM_MAX_FRNUM. ++ */ ++ uint16_t frame_number; ++ ++ /** ++ * Free host channels in the controller. This is a list of ++ * dwc_hc_t items. ++ */ ++ struct list_head free_hc_list; ++ ++ /** ++ * Number of available host channels. ++ */ ++ int available_host_channels; ++ ++ /** ++ * Array of pointers to the host channel descriptors. Allows accessing ++ * a host channel descriptor given the host channel number. This is ++ * useful in interrupt handlers. ++ */ ++ dwc_hc_t *hc_ptr_array[MAX_EPS_CHANNELS]; ++ ++ /** ++ * Buffer to use for any data received during the status phase of a ++ * control transfer. Normally no data is transferred during the status ++ * phase. This buffer is used as a bit bucket. ++ */ ++ uint8_t *status_buf; ++ ++ /** ++ * DMA address for status_buf. ++ */ ++ dma_addr_t status_buf_dma; ++#define DWC_OTG_HCD_STATUS_BUF_SIZE 64 ++ ++ /** ++ * Structure to allow starting the HCD in a non-interrupt context ++ * during an OTG role change. ++ */ ++ struct work_struct start_work; ++ struct usb_hcd *_p; ++ ++ /** ++ * Connection timer. An OTG host must display a message if the device ++ * does not connect. Started when the VBus power is turned on via ++ * sysfs attribute "buspower". ++ */ ++ struct timer_list conn_timer; ++ ++ /* Tasket to do a reset */ ++ struct tasklet_struct *reset_tasklet; ++ ++#ifdef DEBUG ++ uint32_t frrem_samples; ++ uint64_t frrem_accum; ++ ++ uint32_t hfnum_7_samples_a; ++ uint64_t hfnum_7_frrem_accum_a; ++ uint32_t hfnum_0_samples_a; ++ uint64_t hfnum_0_frrem_accum_a; ++ uint32_t hfnum_other_samples_a; ++ uint64_t hfnum_other_frrem_accum_a; ++ ++ uint32_t hfnum_7_samples_b; ++ uint64_t hfnum_7_frrem_accum_b; ++ uint32_t hfnum_0_samples_b; ++ uint64_t hfnum_0_frrem_accum_b; ++ uint32_t hfnum_other_samples_b; ++ uint64_t hfnum_other_frrem_accum_b; ++#endif ++ ++} dwc_otg_hcd_t; ++ ++/** Gets the dwc_otg_hcd from a struct usb_hcd */ ++static inline dwc_otg_hcd_t *hcd_to_dwc_otg_hcd(struct usb_hcd *hcd) ++{ ++ return (dwc_otg_hcd_t *)(hcd->hcd_priv); ++} ++ ++/** Gets the struct usb_hcd that contains a dwc_otg_hcd_t. */ ++static inline struct usb_hcd *dwc_otg_hcd_to_hcd(dwc_otg_hcd_t *dwc_otg_hcd) ++{ ++ return container_of((void *)dwc_otg_hcd, struct usb_hcd, hcd_priv); ++} ++ ++/** @name HCD Create/Destroy Functions */ ++/** @{ */ ++extern int __devinit dwc_otg_hcd_init(struct device *_dev, dwc_otg_device_t * dwc_otg_device); ++extern void dwc_otg_hcd_remove(struct device *_dev); ++/** @} */ ++ ++/** @name Linux HC Driver API Functions */ ++/** @{ */ ++ ++extern int dwc_otg_hcd_start(struct usb_hcd *hcd); ++extern void dwc_otg_hcd_stop(struct usb_hcd *hcd); ++extern int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd); ++extern void dwc_otg_hcd_free(struct usb_hcd *hcd); ++ ++extern int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd, ++ struct urb *urb, ++ gfp_t mem_flags); ++extern int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd, ++ struct urb *urb, ++ int status); ++extern irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd); ++ ++extern void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd, ++ struct usb_host_endpoint *ep); ++ ++extern int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd, ++ char *buf); ++extern int dwc_otg_hcd_hub_control(struct usb_hcd *hcd, ++ u16 typeReq, ++ u16 wValue, ++ u16 wIndex, ++ char *buf, ++ u16 wLength); ++ ++/** @} */ ++ ++/** @name Transaction Execution Functions */ ++/** @{ */ ++extern dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *_hcd); ++extern void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *_hcd, ++ dwc_otg_transaction_type_e _tr_type); ++extern void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t *_hcd, struct urb *_urb, ++ int _status); ++/** @} */ ++ ++/** @name Interrupt Handler Functions */ ++/** @{ */ ++extern int32_t dwc_otg_hcd_handle_intr (dwc_otg_hcd_t *_dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_sof_intr (dwc_otg_hcd_t *_dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_rx_status_q_level_intr (dwc_otg_hcd_t *_dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr (dwc_otg_hcd_t *_dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr (dwc_otg_hcd_t *_dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_incomplete_periodic_intr(dwc_otg_hcd_t *_dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_port_intr (dwc_otg_hcd_t *_dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_conn_id_status_change_intr (dwc_otg_hcd_t *_dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_disconnect_intr (dwc_otg_hcd_t *_dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_hc_intr (dwc_otg_hcd_t *_dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_hc_n_intr (dwc_otg_hcd_t *_dwc_otg_hcd, uint32_t _num); ++extern int32_t dwc_otg_hcd_handle_session_req_intr (dwc_otg_hcd_t *_dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_wakeup_detected_intr (dwc_otg_hcd_t *_dwc_otg_hcd); ++/** @} */ ++ ++ ++/** @name Schedule Queue Functions */ ++/** @{ */ ++ ++/* Implemented in dwc_otg_hcd_queue.c */ ++extern dwc_otg_qh_t *dwc_otg_hcd_qh_create (dwc_otg_hcd_t *_hcd, struct urb *_urb); ++extern void dwc_otg_hcd_qh_init (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, struct urb *_urb); ++extern void dwc_otg_hcd_qh_free (dwc_otg_qh_t *_qh); ++extern int dwc_otg_hcd_qh_add (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh); ++extern void dwc_otg_hcd_qh_remove (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh); ++extern void dwc_otg_hcd_qh_deactivate (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, int sched_csplit); ++extern int dwc_otg_hcd_qh_deferr (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, int delay); ++ ++/** Remove and free a QH */ ++static inline void dwc_otg_hcd_qh_remove_and_free (dwc_otg_hcd_t *_hcd, ++ dwc_otg_qh_t *_qh) ++{ ++ dwc_otg_hcd_qh_remove (_hcd, _qh); ++ dwc_otg_hcd_qh_free (_qh); ++} ++ ++/** Allocates memory for a QH structure. ++ * @return Returns the memory allocate or NULL on error. */ ++static inline dwc_otg_qh_t *dwc_otg_hcd_qh_alloc (void) ++{ ++#ifdef _SC_BUILD_ ++ return (dwc_otg_qh_t *) kmalloc (sizeof(dwc_otg_qh_t), GFP_ATOMIC); ++#else ++ return (dwc_otg_qh_t *) kmalloc (sizeof(dwc_otg_qh_t), GFP_KERNEL); ++#endif ++} ++ ++extern dwc_otg_qtd_t *dwc_otg_hcd_qtd_create (struct urb *urb); ++extern void dwc_otg_hcd_qtd_init (dwc_otg_qtd_t *qtd, struct urb *urb); ++extern int dwc_otg_hcd_qtd_add (dwc_otg_qtd_t *qtd, dwc_otg_hcd_t *dwc_otg_hcd); ++ ++/** Allocates memory for a QTD structure. ++ * @return Returns the memory allocate or NULL on error. */ ++static inline dwc_otg_qtd_t *dwc_otg_hcd_qtd_alloc (void) ++{ ++#ifdef _SC_BUILD_ ++ return (dwc_otg_qtd_t *) kmalloc (sizeof(dwc_otg_qtd_t), GFP_ATOMIC); ++#else ++ return (dwc_otg_qtd_t *) kmalloc (sizeof(dwc_otg_qtd_t), GFP_KERNEL); ++#endif ++} ++ ++/** Frees the memory for a QTD structure. QTD should already be removed from ++ * list. ++ * @param[in] _qtd QTD to free.*/ ++static inline void dwc_otg_hcd_qtd_free (dwc_otg_qtd_t *_qtd) ++{ ++ kfree (_qtd); ++} ++ ++/** Removes a QTD from list. ++ * @param[in] _qtd QTD to remove from list. */ ++static inline void dwc_otg_hcd_qtd_remove (dwc_otg_qtd_t *_qtd) ++{ ++ unsigned long flags; ++ local_irq_save (flags); ++ list_del (&_qtd->qtd_list_entry); ++ local_irq_restore (flags); ++} ++ ++/** Remove and free a QTD */ ++static inline void dwc_otg_hcd_qtd_remove_and_free (dwc_otg_qtd_t *_qtd) ++{ ++ dwc_otg_hcd_qtd_remove (_qtd); ++ dwc_otg_hcd_qtd_free (_qtd); ++} ++ ++/** @} */ ++ ++ ++/** @name Internal Functions */ ++/** @{ */ ++dwc_otg_qh_t *dwc_urb_to_qh(struct urb *_urb); ++void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *_hcd); ++void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *_hcd); ++/** @} */ ++ ++ ++/** Gets the usb_host_endpoint associated with an URB. */ ++static inline struct usb_host_endpoint *dwc_urb_to_endpoint(struct urb *_urb) ++{ ++ struct usb_device *dev = _urb->dev; ++ int ep_num = usb_pipeendpoint(_urb->pipe); ++ if (usb_pipein(_urb->pipe)) ++ return dev->ep_in[ep_num]; ++ else ++ return dev->ep_out[ep_num]; ++} ++ ++/** ++ * Gets the endpoint number from a _bEndpointAddress argument. The endpoint is ++ * qualified with its direction (possible 32 endpoints per device). ++ */ ++#define dwc_ep_addr_to_endpoint(_bEndpointAddress_) \ ++ ((_bEndpointAddress_ & USB_ENDPOINT_NUMBER_MASK) | \ ++ ((_bEndpointAddress_ & USB_DIR_IN) != 0) << 4) ++ ++/** Gets the QH that contains the list_head */ ++#define dwc_list_to_qh(_list_head_ptr_) (container_of(_list_head_ptr_,dwc_otg_qh_t,qh_list_entry)) ++ ++/** Gets the QTD that contains the list_head */ ++#define dwc_list_to_qtd(_list_head_ptr_) (container_of(_list_head_ptr_,dwc_otg_qtd_t,qtd_list_entry)) ++ ++/** Check if QH is non-periodic */ ++#define dwc_qh_is_non_per(_qh_ptr_) ((_qh_ptr_->ep_type == USB_ENDPOINT_XFER_BULK) || \ ++ (_qh_ptr_->ep_type == USB_ENDPOINT_XFER_CONTROL)) ++ ++/** High bandwidth multiplier as encoded in highspeed endpoint descriptors */ ++#define dwc_hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03)) ++ ++/** Packet size for any kind of endpoint descriptor */ ++#define dwc_max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff) ++ ++/** ++ * Returns true if _frame1 is less than or equal to _frame2. The comparison is ++ * done modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the ++ * frame number when the max frame number is reached. ++ */ ++static inline int dwc_frame_num_le(uint16_t _frame1, uint16_t _frame2) ++{ ++ return ((_frame2 - _frame1) & DWC_HFNUM_MAX_FRNUM) <= ++ (DWC_HFNUM_MAX_FRNUM >> 1); ++} ++ ++/** ++ * Returns true if _frame1 is greater than _frame2. The comparison is done ++ * modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the frame ++ * number when the max frame number is reached. ++ */ ++static inline int dwc_frame_num_gt(uint16_t _frame1, uint16_t _frame2) ++{ ++ return (_frame1 != _frame2) && ++ (((_frame1 - _frame2) & DWC_HFNUM_MAX_FRNUM) < ++ (DWC_HFNUM_MAX_FRNUM >> 1)); ++} ++ ++/** ++ * Increments _frame by the amount specified by _inc. The addition is done ++ * modulo DWC_HFNUM_MAX_FRNUM. Returns the incremented value. ++ */ ++static inline uint16_t dwc_frame_num_inc(uint16_t _frame, uint16_t _inc) ++{ ++ return (_frame + _inc) & DWC_HFNUM_MAX_FRNUM; ++} ++ ++static inline uint16_t dwc_full_frame_num (uint16_t _frame) ++{ ++ return ((_frame) & DWC_HFNUM_MAX_FRNUM) >> 3; ++} ++ ++static inline uint16_t dwc_micro_frame_num (uint16_t _frame) ++{ ++ return (_frame) & 0x7; ++} ++ ++#ifdef DEBUG ++/** ++ * Macro to sample the remaining PHY clocks left in the current frame. This ++ * may be used during debugging to determine the average time it takes to ++ * execute sections of code. There are two possible sample points, "a" and ++ * "b", so the _letter argument must be one of these values. ++ * ++ * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For ++ * example, "cat /sys/devices/lm0/hcd_frrem". ++ */ ++#define dwc_sample_frrem(_hcd, _qh, _letter) \ ++{ \ ++ hfnum_data_t hfnum; \ ++ dwc_otg_qtd_t *qtd; \ ++ qtd = list_entry(_qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); \ ++ if (usb_pipeint(qtd->urb->pipe) && _qh->start_split_frame != 0 && !qtd->complete_split) { \ ++ hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum); \ ++ switch (hfnum.b.frnum & 0x7) { \ ++ case 7: \ ++ _hcd->hfnum_7_samples_##_letter++; \ ++ _hcd->hfnum_7_frrem_accum_##_letter += hfnum.b.frrem; \ ++ break; \ ++ case 0: \ ++ _hcd->hfnum_0_samples_##_letter++; \ ++ _hcd->hfnum_0_frrem_accum_##_letter += hfnum.b.frrem; \ ++ break; \ ++ default: \ ++ _hcd->hfnum_other_samples_##_letter++; \ ++ _hcd->hfnum_other_frrem_accum_##_letter += hfnum.b.frrem; \ ++ break; \ ++ } \ ++ } \ ++} ++#else // DEBUG ++#define dwc_sample_frrem(_hcd, _qh, _letter) ++#endif // DEBUG ++#endif // __DWC_HCD_H__ ++#endif /* DWC_DEVICE_ONLY */ +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_hcd_intr.c +@@ -0,0 +1,1841 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_hcd_intr.c $ ++ * $Revision: 1.1.1.1 $ ++ * $Date: 2009-04-17 06:15:34 $ ++ * $Change: 553126 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++#ifndef DWC_DEVICE_ONLY ++ ++#include "dwc_otg_driver.h" ++#include "dwc_otg_hcd.h" ++#include "dwc_otg_regs.h" ++ ++const int erratum_usb09_patched = 0; ++const int deferral_on = 1; ++const int nak_deferral_delay = 8; ++const int nyet_deferral_delay = 1; ++/** @file ++ * This file contains the implementation of the HCD Interrupt handlers. ++ */ ++ ++/** This function handles interrupts for the HCD. */ ++int32_t dwc_otg_hcd_handle_intr (dwc_otg_hcd_t *_dwc_otg_hcd) ++{ ++ int retval = 0; ++ ++ dwc_otg_core_if_t *core_if = _dwc_otg_hcd->core_if; ++ gintsts_data_t gintsts; ++#ifdef DEBUG ++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs; ++#endif ++ ++ /* Check if HOST Mode */ ++ if (dwc_otg_is_host_mode(core_if)) { ++ gintsts.d32 = dwc_otg_read_core_intr(core_if); ++ if (!gintsts.d32) { ++ return 0; ++ } ++ ++#ifdef DEBUG ++ /* Don't print debug message in the interrupt handler on SOF */ ++# ifndef DEBUG_SOF ++ if (gintsts.d32 != DWC_SOF_INTR_MASK) ++# endif ++ DWC_DEBUGPL (DBG_HCD, "\n"); ++#endif ++ ++#ifdef DEBUG ++# ifndef DEBUG_SOF ++ if (gintsts.d32 != DWC_SOF_INTR_MASK) ++# endif ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Interrupt Detected gintsts&gintmsk=0x%08x\n", gintsts.d32); ++#endif ++ ++ if (gintsts.b.sofintr) { ++ retval |= dwc_otg_hcd_handle_sof_intr (_dwc_otg_hcd); ++ } ++ if (gintsts.b.rxstsqlvl) { ++ retval |= dwc_otg_hcd_handle_rx_status_q_level_intr (_dwc_otg_hcd); ++ } ++ if (gintsts.b.nptxfempty) { ++ retval |= dwc_otg_hcd_handle_np_tx_fifo_empty_intr (_dwc_otg_hcd); ++ } ++ if (gintsts.b.i2cintr) { ++ /** @todo Implement i2cintr handler. */ ++ } ++ if (gintsts.b.portintr) { ++ retval |= dwc_otg_hcd_handle_port_intr (_dwc_otg_hcd); ++ } ++ if (gintsts.b.hcintr) { ++ retval |= dwc_otg_hcd_handle_hc_intr (_dwc_otg_hcd); ++ } ++ if (gintsts.b.ptxfempty) { ++ retval |= dwc_otg_hcd_handle_perio_tx_fifo_empty_intr (_dwc_otg_hcd); ++ } ++#ifdef DEBUG ++# ifndef DEBUG_SOF ++ if (gintsts.d32 != DWC_SOF_INTR_MASK) ++# endif ++ { ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Finished Servicing Interrupts\n"); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintsts=0x%08x\n", ++ dwc_read_reg32(&global_regs->gintsts)); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintmsk=0x%08x\n", ++ dwc_read_reg32(&global_regs->gintmsk)); ++ } ++#endif ++ ++#ifdef DEBUG ++# ifndef DEBUG_SOF ++ if (gintsts.d32 != DWC_SOF_INTR_MASK) ++# endif ++ DWC_DEBUGPL (DBG_HCD, "\n"); ++#endif ++ ++ } ++ ++ return retval; ++} ++ ++#ifdef DWC_TRACK_MISSED_SOFS ++#warning Compiling code to track missed SOFs ++#define FRAME_NUM_ARRAY_SIZE 1000 ++/** ++ * This function is for debug only. ++ */ ++static inline void track_missed_sofs(uint16_t _curr_frame_number) { ++ static uint16_t frame_num_array[FRAME_NUM_ARRAY_SIZE]; ++ static uint16_t last_frame_num_array[FRAME_NUM_ARRAY_SIZE]; ++ static int frame_num_idx = 0; ++ static uint16_t last_frame_num = DWC_HFNUM_MAX_FRNUM; ++ static int dumped_frame_num_array = 0; ++ ++ if (frame_num_idx < FRAME_NUM_ARRAY_SIZE) { ++ if ((((last_frame_num + 1) & DWC_HFNUM_MAX_FRNUM) != _curr_frame_number)) { ++ frame_num_array[frame_num_idx] = _curr_frame_number; ++ last_frame_num_array[frame_num_idx++] = last_frame_num; ++ } ++ } else if (!dumped_frame_num_array) { ++ int i; ++ printk(KERN_EMERG USB_DWC "Frame Last Frame\n"); ++ printk(KERN_EMERG USB_DWC "----- ----------\n"); ++ for (i = 0; i < FRAME_NUM_ARRAY_SIZE; i++) { ++ printk(KERN_EMERG USB_DWC "0x%04x 0x%04x\n", ++ frame_num_array[i], last_frame_num_array[i]); ++ } ++ dumped_frame_num_array = 1; ++ } ++ last_frame_num = _curr_frame_number; ++} ++#endif ++ ++/** ++ * Handles the start-of-frame interrupt in host mode. Non-periodic ++ * transactions may be queued to the DWC_otg controller for the current ++ * (micro)frame. Periodic transactions may be queued to the controller for the ++ * next (micro)frame. ++ */ ++int32_t dwc_otg_hcd_handle_sof_intr (dwc_otg_hcd_t *_hcd) ++{ ++ hfnum_data_t hfnum; ++ struct list_head *qh_entry; ++ dwc_otg_qh_t *qh; ++ dwc_otg_transaction_type_e tr_type; ++ gintsts_data_t gintsts = {.d32 = 0}; ++ ++ hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum); ++ ++#ifdef DEBUG_SOF ++ DWC_DEBUGPL(DBG_HCD, "--Start of Frame Interrupt--\n"); ++#endif ++ ++ _hcd->frame_number = hfnum.b.frnum; ++ ++#ifdef DEBUG ++ _hcd->frrem_accum += hfnum.b.frrem; ++ _hcd->frrem_samples++; ++#endif ++ ++#ifdef DWC_TRACK_MISSED_SOFS ++ track_missed_sofs(_hcd->frame_number); ++#endif ++ ++ /* Determine whether any periodic QHs should be executed. */ ++ qh_entry = _hcd->periodic_sched_inactive.next; ++ while (qh_entry != &_hcd->periodic_sched_inactive) { ++ qh = list_entry(qh_entry, dwc_otg_qh_t, qh_list_entry); ++ qh_entry = qh_entry->next; ++ if (dwc_frame_num_le(qh->sched_frame, _hcd->frame_number)) { ++ /* ++ * Move QH to the ready list to be executed next ++ * (micro)frame. ++ */ ++ list_move(&qh->qh_list_entry, &_hcd->periodic_sched_ready); ++ } ++ } ++ ++ tr_type = dwc_otg_hcd_select_transactions(_hcd); ++ if (tr_type != DWC_OTG_TRANSACTION_NONE) { ++ dwc_otg_hcd_queue_transactions(_hcd, tr_type); ++ } ++ ++ /* Clear interrupt */ ++ gintsts.b.sofintr = 1; ++ dwc_write_reg32(&_hcd->core_if->core_global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++/** Handles the Rx Status Queue Level Interrupt, which indicates that there is at ++ * least one packet in the Rx FIFO. The packets are moved from the FIFO to ++ * memory if the DWC_otg controller is operating in Slave mode. */ ++int32_t dwc_otg_hcd_handle_rx_status_q_level_intr (dwc_otg_hcd_t *_dwc_otg_hcd) ++{ ++ host_grxsts_data_t grxsts; ++ dwc_hc_t *hc = NULL; ++ ++ DWC_DEBUGPL(DBG_HCD, "--RxStsQ Level Interrupt--\n"); ++ ++ grxsts.d32 = dwc_read_reg32(&_dwc_otg_hcd->core_if->core_global_regs->grxstsp); ++ ++ hc = _dwc_otg_hcd->hc_ptr_array[grxsts.b.chnum]; ++ ++ /* Packet Status */ ++ DWC_DEBUGPL(DBG_HCDV, " Ch num = %d\n", grxsts.b.chnum); ++ DWC_DEBUGPL(DBG_HCDV, " Count = %d\n", grxsts.b.bcnt); ++ DWC_DEBUGPL(DBG_HCDV, " DPID = %d, hc.dpid = %d\n", grxsts.b.dpid, hc->data_pid_start); ++ DWC_DEBUGPL(DBG_HCDV, " PStatus = %d\n", grxsts.b.pktsts); ++ ++ switch (grxsts.b.pktsts) { ++ case DWC_GRXSTS_PKTSTS_IN: ++ /* Read the data into the host buffer. */ ++ if (grxsts.b.bcnt > 0) { ++ dwc_otg_read_packet(_dwc_otg_hcd->core_if, ++ hc->xfer_buff, ++ grxsts.b.bcnt); ++ ++ /* Update the HC fields for the next packet received. */ ++ hc->xfer_count += grxsts.b.bcnt; ++ hc->xfer_buff += grxsts.b.bcnt; ++ } ++ ++ case DWC_GRXSTS_PKTSTS_IN_XFER_COMP: ++ case DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR: ++ case DWC_GRXSTS_PKTSTS_CH_HALTED: ++ /* Handled in interrupt, just ignore data */ ++ break; ++ default: ++ DWC_ERROR ("RX_STS_Q Interrupt: Unknown status %d\n", grxsts.b.pktsts); ++ break; ++ } ++ ++ return 1; ++} ++ ++/** This interrupt occurs when the non-periodic Tx FIFO is half-empty. More ++ * data packets may be written to the FIFO for OUT transfers. More requests ++ * may be written to the non-periodic request queue for IN transfers. This ++ * interrupt is enabled only in Slave mode. */ ++int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr (dwc_otg_hcd_t *_dwc_otg_hcd) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Non-Periodic TxFIFO Empty Interrupt--\n"); ++ dwc_otg_hcd_queue_transactions(_dwc_otg_hcd, ++ DWC_OTG_TRANSACTION_NON_PERIODIC); ++ return 1; ++} ++ ++/** This interrupt occurs when the periodic Tx FIFO is half-empty. More data ++ * packets may be written to the FIFO for OUT transfers. More requests may be ++ * written to the periodic request queue for IN transfers. This interrupt is ++ * enabled only in Slave mode. */ ++int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr (dwc_otg_hcd_t *_dwc_otg_hcd) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Periodic TxFIFO Empty Interrupt--\n"); ++ dwc_otg_hcd_queue_transactions(_dwc_otg_hcd, ++ DWC_OTG_TRANSACTION_PERIODIC); ++ return 1; ++} ++ ++/** There are multiple conditions that can cause a port interrupt. This function ++ * determines which interrupt conditions have occurred and handles them ++ * appropriately. */ ++int32_t dwc_otg_hcd_handle_port_intr (dwc_otg_hcd_t *_dwc_otg_hcd) ++{ ++ int retval = 0; ++ hprt0_data_t hprt0; ++ hprt0_data_t hprt0_modify; ++ ++ hprt0.d32 = dwc_read_reg32(_dwc_otg_hcd->core_if->host_if->hprt0); ++ hprt0_modify.d32 = dwc_read_reg32(_dwc_otg_hcd->core_if->host_if->hprt0); ++ ++ /* Clear appropriate bits in HPRT0 to clear the interrupt bit in ++ * GINTSTS */ ++ ++ hprt0_modify.b.prtena = 0; ++ hprt0_modify.b.prtconndet = 0; ++ hprt0_modify.b.prtenchng = 0; ++ hprt0_modify.b.prtovrcurrchng = 0; ++ ++ /* Port Connect Detected ++ * Set flag and clear if detected */ ++ if (hprt0.b.prtconndet) { ++ DWC_DEBUGPL(DBG_HCD, "--Port Interrupt HPRT0=0x%08x " ++ "Port Connect Detected--\n", hprt0.d32); ++ _dwc_otg_hcd->flags.b.port_connect_status_change = 1; ++ _dwc_otg_hcd->flags.b.port_connect_status = 1; ++ hprt0_modify.b.prtconndet = 1; ++ ++ /* B-Device has connected, Delete the connection timer. */ ++ del_timer( &_dwc_otg_hcd->conn_timer ); ++ ++ /* The Hub driver asserts a reset when it sees port connect ++ * status change flag */ ++ retval |= 1; ++ } ++ ++ /* Port Enable Changed ++ * Clear if detected - Set internal flag if disabled */ ++ if (hprt0.b.prtenchng) { ++ DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x " ++ "Port Enable Changed--\n", hprt0.d32); ++ hprt0_modify.b.prtenchng = 1; ++ if (hprt0.b.prtena == 1) { ++ int do_reset = 0; ++ dwc_otg_core_params_t *params = _dwc_otg_hcd->core_if->core_params; ++ dwc_otg_core_global_regs_t *global_regs = _dwc_otg_hcd->core_if->core_global_regs; ++ dwc_otg_host_if_t *host_if = _dwc_otg_hcd->core_if->host_if; ++ ++ /* Check if we need to adjust the PHY clock speed for ++ * low power and adjust it */ ++ if (params->host_support_fs_ls_low_power) ++ { ++ gusbcfg_data_t usbcfg; ++ ++ usbcfg.d32 = dwc_read_reg32 (&global_regs->gusbcfg); ++ ++ if ((hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED) || ++ (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_FULL_SPEED)) ++ { ++ /* ++ * Low power ++ */ ++ hcfg_data_t hcfg; ++ if (usbcfg.b.phylpwrclksel == 0) { ++ /* Set PHY low power clock select for FS/LS devices */ ++ usbcfg.b.phylpwrclksel = 1; ++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); ++ do_reset = 1; ++ } ++ ++ hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg); ++ ++ if ((hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED) && ++ (params->host_ls_low_power_phy_clk == ++ DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ)) ++ { ++ /* 6 MHZ */ ++ DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 6 MHz (Low Power)\n"); ++ if (hcfg.b.fslspclksel != DWC_HCFG_6_MHZ) { ++ hcfg.b.fslspclksel = DWC_HCFG_6_MHZ; ++ dwc_write_reg32(&host_if->host_global_regs->hcfg, ++ hcfg.d32); ++ do_reset = 1; ++ } ++ } ++ else { ++ /* 48 MHZ */ ++ DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 48 MHz ()\n"); ++ if (hcfg.b.fslspclksel != DWC_HCFG_48_MHZ) { ++ hcfg.b.fslspclksel = DWC_HCFG_48_MHZ; ++ dwc_write_reg32(&host_if->host_global_regs->hcfg, ++ hcfg.d32); ++ do_reset = 1; ++ } ++ } ++ } ++ else { ++ /* ++ * Not low power ++ */ ++ if (usbcfg.b.phylpwrclksel == 1) { ++ usbcfg.b.phylpwrclksel = 0; ++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); ++ do_reset = 1; ++ } ++ } ++ ++ if (do_reset) { ++ tasklet_schedule(_dwc_otg_hcd->reset_tasklet); ++ } ++ } ++ ++ if (!do_reset) { ++ /* Port has been enabled set the reset change flag */ ++ _dwc_otg_hcd->flags.b.port_reset_change = 1; ++ } ++ ++ } else { ++ _dwc_otg_hcd->flags.b.port_enable_change = 1; ++ } ++ retval |= 1; ++ } ++ ++ /** Overcurrent Change Interrupt */ ++ if (hprt0.b.prtovrcurrchng) { ++ DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x " ++ "Port Overcurrent Changed--\n", hprt0.d32); ++ _dwc_otg_hcd->flags.b.port_over_current_change = 1; ++ hprt0_modify.b.prtovrcurrchng = 1; ++ retval |= 1; ++ } ++ ++ /* Clear Port Interrupts */ ++ dwc_write_reg32(_dwc_otg_hcd->core_if->host_if->hprt0, hprt0_modify.d32); ++ ++ return retval; ++} ++ ++ ++/** This interrupt indicates that one or more host channels has a pending ++ * interrupt. There are multiple conditions that can cause each host channel ++ * interrupt. This function determines which conditions have occurred for each ++ * host channel interrupt and handles them appropriately. */ ++int32_t dwc_otg_hcd_handle_hc_intr (dwc_otg_hcd_t *_dwc_otg_hcd) ++{ ++ int i; ++ int retval = 0; ++ haint_data_t haint; ++ ++ /* Clear appropriate bits in HCINTn to clear the interrupt bit in ++ * GINTSTS */ ++ ++ haint.d32 = dwc_otg_read_host_all_channels_intr(_dwc_otg_hcd->core_if); ++ ++ for (i=0; i<_dwc_otg_hcd->core_if->core_params->host_channels; i++) { ++ if (haint.b2.chint & (1 << i)) { ++ retval |= dwc_otg_hcd_handle_hc_n_intr (_dwc_otg_hcd, i); ++ } ++ } ++ ++ return retval; ++} ++ ++/* Macro used to clear one channel interrupt */ ++#define clear_hc_int(_hc_regs_,_intr_) \ ++do { \ ++ hcint_data_t hcint_clear = {.d32 = 0}; \ ++ hcint_clear.b._intr_ = 1; \ ++ dwc_write_reg32(&((_hc_regs_)->hcint), hcint_clear.d32); \ ++} while (0) ++ ++/* ++ * Macro used to disable one channel interrupt. Channel interrupts are ++ * disabled when the channel is halted or released by the interrupt handler. ++ * There is no need to handle further interrupts of that type until the ++ * channel is re-assigned. In fact, subsequent handling may cause crashes ++ * because the channel structures are cleaned up when the channel is released. ++ */ ++#define disable_hc_int(_hc_regs_,_intr_) \ ++do { \ ++ hcintmsk_data_t hcintmsk = {.d32 = 0}; \ ++ hcintmsk.b._intr_ = 1; \ ++ dwc_modify_reg32(&((_hc_regs_)->hcintmsk), hcintmsk.d32, 0); \ ++} while (0) ++ ++/** ++ * Gets the actual length of a transfer after the transfer halts. _halt_status ++ * holds the reason for the halt. ++ * ++ * For IN transfers where _halt_status is DWC_OTG_HC_XFER_COMPLETE, ++ * *_short_read is set to 1 upon return if less than the requested ++ * number of bytes were transferred. Otherwise, *_short_read is set to 0 upon ++ * return. _short_read may also be NULL on entry, in which case it remains ++ * unchanged. ++ */ ++static uint32_t get_actual_xfer_length(dwc_hc_t *_hc, ++ dwc_otg_hc_regs_t *_hc_regs, ++ dwc_otg_qtd_t *_qtd, ++ dwc_otg_halt_status_e _halt_status, ++ int *_short_read) ++{ ++ hctsiz_data_t hctsiz; ++ uint32_t length; ++ ++ if (_short_read != NULL) { ++ *_short_read = 0; ++ } ++ hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz); ++ ++ if (_halt_status == DWC_OTG_HC_XFER_COMPLETE) { ++ if (_hc->ep_is_in) { ++ length = _hc->xfer_len - hctsiz.b.xfersize; ++ if (_short_read != NULL) { ++ *_short_read = (hctsiz.b.xfersize != 0); ++ } ++ } else if (_hc->qh->do_split) { ++ length = _qtd->ssplit_out_xfer_count; ++ } else { ++ length = _hc->xfer_len; ++ } ++ } else { ++ /* ++ * Must use the hctsiz.pktcnt field to determine how much data ++ * has been transferred. This field reflects the number of ++ * packets that have been transferred via the USB. This is ++ * always an integral number of packets if the transfer was ++ * halted before its normal completion. (Can't use the ++ * hctsiz.xfersize field because that reflects the number of ++ * bytes transferred via the AHB, not the USB). ++ */ ++ length = (_hc->start_pkt_count - hctsiz.b.pktcnt) * _hc->max_packet; ++ } ++ ++ return length; ++} ++ ++/** ++ * Updates the state of the URB after a Transfer Complete interrupt on the ++ * host channel. Updates the actual_length field of the URB based on the ++ * number of bytes transferred via the host channel. Sets the URB status ++ * if the data transfer is finished. ++ * ++ * @return 1 if the data transfer specified by the URB is completely finished, ++ * 0 otherwise. ++ */ ++static int update_urb_state_xfer_comp(dwc_hc_t *_hc, ++ dwc_otg_hc_regs_t * _hc_regs, struct urb *_urb, ++ dwc_otg_qtd_t * _qtd, int *status) ++{ ++ int xfer_done = 0; ++ int short_read = 0; ++ ++ _urb->actual_length += get_actual_xfer_length(_hc, _hc_regs, _qtd, ++ DWC_OTG_HC_XFER_COMPLETE, ++ &short_read); ++ ++ if (short_read || (_urb->actual_length == _urb->transfer_buffer_length)) { ++ xfer_done = 1; ++ if (short_read && (_urb->transfer_flags & URB_SHORT_NOT_OK)) { ++ *status = -EREMOTEIO; ++ } else { ++ *status = 0; ++ } ++ } ++ ++#ifdef DEBUG ++ { ++ hctsiz_data_t hctsiz; ++ hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz); ++ DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n", ++ __func__, (_hc->ep_is_in ? "IN" : "OUT"), _hc->hc_num); ++ DWC_DEBUGPL(DBG_HCDV, " hc->xfer_len %d\n", _hc->xfer_len); ++ DWC_DEBUGPL(DBG_HCDV, " hctsiz.xfersize %d\n", hctsiz.b.xfersize); ++ DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n", ++ _urb->transfer_buffer_length); ++ DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n", _urb->actual_length); ++ DWC_DEBUGPL(DBG_HCDV, " short_read %d, xfer_done %d\n", ++ short_read, xfer_done); ++ } ++#endif ++ ++ return xfer_done; ++} ++ ++/* ++ * Save the starting data toggle for the next transfer. The data toggle is ++ * saved in the QH for non-control transfers and it's saved in the QTD for ++ * control transfers. ++ */ ++static void save_data_toggle(dwc_hc_t *_hc, ++ dwc_otg_hc_regs_t *_hc_regs, ++ dwc_otg_qtd_t *_qtd) ++{ ++ hctsiz_data_t hctsiz; ++ hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz); ++ ++ if (_hc->ep_type != DWC_OTG_EP_TYPE_CONTROL) { ++ dwc_otg_qh_t *qh = _hc->qh; ++ if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) { ++ qh->data_toggle = DWC_OTG_HC_PID_DATA0; ++ } else { ++ qh->data_toggle = DWC_OTG_HC_PID_DATA1; ++ } ++ } else { ++ if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) { ++ _qtd->data_toggle = DWC_OTG_HC_PID_DATA0; ++ } else { ++ _qtd->data_toggle = DWC_OTG_HC_PID_DATA1; ++ } ++ } ++} ++ ++/** ++ * Frees the first QTD in the QH's list if free_qtd is 1. For non-periodic ++ * QHs, removes the QH from the active non-periodic schedule. If any QTDs are ++ * still linked to the QH, the QH is added to the end of the inactive ++ * non-periodic schedule. For periodic QHs, removes the QH from the periodic ++ * schedule if no more QTDs are linked to the QH. ++ */ ++static void deactivate_qh(dwc_otg_hcd_t *_hcd, ++ dwc_otg_qh_t *_qh, ++ int free_qtd) ++{ ++ int continue_split = 0; ++ dwc_otg_qtd_t *qtd; ++ ++ DWC_DEBUGPL(DBG_HCDV, " %s(%p,%p,%d)\n", __func__, _hcd, _qh, free_qtd); ++ ++ qtd = list_entry(_qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); ++ ++ if (qtd->complete_split) { ++ continue_split = 1; ++ } ++ else if ((qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_MID) || ++ (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_END)) ++ { ++ continue_split = 1; ++ } ++ ++ if (free_qtd) { ++ /* ++ * Note that this was previously a call to ++ * dwc_otg_hcd_qtd_remove_and_free(qtd), which frees the qtd. ++ * However, that call frees the qtd memory, and we continue in the ++ * interrupt logic to access it many more times, including writing ++ * to it. With slub debugging on, it is clear that we were writing ++ * to memory we had freed. ++ * Call this instead, and now I have moved the freeing of the memory to ++ * the end of processing this interrupt. ++ */ ++ //dwc_otg_hcd_qtd_remove_and_free(qtd); ++ dwc_otg_hcd_qtd_remove(qtd); ++ ++ continue_split = 0; ++ } ++ ++ _qh->channel = NULL; ++ _qh->qtd_in_process = NULL; ++ dwc_otg_hcd_qh_deactivate(_hcd, _qh, continue_split); ++} ++ ++/** ++ * Updates the state of an Isochronous URB when the transfer is stopped for ++ * any reason. The fields of the current entry in the frame descriptor array ++ * are set based on the transfer state and the input _halt_status. Completes ++ * the Isochronous URB if all the URB frames have been completed. ++ * ++ * @return DWC_OTG_HC_XFER_COMPLETE if there are more frames remaining to be ++ * transferred in the URB. Otherwise return DWC_OTG_HC_XFER_URB_COMPLETE. ++ */ ++static dwc_otg_halt_status_e ++update_isoc_urb_state(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t *_hc, ++ dwc_otg_hc_regs_t *_hc_regs, ++ dwc_otg_qtd_t *_qtd, ++ dwc_otg_halt_status_e _halt_status) ++{ ++ struct urb *urb = _qtd->urb; ++ dwc_otg_halt_status_e ret_val = _halt_status; ++ struct usb_iso_packet_descriptor *frame_desc; ++ ++ frame_desc = &urb->iso_frame_desc[_qtd->isoc_frame_index]; ++ switch (_halt_status) { ++ case DWC_OTG_HC_XFER_COMPLETE: ++ frame_desc->status = 0; ++ frame_desc->actual_length = ++ get_actual_xfer_length(_hc, _hc_regs, _qtd, ++ _halt_status, NULL); ++ break; ++ case DWC_OTG_HC_XFER_FRAME_OVERRUN: ++ urb->error_count++; ++ if (_hc->ep_is_in) { ++ frame_desc->status = -ENOSR; ++ } else { ++ frame_desc->status = -ECOMM; ++ } ++ frame_desc->actual_length = 0; ++ break; ++ case DWC_OTG_HC_XFER_BABBLE_ERR: ++ urb->error_count++; ++ frame_desc->status = -EOVERFLOW; ++ /* Don't need to update actual_length in this case. */ ++ break; ++ case DWC_OTG_HC_XFER_XACT_ERR: ++ urb->error_count++; ++ frame_desc->status = -EPROTO; ++ frame_desc->actual_length = ++ get_actual_xfer_length(_hc, _hc_regs, _qtd, ++ _halt_status, NULL); ++ default: ++ DWC_ERROR("%s: Unhandled _halt_status (%d)\n", __func__, ++ _halt_status); ++ BUG(); ++ break; ++ } ++ ++ if (++_qtd->isoc_frame_index == urb->number_of_packets) { ++ /* ++ * urb->status is not used for isoc transfers. ++ * The individual frame_desc statuses are used instead. ++ */ ++ dwc_otg_hcd_complete_urb(_hcd, urb, 0); ++ ret_val = DWC_OTG_HC_XFER_URB_COMPLETE; ++ } else { ++ ret_val = DWC_OTG_HC_XFER_COMPLETE; ++ } ++ ++ return ret_val; ++} ++ ++/** ++ * Releases a host channel for use by other transfers. Attempts to select and ++ * queue more transactions since at least one host channel is available. ++ * ++ * @param _hcd The HCD state structure. ++ * @param _hc The host channel to release. ++ * @param _qtd The QTD associated with the host channel. This QTD may be freed ++ * if the transfer is complete or an error has occurred. ++ * @param _halt_status Reason the channel is being released. This status ++ * determines the actions taken by this function. ++ */ ++static void release_channel(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t *_hc, ++ dwc_otg_qtd_t *_qtd, ++ dwc_otg_halt_status_e _halt_status, ++ int *must_free) ++{ ++ dwc_otg_transaction_type_e tr_type; ++ int free_qtd; ++ dwc_otg_qh_t * _qh; ++ int deact = 1; ++ int retry_delay = 1; ++ unsigned long flags; ++ ++ DWC_DEBUGPL(DBG_HCDV, " %s: channel %d, halt_status %d\n", __func__, ++ _hc->hc_num, _halt_status); ++ ++ switch (_halt_status) { ++ case DWC_OTG_HC_XFER_NYET: ++ case DWC_OTG_HC_XFER_NAK: ++ if (_halt_status == DWC_OTG_HC_XFER_NYET) { ++ retry_delay = nyet_deferral_delay; ++ } else { ++ retry_delay = nak_deferral_delay; ++ } ++ free_qtd = 0; ++ if (deferral_on && _hc->do_split) { ++ _qh = _hc->qh; ++ if (_qh) { ++ deact = dwc_otg_hcd_qh_deferr(_hcd, _qh , retry_delay); ++ } ++ } ++ break; ++ case DWC_OTG_HC_XFER_URB_COMPLETE: ++ free_qtd = 1; ++ break; ++ case DWC_OTG_HC_XFER_AHB_ERR: ++ case DWC_OTG_HC_XFER_STALL: ++ case DWC_OTG_HC_XFER_BABBLE_ERR: ++ free_qtd = 1; ++ break; ++ case DWC_OTG_HC_XFER_XACT_ERR: ++ if (_qtd->error_count >= 3) { ++ DWC_DEBUGPL(DBG_HCDV, " Complete URB with transaction error\n"); ++ free_qtd = 1; ++ //_qtd->urb->status = -EPROTO; ++ dwc_otg_hcd_complete_urb(_hcd, _qtd->urb, -EPROTO); ++ } else { ++ free_qtd = 0; ++ } ++ break; ++ case DWC_OTG_HC_XFER_URB_DEQUEUE: ++ /* ++ * The QTD has already been removed and the QH has been ++ * deactivated. Don't want to do anything except release the ++ * host channel and try to queue more transfers. ++ */ ++ goto cleanup; ++ case DWC_OTG_HC_XFER_NO_HALT_STATUS: ++ DWC_ERROR("%s: No halt_status, channel %d\n", __func__, _hc->hc_num); ++ free_qtd = 0; ++ break; ++ default: ++ free_qtd = 0; ++ break; ++ } ++ if (free_qtd) { ++ /* Only change must_free to true (do not set to zero here -- it is ++ * pre-initialized to zero). ++ */ ++ *must_free = 1; ++ } ++ if (deact) { ++ deactivate_qh(_hcd, _hc->qh, free_qtd); ++ } ++ cleanup: ++ /* ++ * Release the host channel for use by other transfers. The cleanup ++ * function clears the channel interrupt enables and conditions, so ++ * there's no need to clear the Channel Halted interrupt separately. ++ */ ++ dwc_otg_hc_cleanup(_hcd->core_if, _hc); ++ list_add_tail(&_hc->hc_list_entry, &_hcd->free_hc_list); ++ ++ local_irq_save(flags); ++ _hcd->available_host_channels++; ++ local_irq_restore(flags); ++ /* Try to queue more transfers now that there's a free channel, */ ++ /* unless erratum_usb09_patched is set */ ++ if (!erratum_usb09_patched) { ++ tr_type = dwc_otg_hcd_select_transactions(_hcd); ++ if (tr_type != DWC_OTG_TRANSACTION_NONE) { ++ dwc_otg_hcd_queue_transactions(_hcd, tr_type); ++ } ++ } ++} ++ ++/** ++ * Halts a host channel. If the channel cannot be halted immediately because ++ * the request queue is full, this function ensures that the FIFO empty ++ * interrupt for the appropriate queue is enabled so that the halt request can ++ * be queued when there is space in the request queue. ++ * ++ * This function may also be called in DMA mode. In that case, the channel is ++ * simply released since the core always halts the channel automatically in ++ * DMA mode. ++ */ ++static void halt_channel(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t *_hc, ++ dwc_otg_qtd_t *_qtd, ++ dwc_otg_halt_status_e _halt_status, int *must_free) ++{ ++ if (_hcd->core_if->dma_enable) { ++ release_channel(_hcd, _hc, _qtd, _halt_status, must_free); ++ return; ++ } ++ ++ /* Slave mode processing... */ ++ dwc_otg_hc_halt(_hcd->core_if, _hc, _halt_status); ++ ++ if (_hc->halt_on_queue) { ++ gintmsk_data_t gintmsk = {.d32 = 0}; ++ dwc_otg_core_global_regs_t *global_regs; ++ global_regs = _hcd->core_if->core_global_regs; ++ ++ if (_hc->ep_type == DWC_OTG_EP_TYPE_CONTROL || ++ _hc->ep_type == DWC_OTG_EP_TYPE_BULK) { ++ /* ++ * Make sure the Non-periodic Tx FIFO empty interrupt ++ * is enabled so that the non-periodic schedule will ++ * be processed. ++ */ ++ gintmsk.b.nptxfempty = 1; ++ dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32); ++ } else { ++ /* ++ * Move the QH from the periodic queued schedule to ++ * the periodic assigned schedule. This allows the ++ * halt to be queued when the periodic schedule is ++ * processed. ++ */ ++ list_move(&_hc->qh->qh_list_entry, ++ &_hcd->periodic_sched_assigned); ++ ++ /* ++ * Make sure the Periodic Tx FIFO Empty interrupt is ++ * enabled so that the periodic schedule will be ++ * processed. ++ */ ++ gintmsk.b.ptxfempty = 1; ++ dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32); ++ } ++ } ++} ++ ++/** ++ * Performs common cleanup for non-periodic transfers after a Transfer ++ * Complete interrupt. This function should be called after any endpoint type ++ * specific handling is finished to release the host channel. ++ */ ++static void complete_non_periodic_xfer(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t *_hc, ++ dwc_otg_hc_regs_t *_hc_regs, ++ dwc_otg_qtd_t *_qtd, ++ dwc_otg_halt_status_e _halt_status, int *must_free) ++{ ++ hcint_data_t hcint; ++ ++ _qtd->error_count = 0; ++ ++ hcint.d32 = dwc_read_reg32(&_hc_regs->hcint); ++ if (hcint.b.nyet) { ++ /* ++ * Got a NYET on the last transaction of the transfer. This ++ * means that the endpoint should be in the PING state at the ++ * beginning of the next transfer. ++ */ ++ _hc->qh->ping_state = 1; ++ clear_hc_int(_hc_regs,nyet); ++ } ++ ++ /* ++ * Always halt and release the host channel to make it available for ++ * more transfers. There may still be more phases for a control ++ * transfer or more data packets for a bulk transfer at this point, ++ * but the host channel is still halted. A channel will be reassigned ++ * to the transfer when the non-periodic schedule is processed after ++ * the channel is released. This allows transactions to be queued ++ * properly via dwc_otg_hcd_queue_transactions, which also enables the ++ * Tx FIFO Empty interrupt if necessary. ++ */ ++ if (_hc->ep_is_in) { ++ /* ++ * IN transfers in Slave mode require an explicit disable to ++ * halt the channel. (In DMA mode, this call simply releases ++ * the channel.) ++ */ ++ halt_channel(_hcd, _hc, _qtd, _halt_status, must_free); ++ } else { ++ /* ++ * The channel is automatically disabled by the core for OUT ++ * transfers in Slave mode. ++ */ ++ release_channel(_hcd, _hc, _qtd, _halt_status, must_free); ++ } ++} ++ ++/** ++ * Performs common cleanup for periodic transfers after a Transfer Complete ++ * interrupt. This function should be called after any endpoint type specific ++ * handling is finished to release the host channel. ++ */ ++static void complete_periodic_xfer(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t *_hc, ++ dwc_otg_hc_regs_t *_hc_regs, ++ dwc_otg_qtd_t *_qtd, ++ dwc_otg_halt_status_e _halt_status, int *must_free) ++{ ++ hctsiz_data_t hctsiz; ++ _qtd->error_count = 0; ++ ++ hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz); ++ if (!_hc->ep_is_in || hctsiz.b.pktcnt == 0) { ++ /* Core halts channel in these cases. */ ++ release_channel(_hcd, _hc, _qtd, _halt_status, must_free); ++ } else { ++ /* Flush any outstanding requests from the Tx queue. */ ++ halt_channel(_hcd, _hc, _qtd, _halt_status, must_free); ++ } ++} ++ ++/** ++ * Handles a host channel Transfer Complete interrupt. This handler may be ++ * called in either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_xfercomp_intr(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t *_hc, ++ dwc_otg_hc_regs_t *_hc_regs, ++ dwc_otg_qtd_t *_qtd, int *must_free) ++{ ++ int urb_xfer_done; ++ dwc_otg_halt_status_e halt_status = DWC_OTG_HC_XFER_COMPLETE; ++ struct urb *urb = _qtd->urb; ++ int pipe_type = usb_pipetype(urb->pipe); ++ int status = -EINPROGRESS; ++ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "Transfer Complete--\n", _hc->hc_num); ++ ++ /* ++ * Handle xfer complete on CSPLIT. ++ */ ++ if (_hc->qh->do_split) { ++ _qtd->complete_split = 0; ++ } ++ ++ /* Update the QTD and URB states. */ ++ switch (pipe_type) { ++ case PIPE_CONTROL: ++ switch (_qtd->control_phase) { ++ case DWC_OTG_CONTROL_SETUP: ++ if (urb->transfer_buffer_length > 0) { ++ _qtd->control_phase = DWC_OTG_CONTROL_DATA; ++ } else { ++ _qtd->control_phase = DWC_OTG_CONTROL_STATUS; ++ } ++ DWC_DEBUGPL(DBG_HCDV, " Control setup transaction done\n"); ++ halt_status = DWC_OTG_HC_XFER_COMPLETE; ++ break; ++ case DWC_OTG_CONTROL_DATA: { ++ urb_xfer_done = update_urb_state_xfer_comp(_hc, _hc_regs,urb, _qtd, &status); ++ if (urb_xfer_done) { ++ _qtd->control_phase = DWC_OTG_CONTROL_STATUS; ++ DWC_DEBUGPL(DBG_HCDV, " Control data transfer done\n"); ++ } else { ++ save_data_toggle(_hc, _hc_regs, _qtd); ++ } ++ halt_status = DWC_OTG_HC_XFER_COMPLETE; ++ break; ++ } ++ case DWC_OTG_CONTROL_STATUS: ++ DWC_DEBUGPL(DBG_HCDV, " Control transfer complete\n"); ++ if (status == -EINPROGRESS) { ++ status = 0; ++ } ++ dwc_otg_hcd_complete_urb(_hcd, urb, status); ++ halt_status = DWC_OTG_HC_XFER_URB_COMPLETE; ++ break; ++ } ++ ++ complete_non_periodic_xfer(_hcd, _hc, _hc_regs, _qtd, ++ halt_status, must_free); ++ break; ++ case PIPE_BULK: ++ DWC_DEBUGPL(DBG_HCDV, " Bulk transfer complete\n"); ++ urb_xfer_done = update_urb_state_xfer_comp(_hc, _hc_regs, urb, _qtd, &status); ++ if (urb_xfer_done) { ++ dwc_otg_hcd_complete_urb(_hcd, urb, status); ++ halt_status = DWC_OTG_HC_XFER_URB_COMPLETE; ++ } else { ++ halt_status = DWC_OTG_HC_XFER_COMPLETE; ++ } ++ ++ save_data_toggle(_hc, _hc_regs, _qtd); ++ complete_non_periodic_xfer(_hcd, _hc, _hc_regs, _qtd,halt_status, must_free); ++ break; ++ case PIPE_INTERRUPT: ++ DWC_DEBUGPL(DBG_HCDV, " Interrupt transfer complete\n"); ++ update_urb_state_xfer_comp(_hc, _hc_regs, urb, _qtd, &status); ++ ++ /* ++ * Interrupt URB is done on the first transfer complete ++ * interrupt. ++ */ ++ dwc_otg_hcd_complete_urb(_hcd, urb, status); ++ save_data_toggle(_hc, _hc_regs, _qtd); ++ complete_periodic_xfer(_hcd, _hc, _hc_regs, _qtd, ++ DWC_OTG_HC_XFER_URB_COMPLETE, must_free); ++ break; ++ case PIPE_ISOCHRONOUS: ++ DWC_DEBUGPL(DBG_HCDV, " Isochronous transfer complete\n"); ++ if (_qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_ALL) ++ { ++ halt_status = update_isoc_urb_state(_hcd, _hc, _hc_regs, _qtd, ++ DWC_OTG_HC_XFER_COMPLETE); ++ } ++ complete_periodic_xfer(_hcd, _hc, _hc_regs, _qtd, halt_status, must_free); ++ break; ++ } ++ ++ disable_hc_int(_hc_regs,xfercompl); ++ ++ return 1; ++} ++ ++/** ++ * Handles a host channel STALL interrupt. This handler may be called in ++ * either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_stall_intr(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t *_hc, ++ dwc_otg_hc_regs_t *_hc_regs, ++ dwc_otg_qtd_t *_qtd, int *must_free) ++{ ++ struct urb *urb = _qtd->urb; ++ int pipe_type = usb_pipetype(urb->pipe); ++ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "STALL Received--\n", _hc->hc_num); ++ ++ if (pipe_type == PIPE_CONTROL) { ++ dwc_otg_hcd_complete_urb(_hcd, _qtd->urb, -EPIPE); ++ } ++ ++ if (pipe_type == PIPE_BULK || pipe_type == PIPE_INTERRUPT) { ++ dwc_otg_hcd_complete_urb(_hcd, _qtd->urb, -EPIPE); ++ /* ++ * USB protocol requires resetting the data toggle for bulk ++ * and interrupt endpoints when a CLEAR_FEATURE(ENDPOINT_HALT) ++ * setup command is issued to the endpoint. Anticipate the ++ * CLEAR_FEATURE command since a STALL has occurred and reset ++ * the data toggle now. ++ */ ++ _hc->qh->data_toggle = 0; ++ } ++ ++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_STALL, must_free); ++ disable_hc_int(_hc_regs,stall); ++ ++ return 1; ++} ++ ++/* ++ * Updates the state of the URB when a transfer has been stopped due to an ++ * abnormal condition before the transfer completes. Modifies the ++ * actual_length field of the URB to reflect the number of bytes that have ++ * actually been transferred via the host channel. ++ */ ++static void update_urb_state_xfer_intr(dwc_hc_t *_hc, ++ dwc_otg_hc_regs_t *_hc_regs, ++ struct urb *_urb, ++ dwc_otg_qtd_t *_qtd, ++ dwc_otg_halt_status_e _halt_status) ++{ ++ uint32_t bytes_transferred = get_actual_xfer_length(_hc, _hc_regs, _qtd, ++ _halt_status, NULL); ++ _urb->actual_length += bytes_transferred; ++ ++#ifdef DEBUG ++ { ++ hctsiz_data_t hctsiz; ++ hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz); ++ DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n", ++ __func__, (_hc->ep_is_in ? "IN" : "OUT"), _hc->hc_num); ++ DWC_DEBUGPL(DBG_HCDV, " _hc->start_pkt_count %d\n", _hc->start_pkt_count); ++ DWC_DEBUGPL(DBG_HCDV, " hctsiz.pktcnt %d\n", hctsiz.b.pktcnt); ++ DWC_DEBUGPL(DBG_HCDV, " _hc->max_packet %d\n", _hc->max_packet); ++ DWC_DEBUGPL(DBG_HCDV, " bytes_transferred %d\n", bytes_transferred); ++ DWC_DEBUGPL(DBG_HCDV, " _urb->actual_length %d\n", _urb->actual_length); ++ DWC_DEBUGPL(DBG_HCDV, " _urb->transfer_buffer_length %d\n", ++ _urb->transfer_buffer_length); ++ } ++#endif ++} ++ ++/** ++ * Handles a host channel NAK interrupt. This handler may be called in either ++ * DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_nak_intr(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t *_hc, ++ dwc_otg_hc_regs_t *_hc_regs, ++ dwc_otg_qtd_t *_qtd, int *must_free) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "NAK Received--\n", _hc->hc_num); ++ ++ /* ++ * Handle NAK for IN/OUT SSPLIT/CSPLIT transfers, bulk, control, and ++ * interrupt. Re-start the SSPLIT transfer. ++ */ ++ if (_hc->do_split) { ++ if (_hc->complete_split) { ++ _qtd->error_count = 0; ++ } ++ _qtd->complete_split = 0; ++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NAK, must_free); ++ goto handle_nak_done; ++ } ++ ++ switch (usb_pipetype(_qtd->urb->pipe)) { ++ case PIPE_CONTROL: ++ case PIPE_BULK: ++ if (_hcd->core_if->dma_enable && _hc->ep_is_in) { ++ /* ++ * NAK interrupts are enabled on bulk/control IN ++ * transfers in DMA mode for the sole purpose of ++ * resetting the error count after a transaction error ++ * occurs. The core will continue transferring data. ++ */ ++ _qtd->error_count = 0; ++ goto handle_nak_done; ++ } ++ ++ /* ++ * NAK interrupts normally occur during OUT transfers in DMA ++ * or Slave mode. For IN transfers, more requests will be ++ * queued as request queue space is available. ++ */ ++ _qtd->error_count = 0; ++ ++ if (!_hc->qh->ping_state) { ++ update_urb_state_xfer_intr(_hc, _hc_regs, _qtd->urb, ++ _qtd, DWC_OTG_HC_XFER_NAK); ++ save_data_toggle(_hc, _hc_regs, _qtd); ++ if (_qtd->urb->dev->speed == USB_SPEED_HIGH) { ++ _hc->qh->ping_state = 1; ++ } ++ } ++ ++ /* ++ * Halt the channel so the transfer can be re-started from ++ * the appropriate point or the PING protocol will ++ * start/continue. ++ */ ++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NAK, must_free); ++ break; ++ case PIPE_INTERRUPT: ++ _qtd->error_count = 0; ++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NAK, must_free); ++ break; ++ case PIPE_ISOCHRONOUS: ++ /* Should never get called for isochronous transfers. */ ++ BUG(); ++ break; ++ } ++ ++ handle_nak_done: ++ disable_hc_int(_hc_regs,nak); ++ ++ return 1; ++} ++ ++/** ++ * Handles a host channel ACK interrupt. This interrupt is enabled when ++ * performing the PING protocol in Slave mode, when errors occur during ++ * either Slave mode or DMA mode, and during Start Split transactions. ++ */ ++static int32_t handle_hc_ack_intr(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "ACK Received--\n", _hc->hc_num); ++ ++ if (_hc->do_split) { ++ /* ++ * Handle ACK on SSPLIT. ++ * ACK should not occur in CSPLIT. ++ */ ++ if ((!_hc->ep_is_in) && (_hc->data_pid_start != DWC_OTG_HC_PID_SETUP)) { ++ _qtd->ssplit_out_xfer_count = _hc->xfer_len; ++ } ++ if (!(_hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !_hc->ep_is_in)) { ++ /* Don't need complete for isochronous out transfers. */ ++ _qtd->complete_split = 1; ++ } ++ ++ /* ISOC OUT */ ++ if ((_hc->ep_type == DWC_OTG_EP_TYPE_ISOC) && !_hc->ep_is_in) { ++ switch (_hc->xact_pos) { ++ case DWC_HCSPLIT_XACTPOS_ALL: ++ break; ++ case DWC_HCSPLIT_XACTPOS_END: ++ _qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL; ++ _qtd->isoc_split_offset = 0; ++ break; ++ case DWC_HCSPLIT_XACTPOS_BEGIN: ++ case DWC_HCSPLIT_XACTPOS_MID: ++ /* ++ * For BEGIN or MID, calculate the length for ++ * the next microframe to determine the correct ++ * SSPLIT token, either MID or END. ++ */ ++ do { ++ struct usb_iso_packet_descriptor *frame_desc; ++ ++ frame_desc = &_qtd->urb->iso_frame_desc[_qtd->isoc_frame_index]; ++ _qtd->isoc_split_offset += 188; ++ ++ if ((frame_desc->length - _qtd->isoc_split_offset) <= 188) { ++ _qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_END; ++ } ++ else { ++ _qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_MID; ++ } ++ ++ } while(0); ++ break; ++ } ++ } else { ++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_ACK, must_free); ++ } ++ } else { ++ _qtd->error_count = 0; ++ ++ if (_hc->qh->ping_state) { ++ _hc->qh->ping_state = 0; ++ /* ++ * Halt the channel so the transfer can be re-started ++ * from the appropriate point. This only happens in ++ * Slave mode. In DMA mode, the ping_state is cleared ++ * when the transfer is started because the core ++ * automatically executes the PING, then the transfer. ++ */ ++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_ACK, must_free); ++ } else { ++ halt_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free); ++ } ++ } ++ ++ /* ++ * If the ACK occurred when _not_ in the PING state, let the channel ++ * continue transferring data after clearing the error count. ++ */ ++ ++ disable_hc_int(_hc_regs,ack); ++ ++ return 1; ++} ++ ++/** ++ * Handles a host channel NYET interrupt. This interrupt should only occur on ++ * Bulk and Control OUT endpoints and for complete split transactions. If a ++ * NYET occurs at the same time as a Transfer Complete interrupt, it is ++ * handled in the xfercomp interrupt handler, not here. This handler may be ++ * called in either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_nyet_intr(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t *_hc, ++ dwc_otg_hc_regs_t *_hc_regs, ++ dwc_otg_qtd_t *_qtd, int *must_free) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "NYET Received--\n", _hc->hc_num); ++ ++ /* ++ * NYET on CSPLIT ++ * re-do the CSPLIT immediately on non-periodic ++ */ ++ if ((_hc->do_split) && (_hc->complete_split)) { ++ if ((_hc->ep_type == DWC_OTG_EP_TYPE_INTR) || ++ (_hc->ep_type == DWC_OTG_EP_TYPE_ISOC)) { ++ int frnum = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(_hcd)); ++ ++ if (dwc_full_frame_num(frnum) != ++ dwc_full_frame_num(_hc->qh->sched_frame)) { ++ /* ++ * No longer in the same full speed frame. ++ * Treat this as a transaction error. ++ */ ++#if 0 ++ /** @todo Fix system performance so this can ++ * be treated as an error. Right now complete ++ * splits cannot be scheduled precisely enough ++ * due to other system activity, so this error ++ * occurs regularly in Slave mode. ++ */ ++ _qtd->error_count++; ++#endif ++ _qtd->complete_split = 0; ++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_XACT_ERR, must_free); ++ /** @todo add support for isoc release */ ++ goto handle_nyet_done; ++ } ++ } ++ ++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NYET, must_free); ++ goto handle_nyet_done; ++ } ++ ++ _hc->qh->ping_state = 1; ++ _qtd->error_count = 0; ++ ++ update_urb_state_xfer_intr(_hc, _hc_regs, _qtd->urb, _qtd, ++ DWC_OTG_HC_XFER_NYET); ++ save_data_toggle(_hc, _hc_regs, _qtd); ++ ++ /* ++ * Halt the channel and re-start the transfer so the PING ++ * protocol will start. ++ */ ++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NYET, must_free); ++ ++handle_nyet_done: ++ disable_hc_int(_hc_regs,nyet); ++ clear_hc_int(_hc_regs, nyet); ++ return 1; ++} ++ ++/** ++ * Handles a host channel babble interrupt. This handler may be called in ++ * either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_babble_intr(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "Babble Error--\n", _hc->hc_num); ++ if (_hc->ep_type != DWC_OTG_EP_TYPE_ISOC) { ++ dwc_otg_hcd_complete_urb(_hcd, _qtd->urb, -EOVERFLOW); ++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_BABBLE_ERR, must_free); ++ } else { ++ dwc_otg_halt_status_e halt_status; ++ halt_status = update_isoc_urb_state(_hcd, _hc, _hc_regs, _qtd, ++ DWC_OTG_HC_XFER_BABBLE_ERR); ++ halt_channel(_hcd, _hc, _qtd, halt_status, must_free); ++ } ++ disable_hc_int(_hc_regs,bblerr); ++ return 1; ++} ++ ++/** ++ * Handles a host channel AHB error interrupt. This handler is only called in ++ * DMA mode. ++ */ ++static int32_t handle_hc_ahberr_intr(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t *_hc, ++ dwc_otg_hc_regs_t *_hc_regs, ++ dwc_otg_qtd_t *_qtd) ++{ ++ hcchar_data_t hcchar; ++ hcsplt_data_t hcsplt; ++ hctsiz_data_t hctsiz; ++ uint32_t hcdma; ++ struct urb *urb = _qtd->urb; ++ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "AHB Error--\n", _hc->hc_num); ++ ++ hcchar.d32 = dwc_read_reg32(&_hc_regs->hcchar); ++ hcsplt.d32 = dwc_read_reg32(&_hc_regs->hcsplt); ++ hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz); ++ hcdma = dwc_read_reg32(&_hc_regs->hcdma); ++ ++ DWC_ERROR("AHB ERROR, Channel %d\n", _hc->hc_num); ++ DWC_ERROR(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32); ++ DWC_ERROR(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma); ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Enqueue\n"); ++ DWC_ERROR(" Device address: %d\n", usb_pipedevice(urb->pipe)); ++ DWC_ERROR(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe), ++ (usb_pipein(urb->pipe) ? "IN" : "OUT")); ++ DWC_ERROR(" Endpoint type: %s\n", ++ ({char *pipetype; ++ switch (usb_pipetype(urb->pipe)) { ++ case PIPE_CONTROL: pipetype = "CONTROL"; break; ++ case PIPE_BULK: pipetype = "BULK"; break; ++ case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break; ++ case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break; ++ default: pipetype = "UNKNOWN"; break; ++ }; pipetype;})); ++ DWC_ERROR(" Speed: %s\n", ++ ({char *speed; ++ switch (urb->dev->speed) { ++ case USB_SPEED_HIGH: speed = "HIGH"; break; ++ case USB_SPEED_FULL: speed = "FULL"; break; ++ case USB_SPEED_LOW: speed = "LOW"; break; ++ default: speed = "UNKNOWN"; break; ++ }; speed;})); ++ DWC_ERROR(" Max packet size: %d\n", ++ usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))); ++ DWC_ERROR(" Data buffer length: %d\n", urb->transfer_buffer_length); ++ DWC_ERROR(" Transfer buffer: %p, Transfer DMA: %p\n", ++ urb->transfer_buffer, (void *)(u32)urb->transfer_dma); ++ DWC_ERROR(" Setup buffer: %p, Setup DMA: %p\n", ++ urb->setup_packet, (void *)(u32)urb->setup_dma); ++ DWC_ERROR(" Interval: %d\n", urb->interval); ++ ++ dwc_otg_hcd_complete_urb(_hcd, urb, -EIO); ++ ++ /* ++ * Force a channel halt. Don't call halt_channel because that won't ++ * write to the HCCHARn register in DMA mode to force the halt. ++ */ ++ dwc_otg_hc_halt(_hcd->core_if, _hc, DWC_OTG_HC_XFER_AHB_ERR); ++ ++ disable_hc_int(_hc_regs,ahberr); ++ return 1; ++} ++ ++/** ++ * Handles a host channel transaction error interrupt. This handler may be ++ * called in either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_xacterr_intr(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "Transaction Error--\n", _hc->hc_num); ++ ++ switch (usb_pipetype(_qtd->urb->pipe)) { ++ case PIPE_CONTROL: ++ case PIPE_BULK: ++ _qtd->error_count++; ++ if (!_hc->qh->ping_state) { ++ update_urb_state_xfer_intr(_hc, _hc_regs, _qtd->urb, ++ _qtd, DWC_OTG_HC_XFER_XACT_ERR); ++ save_data_toggle(_hc, _hc_regs, _qtd); ++ if (!_hc->ep_is_in && _qtd->urb->dev->speed == USB_SPEED_HIGH) { ++ _hc->qh->ping_state = 1; ++ } ++ } ++ ++ /* ++ * Halt the channel so the transfer can be re-started from ++ * the appropriate point or the PING protocol will start. ++ */ ++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_XACT_ERR, must_free); ++ break; ++ case PIPE_INTERRUPT: ++ _qtd->error_count++; ++ if ((_hc->do_split) && (_hc->complete_split)) { ++ _qtd->complete_split = 0; ++ } ++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_XACT_ERR, must_free); ++ break; ++ case PIPE_ISOCHRONOUS: ++ { ++ dwc_otg_halt_status_e halt_status; ++ halt_status = update_isoc_urb_state(_hcd, _hc, _hc_regs, _qtd, ++ DWC_OTG_HC_XFER_XACT_ERR); ++ ++ halt_channel(_hcd, _hc, _qtd, halt_status, must_free); ++ } ++ break; ++ } ++ ++ ++ disable_hc_int(_hc_regs,xacterr); ++ ++ return 1; ++} ++ ++/** ++ * Handles a host channel frame overrun interrupt. This handler may be called ++ * in either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_frmovrun_intr(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "Frame Overrun--\n", _hc->hc_num); ++ ++ switch (usb_pipetype(_qtd->urb->pipe)) { ++ case PIPE_CONTROL: ++ case PIPE_BULK: ++ break; ++ case PIPE_INTERRUPT: ++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_FRAME_OVERRUN, must_free); ++ break; ++ case PIPE_ISOCHRONOUS: ++ { ++ dwc_otg_halt_status_e halt_status; ++ halt_status = update_isoc_urb_state(_hcd, _hc, _hc_regs, _qtd, ++ DWC_OTG_HC_XFER_FRAME_OVERRUN); ++ ++ halt_channel(_hcd, _hc, _qtd, halt_status, must_free); ++ } ++ break; ++ } ++ ++ disable_hc_int(_hc_regs,frmovrun); ++ ++ return 1; ++} ++ ++/** ++ * Handles a host channel data toggle error interrupt. This handler may be ++ * called in either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_datatglerr_intr(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "Data Toggle Error--\n", _hc->hc_num); ++ ++ if (_hc->ep_is_in) { ++ _qtd->error_count = 0; ++ } else { ++ DWC_ERROR("Data Toggle Error on OUT transfer," ++ "channel %d\n", _hc->hc_num); ++ } ++ ++ disable_hc_int(_hc_regs,datatglerr); ++ ++ return 1; ++} ++ ++#ifdef DEBUG ++/** ++ * This function is for debug only. It checks that a valid halt status is set ++ * and that HCCHARn.chdis is clear. If there's a problem, corrective action is ++ * taken and a warning is issued. ++ * @return 1 if halt status is ok, 0 otherwise. ++ */ ++static inline int halt_status_ok(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) ++{ ++ hcchar_data_t hcchar; ++ hctsiz_data_t hctsiz; ++ hcint_data_t hcint; ++ hcintmsk_data_t hcintmsk; ++ hcsplt_data_t hcsplt; ++ ++ if (_hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS) { ++ /* ++ * This code is here only as a check. This condition should ++ * never happen. Ignore the halt if it does occur. ++ */ ++ hcchar.d32 = dwc_read_reg32(&_hc_regs->hcchar); ++ hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz); ++ hcint.d32 = dwc_read_reg32(&_hc_regs->hcint); ++ hcintmsk.d32 = dwc_read_reg32(&_hc_regs->hcintmsk); ++ hcsplt.d32 = dwc_read_reg32(&_hc_regs->hcsplt); ++ DWC_WARN("%s: _hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS, " ++ "channel %d, hcchar 0x%08x, hctsiz 0x%08x, " ++ "hcint 0x%08x, hcintmsk 0x%08x, " ++ "hcsplt 0x%08x, qtd->complete_split %d\n", ++ __func__, _hc->hc_num, hcchar.d32, hctsiz.d32, ++ hcint.d32, hcintmsk.d32, ++ hcsplt.d32, _qtd->complete_split); ++ ++ DWC_WARN("%s: no halt status, channel %d, ignoring interrupt\n", ++ __func__, _hc->hc_num); ++ DWC_WARN("\n"); ++ clear_hc_int(_hc_regs,chhltd); ++ return 0; ++ } ++ ++ /* ++ * This code is here only as a check. hcchar.chdis should ++ * never be set when the halt interrupt occurs. Halt the ++ * channel again if it does occur. ++ */ ++ hcchar.d32 = dwc_read_reg32(&_hc_regs->hcchar); ++ if (hcchar.b.chdis) { ++ DWC_WARN("%s: hcchar.chdis set unexpectedly, " ++ "hcchar 0x%08x, trying to halt again\n", ++ __func__, hcchar.d32); ++ clear_hc_int(_hc_regs,chhltd); ++ _hc->halt_pending = 0; ++ halt_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free); ++ return 0; ++ } ++ ++ return 1; ++} ++#endif ++ ++/** ++ * Handles a host Channel Halted interrupt in DMA mode. This handler ++ * determines the reason the channel halted and proceeds accordingly. ++ */ ++static void handle_hc_chhltd_intr_dma(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) ++{ ++ hcint_data_t hcint; ++ hcintmsk_data_t hcintmsk; ++ ++ if (_hc->halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE || ++ _hc->halt_status == DWC_OTG_HC_XFER_AHB_ERR) { ++ /* ++ * Just release the channel. A dequeue can happen on a ++ * transfer timeout. In the case of an AHB Error, the channel ++ * was forced to halt because there's no way to gracefully ++ * recover. ++ */ ++ release_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free); ++ return; ++ } ++ ++ /* Read the HCINTn register to determine the cause for the halt. */ ++ hcint.d32 = dwc_read_reg32(&_hc_regs->hcint); ++ hcintmsk.d32 = dwc_read_reg32(&_hc_regs->hcintmsk); ++ ++ if (hcint.b.xfercomp) { ++ /** @todo This is here because of a possible hardware bug. Spec ++ * says that on SPLIT-ISOC OUT transfers in DMA mode that a HALT ++ * interrupt w/ACK bit set should occur, but I only see the ++ * XFERCOMP bit, even with it masked out. This is a workaround ++ * for that behavior. Should fix this when hardware is fixed. ++ */ ++ if ((_hc->ep_type == DWC_OTG_EP_TYPE_ISOC) && (!_hc->ep_is_in)) { ++ handle_hc_ack_intr(_hcd, _hc, _hc_regs, _qtd, must_free); ++ } ++ handle_hc_xfercomp_intr(_hcd, _hc, _hc_regs, _qtd, must_free); ++ } else if (hcint.b.stall) { ++ handle_hc_stall_intr(_hcd, _hc, _hc_regs, _qtd, must_free); ++ } else if (hcint.b.xacterr) { ++ /* ++ * Must handle xacterr before nak or ack. Could get a xacterr ++ * at the same time as either of these on a BULK/CONTROL OUT ++ * that started with a PING. The xacterr takes precedence. ++ */ ++ handle_hc_xacterr_intr(_hcd, _hc, _hc_regs, _qtd, must_free); ++ } else if (hcint.b.nyet) { ++ /* ++ * Must handle nyet before nak or ack. Could get a nyet at the ++ * same time as either of those on a BULK/CONTROL OUT that ++ * started with a PING. The nyet takes precedence. ++ */ ++ handle_hc_nyet_intr(_hcd, _hc, _hc_regs, _qtd, must_free); ++ } else if (hcint.b.bblerr) { ++ handle_hc_babble_intr(_hcd, _hc, _hc_regs, _qtd, must_free); ++ } else if (hcint.b.frmovrun) { ++ handle_hc_frmovrun_intr(_hcd, _hc, _hc_regs, _qtd, must_free); ++ } else if (hcint.b.datatglerr) { ++ handle_hc_datatglerr_intr(_hcd, _hc, _hc_regs, _qtd, must_free); ++ _hc->qh->data_toggle = 0; ++ halt_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free); ++ } else if (hcint.b.nak && !hcintmsk.b.nak) { ++ /* ++ * If nak is not masked, it's because a non-split IN transfer ++ * is in an error state. In that case, the nak is handled by ++ * the nak interrupt handler, not here. Handle nak here for ++ * BULK/CONTROL OUT transfers, which halt on a NAK to allow ++ * rewinding the buffer pointer. ++ */ ++ handle_hc_nak_intr(_hcd, _hc, _hc_regs, _qtd, must_free); ++ } else if (hcint.b.ack && !hcintmsk.b.ack) { ++ /* ++ * If ack is not masked, it's because a non-split IN transfer ++ * is in an error state. In that case, the ack is handled by ++ * the ack interrupt handler, not here. Handle ack here for ++ * split transfers. Start splits halt on ACK. ++ */ ++ handle_hc_ack_intr(_hcd, _hc, _hc_regs, _qtd, must_free); ++ } else { ++ if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR || ++ _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ /* ++ * A periodic transfer halted with no other channel ++ * interrupts set. Assume it was halted by the core ++ * because it could not be completed in its scheduled ++ * (micro)frame. ++ */ ++#ifdef DEBUG ++ DWC_PRINT("%s: Halt channel %d (assume incomplete periodic transfer)\n", ++ __func__, _hc->hc_num); ++#endif /* */ ++ halt_channel(_hcd, _hc, _qtd, ++ DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE, must_free); ++ } else { ++#ifdef DEBUG ++ DWC_ERROR("%s: Channel %d, DMA Mode -- ChHltd set, but reason " ++ "for halting is unknown, nyet %d, hcint 0x%08x, intsts 0x%08x\n", ++ __func__, _hc->hc_num, hcint.b.nyet, hcint.d32, ++ dwc_read_reg32(&_hcd->core_if->core_global_regs->gintsts)); ++#endif ++ halt_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free); ++ } ++ } ++} ++ ++/** ++ * Handles a host channel Channel Halted interrupt. ++ * ++ * In slave mode, this handler is called only when the driver specifically ++ * requests a halt. This occurs during handling other host channel interrupts ++ * (e.g. nak, xacterr, stall, nyet, etc.). ++ * ++ * In DMA mode, this is the interrupt that occurs when the core has finished ++ * processing a transfer on a channel. Other host channel interrupts (except ++ * ahberr) are disabled in DMA mode. ++ */ ++static int32_t handle_hc_chhltd_intr(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "Channel Halted--\n", _hc->hc_num); ++ ++ if (_hcd->core_if->dma_enable) { ++ handle_hc_chhltd_intr_dma(_hcd, _hc, _hc_regs, _qtd, must_free); ++ } else { ++#ifdef DEBUG ++ if (!halt_status_ok(_hcd, _hc, _hc_regs, _qtd, must_free)) { ++ return 1; ++ } ++#endif /* */ ++ release_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free); ++ } ++ ++ return 1; ++} ++ ++/** Handles interrupt for a specific Host Channel */ ++int32_t dwc_otg_hcd_handle_hc_n_intr (dwc_otg_hcd_t *_dwc_otg_hcd, uint32_t _num) ++{ ++ int must_free = 0; ++ int retval = 0; ++ hcint_data_t hcint; ++ hcintmsk_data_t hcintmsk; ++ dwc_hc_t *hc; ++ dwc_otg_hc_regs_t *hc_regs; ++ dwc_otg_qtd_t *qtd; ++ ++ DWC_DEBUGPL(DBG_HCDV, "--Host Channel Interrupt--, Channel %d\n", _num); ++ ++ hc = _dwc_otg_hcd->hc_ptr_array[_num]; ++ hc_regs = _dwc_otg_hcd->core_if->host_if->hc_regs[_num]; ++ qtd = list_entry(hc->qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); ++ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk); ++ DWC_DEBUGPL(DBG_HCDV, " hcint 0x%08x, hcintmsk 0x%08x, hcint&hcintmsk 0x%08x\n", ++ hcint.d32, hcintmsk.d32, (hcint.d32 & hcintmsk.d32)); ++ hcint.d32 = hcint.d32 & hcintmsk.d32; ++ ++ if (!_dwc_otg_hcd->core_if->dma_enable) { ++ if ((hcint.b.chhltd) && (hcint.d32 != 0x2)) { ++ hcint.b.chhltd = 0; ++ } ++ } ++ ++ if (hcint.b.xfercomp) { ++ retval |= handle_hc_xfercomp_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); ++ /* ++ * If NYET occurred at same time as Xfer Complete, the NYET is ++ * handled by the Xfer Complete interrupt handler. Don't want ++ * to call the NYET interrupt handler in this case. ++ */ ++ hcint.b.nyet = 0; ++ } ++ if (hcint.b.chhltd) { ++ retval |= handle_hc_chhltd_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); ++ } ++ if (hcint.b.ahberr) { ++ retval |= handle_hc_ahberr_intr(_dwc_otg_hcd, hc, hc_regs, qtd); ++ } ++ if (hcint.b.stall) { ++ retval |= handle_hc_stall_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); ++ } ++ if (hcint.b.nak) { ++ retval |= handle_hc_nak_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); ++ } ++ if (hcint.b.ack) { ++ retval |= handle_hc_ack_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); ++ } ++ if (hcint.b.nyet) { ++ retval |= handle_hc_nyet_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); ++ } ++ if (hcint.b.xacterr) { ++ retval |= handle_hc_xacterr_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); ++ } ++ if (hcint.b.bblerr) { ++ retval |= handle_hc_babble_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); ++ } ++ if (hcint.b.frmovrun) { ++ retval |= handle_hc_frmovrun_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); ++ } ++ if (hcint.b.datatglerr) { ++ retval |= handle_hc_datatglerr_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); ++ } ++ ++ /* ++ * Logic to free the qtd here, at the end of the hc intr ++ * processing, if the handling of this interrupt determined ++ * that it needs to be freed. ++ */ ++ if (must_free) { ++ /* Free the qtd here now that we are done using it. */ ++ dwc_otg_hcd_qtd_free(qtd); ++ } ++ return retval; ++} ++ ++#endif /* DWC_DEVICE_ONLY */ +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_hcd_queue.c +@@ -0,0 +1,794 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_hcd_queue.c $ ++ * $Revision: 1.1.1.1 $ ++ * $Date: 2009-04-17 06:15:34 $ ++ * $Change: 537387 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++#ifndef DWC_DEVICE_ONLY ++ ++/** ++ * @file ++ * ++ * This file contains the functions to manage Queue Heads and Queue ++ * Transfer Descriptors. ++ */ ++#include <linux/kernel.h> ++#include <linux/module.h> ++#include <linux/moduleparam.h> ++#include <linux/init.h> ++#include <linux/device.h> ++#include <linux/errno.h> ++#include <linux/list.h> ++#include <linux/interrupt.h> ++#include <linux/string.h> ++ ++#include "dwc_otg_driver.h" ++#include "dwc_otg_hcd.h" ++#include "dwc_otg_regs.h" ++ ++/** ++ * This function allocates and initializes a QH. ++ * ++ * @param _hcd The HCD state structure for the DWC OTG controller. ++ * @param[in] _urb Holds the information about the device/endpoint that we need ++ * to initialize the QH. ++ * ++ * @return Returns pointer to the newly allocated QH, or NULL on error. */ ++dwc_otg_qh_t *dwc_otg_hcd_qh_create (dwc_otg_hcd_t *_hcd, struct urb *_urb) ++{ ++ dwc_otg_qh_t *qh; ++ ++ /* Allocate memory */ ++ /** @todo add memflags argument */ ++ qh = dwc_otg_hcd_qh_alloc (); ++ if (qh == NULL) { ++ return NULL; ++ } ++ ++ dwc_otg_hcd_qh_init (_hcd, qh, _urb); ++ return qh; ++} ++ ++/** Free each QTD in the QH's QTD-list then free the QH. QH should already be ++ * removed from a list. QTD list should already be empty if called from URB ++ * Dequeue. ++ * ++ * @param[in] _qh The QH to free. ++ */ ++void dwc_otg_hcd_qh_free (dwc_otg_qh_t *_qh) ++{ ++ dwc_otg_qtd_t *qtd; ++ struct list_head *pos; ++ unsigned long flags; ++ ++ /* Free each QTD in the QTD list */ ++ local_irq_save (flags); ++ for (pos = _qh->qtd_list.next; ++ pos != &_qh->qtd_list; ++ pos = _qh->qtd_list.next) ++ { ++ list_del (pos); ++ qtd = dwc_list_to_qtd (pos); ++ dwc_otg_hcd_qtd_free (qtd); ++ } ++ local_irq_restore (flags); ++ ++ kfree (_qh); ++ return; ++} ++ ++/** Initializes a QH structure. ++ * ++ * @param[in] _hcd The HCD state structure for the DWC OTG controller. ++ * @param[in] _qh The QH to init. ++ * @param[in] _urb Holds the information about the device/endpoint that we need ++ * to initialize the QH. */ ++#define SCHEDULE_SLOP 10 ++void dwc_otg_hcd_qh_init(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, struct urb *_urb) ++{ ++ memset (_qh, 0, sizeof (dwc_otg_qh_t)); ++ ++ /* Initialize QH */ ++ switch (usb_pipetype(_urb->pipe)) { ++ case PIPE_CONTROL: ++ _qh->ep_type = USB_ENDPOINT_XFER_CONTROL; ++ break; ++ case PIPE_BULK: ++ _qh->ep_type = USB_ENDPOINT_XFER_BULK; ++ break; ++ case PIPE_ISOCHRONOUS: ++ _qh->ep_type = USB_ENDPOINT_XFER_ISOC; ++ break; ++ case PIPE_INTERRUPT: ++ _qh->ep_type = USB_ENDPOINT_XFER_INT; ++ break; ++ } ++ ++ _qh->ep_is_in = usb_pipein(_urb->pipe) ? 1 : 0; ++ ++ _qh->data_toggle = DWC_OTG_HC_PID_DATA0; ++ _qh->maxp = usb_maxpacket(_urb->dev, _urb->pipe, !(usb_pipein(_urb->pipe))); ++ INIT_LIST_HEAD(&_qh->qtd_list); ++ INIT_LIST_HEAD(&_qh->qh_list_entry); ++ _qh->channel = NULL; ++ ++ /* FS/LS Enpoint on HS Hub ++ * NOT virtual root hub */ ++ _qh->do_split = 0; ++ _qh->speed = _urb->dev->speed; ++ if (((_urb->dev->speed == USB_SPEED_LOW) || ++ (_urb->dev->speed == USB_SPEED_FULL)) && ++ (_urb->dev->tt) && (_urb->dev->tt->hub) && (_urb->dev->tt->hub->devnum != 1)) { ++ DWC_DEBUGPL(DBG_HCD, "QH init: EP %d: TT found at hub addr %d, for port %d\n", ++ usb_pipeendpoint(_urb->pipe), _urb->dev->tt->hub->devnum, ++ _urb->dev->ttport); ++ _qh->do_split = 1; ++ } ++ ++ if (_qh->ep_type == USB_ENDPOINT_XFER_INT || ++ _qh->ep_type == USB_ENDPOINT_XFER_ISOC) { ++ /* Compute scheduling parameters once and save them. */ ++ hprt0_data_t hprt; ++ ++ /** @todo Account for split transfers in the bus time. */ ++ int bytecount = dwc_hb_mult(_qh->maxp) * dwc_max_packet(_qh->maxp); ++ _qh->usecs = NS_TO_US(usb_calc_bus_time(_urb->dev->speed, ++ usb_pipein(_urb->pipe), ++ (_qh->ep_type == USB_ENDPOINT_XFER_ISOC),bytecount)); ++ ++ /* Start in a slightly future (micro)frame. */ ++ _qh->sched_frame = dwc_frame_num_inc(_hcd->frame_number, SCHEDULE_SLOP); ++ _qh->interval = _urb->interval; ++#if 0 ++ /* Increase interrupt polling rate for debugging. */ ++ if (_qh->ep_type == USB_ENDPOINT_XFER_INT) { ++ _qh->interval = 8; ++ } ++#endif ++ hprt.d32 = dwc_read_reg32(_hcd->core_if->host_if->hprt0); ++ if ((hprt.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED) && ++ ((_urb->dev->speed == USB_SPEED_LOW) || ++ (_urb->dev->speed == USB_SPEED_FULL))) ++ { ++ _qh->interval *= 8; ++ _qh->sched_frame |= 0x7; ++ _qh->start_split_frame = _qh->sched_frame; ++ } ++ } ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD QH Initialized\n"); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - qh = %p\n", _qh); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Device Address = %d\n", ++ _urb->dev->devnum); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Endpoint %d, %s\n", ++ usb_pipeendpoint(_urb->pipe), ++ usb_pipein(_urb->pipe) == USB_DIR_IN ? "IN" : "OUT"); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Speed = %s\n", ++ ({ char *speed; switch (_urb->dev->speed) { ++ case USB_SPEED_LOW: speed = "low"; break; ++ case USB_SPEED_FULL: speed = "full"; break; ++ case USB_SPEED_HIGH: speed = "high"; break; ++ default: speed = "?"; break; ++ }; speed;})); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Type = %s\n", ++ ({ char *type; switch (_qh->ep_type) { ++ case USB_ENDPOINT_XFER_ISOC: type = "isochronous"; break; ++ case USB_ENDPOINT_XFER_INT: type = "interrupt"; break; ++ case USB_ENDPOINT_XFER_CONTROL: type = "control"; break; ++ case USB_ENDPOINT_XFER_BULK: type = "bulk"; break; ++ default: type = "?"; break; ++ }; type;})); ++#ifdef DEBUG ++ if (_qh->ep_type == USB_ENDPOINT_XFER_INT) { ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - usecs = %d\n", ++ _qh->usecs); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - interval = %d\n", ++ _qh->interval); ++ } ++#endif ++ ++ return; ++} ++ ++/** ++ * Microframe scheduler ++ * track the total use in hcd->frame_usecs ++ * keep each qh use in qh->frame_usecs ++ * when surrendering the qh then donate the time back ++ */ ++const unsigned short max_uframe_usecs[]={ 100, 100, 100, 100, 100, 100, 30, 0 }; ++ ++/* ++ * called from dwc_otg_hcd.c:dwc_otg_hcd_init ++ */ ++int init_hcd_usecs(dwc_otg_hcd_t *_hcd) ++{ ++ int i; ++ for (i=0; i<8; i++) { ++ _hcd->frame_usecs[i] = max_uframe_usecs[i]; ++ } ++ return 0; ++} ++ ++static int find_single_uframe(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh) ++{ ++ int i; ++ unsigned short utime; ++ int t_left; ++ int ret; ++ int done; ++ ++ ret = -1; ++ utime = _qh->usecs; ++ t_left = utime; ++ i = 0; ++ done = 0; ++ while (done == 0) { ++ /* At the start _hcd->frame_usecs[i] = max_uframe_usecs[i]; */ ++ if (utime <= _hcd->frame_usecs[i]) { ++ _hcd->frame_usecs[i] -= utime; ++ _qh->frame_usecs[i] += utime; ++ t_left -= utime; ++ ret = i; ++ done = 1; ++ return ret; ++ } else { ++ i++; ++ if (i == 8) { ++ done = 1; ++ ret = -1; ++ } ++ } ++ } ++ return ret; ++} ++ ++/* ++ * use this for FS apps that can span multiple uframes ++ */ ++static int find_multi_uframe(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh) ++{ ++ int i; ++ int j; ++ unsigned short utime; ++ int t_left; ++ int ret; ++ int done; ++ unsigned short xtime; ++ ++ ret = -1; ++ utime = _qh->usecs; ++ t_left = utime; ++ i = 0; ++ done = 0; ++loop: ++ while (done == 0) { ++ if(_hcd->frame_usecs[i] <= 0) { ++ i++; ++ if (i == 8) { ++ done = 1; ++ ret = -1; ++ } ++ goto loop; ++ } ++ ++ /* ++ * we need n consequtive slots ++ * so use j as a start slot j plus j+1 must be enough time (for now) ++ */ ++ xtime= _hcd->frame_usecs[i]; ++ for (j = i+1 ; j < 8 ; j++ ) { ++ /* ++ * if we add this frame remaining time to xtime we may ++ * be OK, if not we need to test j for a complete frame ++ */ ++ if ((xtime+_hcd->frame_usecs[j]) < utime) { ++ if (_hcd->frame_usecs[j] < max_uframe_usecs[j]) { ++ j = 8; ++ ret = -1; ++ continue; ++ } ++ } ++ if (xtime >= utime) { ++ ret = i; ++ j = 8; /* stop loop with a good value ret */ ++ continue; ++ } ++ /* add the frame time to x time */ ++ xtime += _hcd->frame_usecs[j]; ++ /* we must have a fully available next frame or break */ ++ if ((xtime < utime) ++ && (_hcd->frame_usecs[j] == max_uframe_usecs[j])) { ++ ret = -1; ++ j = 8; /* stop loop with a bad value ret */ ++ continue; ++ } ++ } ++ if (ret >= 0) { ++ t_left = utime; ++ for (j = i; (t_left>0) && (j < 8); j++ ) { ++ t_left -= _hcd->frame_usecs[j]; ++ if ( t_left <= 0 ) { ++ _qh->frame_usecs[j] += _hcd->frame_usecs[j] + t_left; ++ _hcd->frame_usecs[j]= -t_left; ++ ret = i; ++ done = 1; ++ } else { ++ _qh->frame_usecs[j] += _hcd->frame_usecs[j]; ++ _hcd->frame_usecs[j] = 0; ++ } ++ } ++ } else { ++ i++; ++ if (i == 8) { ++ done = 1; ++ ret = -1; ++ } ++ } ++ } ++ return ret; ++} ++ ++static int find_uframe(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh) ++{ ++ int ret; ++ ret = -1; ++ ++ if (_qh->speed == USB_SPEED_HIGH) { ++ /* if this is a hs transaction we need a full frame */ ++ ret = find_single_uframe(_hcd, _qh); ++ } else { ++ /* if this is a fs transaction we may need a sequence of frames */ ++ ret = find_multi_uframe(_hcd, _qh); ++ } ++ return ret; ++} ++ ++/** ++ * Checks that the max transfer size allowed in a host channel is large enough ++ * to handle the maximum data transfer in a single (micro)frame for a periodic ++ * transfer. ++ * ++ * @param _hcd The HCD state structure for the DWC OTG controller. ++ * @param _qh QH for a periodic endpoint. ++ * ++ * @return 0 if successful, negative error code otherwise. ++ */ ++static int check_max_xfer_size(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh) ++{ ++ int status; ++ uint32_t max_xfer_size; ++ uint32_t max_channel_xfer_size; ++ ++ status = 0; ++ ++ max_xfer_size = dwc_max_packet(_qh->maxp) * dwc_hb_mult(_qh->maxp); ++ max_channel_xfer_size = _hcd->core_if->core_params->max_transfer_size; ++ ++ if (max_xfer_size > max_channel_xfer_size) { ++ DWC_NOTICE("%s: Periodic xfer length %d > " ++ "max xfer length for channel %d\n", ++ __func__, max_xfer_size, max_channel_xfer_size); ++ status = -ENOSPC; ++ } ++ ++ return status; ++} ++ ++/** ++ * Schedules an interrupt or isochronous transfer in the periodic schedule. ++ * ++ * @param _hcd The HCD state structure for the DWC OTG controller. ++ * @param _qh QH for the periodic transfer. The QH should already contain the ++ * scheduling information. ++ * ++ * @return 0 if successful, negative error code otherwise. ++ */ ++static int schedule_periodic(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh) ++{ ++ int status = 0; ++ ++ int frame; ++ status = find_uframe(_hcd, _qh); ++ frame = -1; ++ if (status == 0) { ++ frame = 7; ++ } else { ++ if (status > 0 ) ++ frame = status-1; ++ } ++ ++ /* Set the new frame up */ ++ if (frame > -1) { ++ _qh->sched_frame &= ~0x7; ++ _qh->sched_frame |= (frame & 7); ++ } ++ ++ if (status != -1 ) ++ status = 0; ++ if (status) { ++ DWC_NOTICE("%s: Insufficient periodic bandwidth for " ++ "periodic transfer.\n", __func__); ++ return status; ++ } ++ ++ status = check_max_xfer_size(_hcd, _qh); ++ if (status) { ++ DWC_NOTICE("%s: Channel max transfer size too small " ++ "for periodic transfer.\n", __func__); ++ return status; ++ } ++ ++ /* Always start in the inactive schedule. */ ++ list_add_tail(&_qh->qh_list_entry, &_hcd->periodic_sched_inactive); ++ ++ ++ /* Update claimed usecs per (micro)frame. */ ++ _hcd->periodic_usecs += _qh->usecs; ++ ++ /* Update average periodic bandwidth claimed and # periodic reqs for usbfs. */ ++ hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_allocated += _qh->usecs / _qh->interval; ++ if (_qh->ep_type == USB_ENDPOINT_XFER_INT) { ++ hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_int_reqs++; ++ DWC_DEBUGPL(DBG_HCD, "Scheduled intr: qh %p, usecs %d, period %d\n", ++ _qh, _qh->usecs, _qh->interval); ++ } else { ++ hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_isoc_reqs++; ++ DWC_DEBUGPL(DBG_HCD, "Scheduled isoc: qh %p, usecs %d, period %d\n", ++ _qh, _qh->usecs, _qh->interval); ++ } ++ ++ return status; ++} ++ ++/** ++ * This function adds a QH to either the non periodic or periodic schedule if ++ * it is not already in the schedule. If the QH is already in the schedule, no ++ * action is taken. ++ * ++ * @return 0 if successful, negative error code otherwise. ++ */ ++int dwc_otg_hcd_qh_add (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh) ++{ ++ unsigned long flags; ++ int status = 0; ++ ++ local_irq_save(flags); ++ ++ if (!list_empty(&_qh->qh_list_entry)) { ++ /* QH already in a schedule. */ ++ goto done; ++ } ++ ++ /* Add the new QH to the appropriate schedule */ ++ if (dwc_qh_is_non_per(_qh)) { ++ /* Always start in the inactive schedule. */ ++ list_add_tail(&_qh->qh_list_entry, &_hcd->non_periodic_sched_inactive); ++ } else { ++ status = schedule_periodic(_hcd, _qh); ++ } ++ ++ done: ++ local_irq_restore(flags); ++ ++ return status; ++} ++ ++/** ++ * This function adds a QH to the non periodic deferred schedule. ++ * ++ * @return 0 if successful, negative error code otherwise. ++ */ ++int dwc_otg_hcd_qh_add_deferred(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh) ++{ ++ unsigned long flags; ++ local_irq_save(flags); ++ if (!list_empty(&_qh->qh_list_entry)) { ++ /* QH already in a schedule. */ ++ goto done; ++ } ++ ++ /* Add the new QH to the non periodic deferred schedule */ ++ if (dwc_qh_is_non_per(_qh)) { ++ list_add_tail(&_qh->qh_list_entry, ++ &_hcd->non_periodic_sched_deferred); ++ } ++done: ++ local_irq_restore(flags); ++ return 0; ++} ++ ++/** ++ * Removes an interrupt or isochronous transfer from the periodic schedule. ++ * ++ * @param _hcd The HCD state structure for the DWC OTG controller. ++ * @param _qh QH for the periodic transfer. ++ */ ++static void deschedule_periodic(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh) ++{ ++ int i; ++ list_del_init(&_qh->qh_list_entry); ++ ++ ++ /* Update claimed usecs per (micro)frame. */ ++ _hcd->periodic_usecs -= _qh->usecs; ++ ++ for (i = 0; i < 8; i++) { ++ _hcd->frame_usecs[i] += _qh->frame_usecs[i]; ++ _qh->frame_usecs[i] = 0; ++ } ++ /* Update average periodic bandwidth claimed and # periodic reqs for usbfs. */ ++ hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_allocated -= _qh->usecs / _qh->interval; ++ ++ if (_qh->ep_type == USB_ENDPOINT_XFER_INT) { ++ hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_int_reqs--; ++ DWC_DEBUGPL(DBG_HCD, "Descheduled intr: qh %p, usecs %d, period %d\n", ++ _qh, _qh->usecs, _qh->interval); ++ } else { ++ hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_isoc_reqs--; ++ DWC_DEBUGPL(DBG_HCD, "Descheduled isoc: qh %p, usecs %d, period %d\n", ++ _qh, _qh->usecs, _qh->interval); ++ } ++} ++ ++/** ++ * Removes a QH from either the non-periodic or periodic schedule. Memory is ++ * not freed. ++ * ++ * @param[in] _hcd The HCD state structure. ++ * @param[in] _qh QH to remove from schedule. */ ++void dwc_otg_hcd_qh_remove (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh) ++{ ++ unsigned long flags; ++ ++ local_irq_save(flags); ++ ++ if (list_empty(&_qh->qh_list_entry)) { ++ /* QH is not in a schedule. */ ++ goto done; ++ } ++ ++ if (dwc_qh_is_non_per(_qh)) { ++ if (_hcd->non_periodic_qh_ptr == &_qh->qh_list_entry) { ++ _hcd->non_periodic_qh_ptr = _hcd->non_periodic_qh_ptr->next; ++ } ++ list_del_init(&_qh->qh_list_entry); ++ } else { ++ deschedule_periodic(_hcd, _qh); ++ } ++ ++ done: ++ local_irq_restore(flags); ++} ++ ++/** ++ * Defers a QH. For non-periodic QHs, removes the QH from the active ++ * non-periodic schedule. The QH is added to the deferred non-periodic ++ * schedule if any QTDs are still attached to the QH. ++ */ ++int dwc_otg_hcd_qh_deferr(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh, int delay) ++{ ++ int deact = 1; ++ unsigned long flags; ++ local_irq_save(flags); ++ if (dwc_qh_is_non_per(_qh)) { ++ _qh->sched_frame = ++ dwc_frame_num_inc(_hcd->frame_number, ++ delay); ++ _qh->channel = NULL; ++ _qh->qtd_in_process = NULL; ++ deact = 0; ++ dwc_otg_hcd_qh_remove(_hcd, _qh); ++ if (!list_empty(&_qh->qtd_list)) { ++ /* Add back to deferred non-periodic schedule. */ ++ dwc_otg_hcd_qh_add_deferred(_hcd, _qh); ++ } ++ } ++ local_irq_restore(flags); ++ return deact; ++} ++ ++/** ++ * Deactivates a QH. For non-periodic QHs, removes the QH from the active ++ * non-periodic schedule. The QH is added to the inactive non-periodic ++ * schedule if any QTDs are still attached to the QH. ++ * ++ * For periodic QHs, the QH is removed from the periodic queued schedule. If ++ * there are any QTDs still attached to the QH, the QH is added to either the ++ * periodic inactive schedule or the periodic ready schedule and its next ++ * scheduled frame is calculated. The QH is placed in the ready schedule if ++ * the scheduled frame has been reached already. Otherwise it's placed in the ++ * inactive schedule. If there are no QTDs attached to the QH, the QH is ++ * completely removed from the periodic schedule. ++ */ ++void dwc_otg_hcd_qh_deactivate(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, int sched_next_periodic_split) ++{ ++ unsigned long flags; ++ local_irq_save(flags); ++ ++ if (dwc_qh_is_non_per(_qh)) { ++ dwc_otg_hcd_qh_remove(_hcd, _qh); ++ if (!list_empty(&_qh->qtd_list)) { ++ /* Add back to inactive non-periodic schedule. */ ++ dwc_otg_hcd_qh_add(_hcd, _qh); ++ } ++ } else { ++ uint16_t frame_number = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(_hcd)); ++ ++ if (_qh->do_split) { ++ /* Schedule the next continuing periodic split transfer */ ++ if (sched_next_periodic_split) { ++ ++ _qh->sched_frame = frame_number; ++ if (dwc_frame_num_le(frame_number, ++ dwc_frame_num_inc(_qh->start_split_frame, 1))) { ++ /* ++ * Allow one frame to elapse after start ++ * split microframe before scheduling ++ * complete split, but DONT if we are ++ * doing the next start split in the ++ * same frame for an ISOC out. ++ */ ++ if ((_qh->ep_type != USB_ENDPOINT_XFER_ISOC) || (_qh->ep_is_in != 0)) { ++ _qh->sched_frame = dwc_frame_num_inc(_qh->sched_frame, 1); ++ } ++ } ++ } else { ++ _qh->sched_frame = dwc_frame_num_inc(_qh->start_split_frame, ++ _qh->interval); ++ if (dwc_frame_num_le(_qh->sched_frame, frame_number)) { ++ _qh->sched_frame = frame_number; ++ } ++ _qh->sched_frame |= 0x7; ++ _qh->start_split_frame = _qh->sched_frame; ++ } ++ } else { ++ _qh->sched_frame = dwc_frame_num_inc(_qh->sched_frame, _qh->interval); ++ if (dwc_frame_num_le(_qh->sched_frame, frame_number)) { ++ _qh->sched_frame = frame_number; ++ } ++ } ++ ++ if (list_empty(&_qh->qtd_list)) { ++ dwc_otg_hcd_qh_remove(_hcd, _qh); ++ } else { ++ /* ++ * Remove from periodic_sched_queued and move to ++ * appropriate queue. ++ */ ++ if (dwc_frame_num_le(_qh->sched_frame, frame_number)) { ++ list_move(&_qh->qh_list_entry, ++ &_hcd->periodic_sched_ready); ++ } else { ++ list_move(&_qh->qh_list_entry, ++ &_hcd->periodic_sched_inactive); ++ } ++ } ++ } ++ ++ local_irq_restore(flags); ++} ++ ++/** ++ * This function allocates and initializes a QTD. ++ * ++ * @param[in] _urb The URB to create a QTD from. Each URB-QTD pair will end up ++ * pointing to each other so each pair should have a unique correlation. ++ * ++ * @return Returns pointer to the newly allocated QTD, or NULL on error. */ ++dwc_otg_qtd_t *dwc_otg_hcd_qtd_create (struct urb *_urb) ++{ ++ dwc_otg_qtd_t *qtd; ++ ++ qtd = dwc_otg_hcd_qtd_alloc (); ++ if (qtd == NULL) { ++ return NULL; ++ } ++ ++ dwc_otg_hcd_qtd_init (qtd, _urb); ++ return qtd; ++} ++ ++/** ++ * Initializes a QTD structure. ++ * ++ * @param[in] _qtd The QTD to initialize. ++ * @param[in] _urb The URB to use for initialization. */ ++void dwc_otg_hcd_qtd_init (dwc_otg_qtd_t *_qtd, struct urb *_urb) ++{ ++ memset (_qtd, 0, sizeof (dwc_otg_qtd_t)); ++ _qtd->urb = _urb; ++ if (usb_pipecontrol(_urb->pipe)) { ++ /* ++ * The only time the QTD data toggle is used is on the data ++ * phase of control transfers. This phase always starts with ++ * DATA1. ++ */ ++ _qtd->data_toggle = DWC_OTG_HC_PID_DATA1; ++ _qtd->control_phase = DWC_OTG_CONTROL_SETUP; ++ } ++ ++ /* start split */ ++ _qtd->complete_split = 0; ++ _qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL; ++ _qtd->isoc_split_offset = 0; ++ ++ /* Store the qtd ptr in the urb to reference what QTD. */ ++ _urb->hcpriv = _qtd; ++ return; ++} ++ ++/** ++ * This function adds a QTD to the QTD-list of a QH. It will find the correct ++ * QH to place the QTD into. If it does not find a QH, then it will create a ++ * new QH. If the QH to which the QTD is added is not currently scheduled, it ++ * is placed into the proper schedule based on its EP type. ++ * ++ * @param[in] _qtd The QTD to add ++ * @param[in] _dwc_otg_hcd The DWC HCD structure ++ * ++ * @return 0 if successful, negative error code otherwise. ++ */ ++int dwc_otg_hcd_qtd_add(dwc_otg_qtd_t * _qtd, dwc_otg_hcd_t * _dwc_otg_hcd) ++{ ++ struct usb_host_endpoint *ep; ++ dwc_otg_qh_t *qh; ++ unsigned long flags; ++ int retval = 0; ++ struct urb *urb = _qtd->urb; ++ ++ local_irq_save(flags); ++ ++ /* ++ * Get the QH which holds the QTD-list to insert to. Create QH if it ++ * doesn't exist. ++ */ ++ ep = dwc_urb_to_endpoint(urb); ++ qh = (dwc_otg_qh_t *)ep->hcpriv; ++ if (qh == NULL) { ++ qh = dwc_otg_hcd_qh_create (_dwc_otg_hcd, urb); ++ if (qh == NULL) { ++ retval = -1; ++ goto done; ++ } ++ ep->hcpriv = qh; ++ } ++ ++ _qtd->qtd_qh_ptr = qh; ++ retval = dwc_otg_hcd_qh_add(_dwc_otg_hcd, qh); ++ if (retval == 0) { ++ list_add_tail(&_qtd->qtd_list_entry, &qh->qtd_list); ++ } ++ ++ done: ++ local_irq_restore(flags); ++ return retval; ++} ++ ++#endif /* DWC_DEVICE_ONLY */ +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_ifx.c +@@ -0,0 +1,101 @@ ++/****************************************************************************** ++** ++** FILE NAME : dwc_otg_ifx.c ++** PROJECT : Twinpass/Danube ++** MODULES : DWC OTG USB ++** ++** DATE : 12 Auguest 2007 ++** AUTHOR : Sung Winder ++** DESCRIPTION : Platform specific initialization. ++** COPYRIGHT : Copyright (c) 2007 ++** Infineon Technologies AG ++** 2F, No.2, Li-Hsin Rd., Hsinchu Science Park, ++** Hsin-chu City, 300 Taiwan. ++** ++** This program is free software; you can redistribute it and/or modify ++** it under the terms of the GNU General Public License as published by ++** the Free Software Foundation; either version 2 of the License, or ++** (at your option) any later version. ++** ++** HISTORY ++** $Date $Author $Comment ++** 12 Auguest 2007 Sung Winder Initiate Version ++*******************************************************************************/ ++#include "dwc_otg_ifx.h" ++ ++#include <linux/platform_device.h> ++#include <linux/kernel.h> ++#include <linux/ioport.h> ++#include <linux/gpio.h> ++ ++#include <asm/io.h> ++//#include <asm/mach-ifxmips/ifxmips.h> ++#include <lantiq_soc.h> ++ ++#define IFXMIPS_GPIO_BASE_ADDR (0xBE100B00) ++ ++#define IFXMIPS_GPIO_P0_OUT ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0010)) ++#define IFXMIPS_GPIO_P1_OUT ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0040)) ++#define IFXMIPS_GPIO_P0_IN ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0014)) ++#define IFXMIPS_GPIO_P1_IN ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0044)) ++#define IFXMIPS_GPIO_P0_DIR ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0018)) ++#define IFXMIPS_GPIO_P1_DIR ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0048)) ++#define IFXMIPS_GPIO_P0_ALTSEL0 ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x001C)) ++#define IFXMIPS_GPIO_P1_ALTSEL0 ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x004C)) ++#define IFXMIPS_GPIO_P0_ALTSEL1 ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0020)) ++#define IFXMIPS_GPIO_P1_ALTSEL1 ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0050)) ++#define IFXMIPS_GPIO_P0_OD ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0024)) ++#define IFXMIPS_GPIO_P1_OD ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0054)) ++#define IFXMIPS_GPIO_P0_STOFF ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0028)) ++#define IFXMIPS_GPIO_P1_STOFF ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0058)) ++#define IFXMIPS_GPIO_P0_PUDSEL ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x002C)) ++#define IFXMIPS_GPIO_P1_PUDSEL ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x005C)) ++#define IFXMIPS_GPIO_P0_PUDEN ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0030)) ++#define IFXMIPS_GPIO_P1_PUDEN ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0060)) ++ ++ ++extern void ltq_enable_irq(unsigned int irq_nr); ++#define writel ltq_w32 ++#define readl ltq_r32 ++void dwc_otg_power_on (void) ++{ ++ // clear power ++ writel(readl(DANUBE_PMU_PWDCR) | 0x41, DANUBE_PMU_PWDCR); ++ // set clock gating ++ writel(readl(DANUBE_CGU_IFCCR) | 0x30, DANUBE_CGU_IFCCR); ++ // set power ++ writel(readl(DANUBE_PMU_PWDCR) & ~0x1, DANUBE_PMU_PWDCR); ++ writel(readl(DANUBE_PMU_PWDCR) & ~0x40, DANUBE_PMU_PWDCR); ++ writel(readl(DANUBE_PMU_PWDCR) & ~0x8000, DANUBE_PMU_PWDCR); ++ ++#if 1//defined (DWC_HOST_ONLY) ++ // make the hardware be a host controller (default) ++ //clear_bit (DANUBE_USBCFG_HDSEL_BIT, (volatile unsigned long *)DANUBE_RCU_UBSCFG); ++ writel(readl(DANUBE_RCU_UBSCFG) & ~(1<<DANUBE_USBCFG_HDSEL_BIT), DANUBE_RCU_UBSCFG); ++ ++ //#elif defined (DWC_DEVICE_ONLY) ++ /* set the controller to the device mode */ ++ // set_bit (DANUBE_USBCFG_HDSEL_BIT, (volatile unsigned long *)DANUBE_RCU_UBSCFG); ++#else ++#error "For Danube/Twinpass, it should be HOST or Device Only." ++#endif ++ ++ // set the HC's byte-order to big-endian ++ //set_bit (DANUBE_USBCFG_HOST_END_BIT, (volatile unsigned long *)DANUBE_RCU_UBSCFG); ++ writel(readl(DANUBE_RCU_UBSCFG) | (1<<DANUBE_USBCFG_HOST_END_BIT), DANUBE_RCU_UBSCFG); ++ //clear_bit (DANUBE_USBCFG_SLV_END_BIT, (volatile unsigned long *)DANUBE_RCU_UBSCFG); ++ writel(readl(DANUBE_RCU_UBSCFG) & ~(1<<DANUBE_USBCFG_SLV_END_BIT), DANUBE_RCU_UBSCFG); ++ //writel(0x400, DANUBE_RCU_UBSCFG); ++ ++ // PHY configurations. ++ writel (0x14014, (volatile unsigned long *)0xbe10103c); ++} ++ ++int ifx_usb_hc_init(unsigned long base_addr, int irq) ++{ ++ return 0; ++} ++ ++void ifx_usb_hc_remove(void) ++{ ++} +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_ifx.h +@@ -0,0 +1,79 @@ ++/****************************************************************************** ++** ++** FILE NAME : dwc_otg_ifx.h ++** PROJECT : Twinpass/Danube ++** MODULES : DWC OTG USB ++** ++** DATE : 12 April 2007 ++** AUTHOR : Sung Winder ++** DESCRIPTION : Platform specific initialization. ++** COPYRIGHT : Copyright (c) 2007 ++** Infineon Technologies AG ++** 2F, No.2, Li-Hsin Rd., Hsinchu Science Park, ++** Hsin-chu City, 300 Taiwan. ++** ++** This program is free software; you can redistribute it and/or modify ++** it under the terms of the GNU General Public License as published by ++** the Free Software Foundation; either version 2 of the License, or ++** (at your option) any later version. ++** ++** HISTORY ++** $Date $Author $Comment ++** 12 April 2007 Sung Winder Initiate Version ++*******************************************************************************/ ++#if !defined(__DWC_OTG_IFX_H__) ++#define __DWC_OTG_IFX_H__ ++ ++#include <irq.h> ++ ++// 20070316, winder added. ++#ifndef SZ_256K ++#define SZ_256K 0x00040000 ++#endif ++ ++extern void dwc_otg_power_on (void); ++ ++/* FIXME: The current Linux-2.6 do not have these header files, but anyway, we need these. */ ++// #include <asm/danube/danube.h> ++// #include <asm/ifx/irq.h> ++ ++/* winder, I used the Danube parameter as default. * ++ * We could change this through module param. */ ++#define IFX_USB_IOMEM_BASE 0x1e101000 ++#define IFX_USB_IOMEM_SIZE SZ_256K ++#define IFX_USB_IRQ LTQ_USB_INT ++ ++/** ++ * This function is called to set correct clock gating and power. ++ * For Twinpass/Danube board. ++ */ ++#ifndef DANUBE_RCU_BASE_ADDR ++#define DANUBE_RCU_BASE_ADDR (0xBF203000) ++#endif ++ ++#ifndef DANUBE_CGU ++#define DANUBE_CGU (0xBF103000) ++#endif ++#ifndef DANUBE_CGU_IFCCR ++/***CGU Interface Clock Control Register***/ ++#define DANUBE_CGU_IFCCR ((volatile u32*)(DANUBE_CGU+ 0x0018)) ++#endif ++ ++#ifndef DANUBE_PMU ++#define DANUBE_PMU (KSEG1+0x1F102000) ++#endif ++#ifndef DANUBE_PMU_PWDCR ++/* PMU Power down Control Register */ ++#define DANUBE_PMU_PWDCR ((volatile u32*)(DANUBE_PMU+0x001C)) ++#endif ++ ++ ++#define DANUBE_RCU_UBSCFG ((volatile u32*)(DANUBE_RCU_BASE_ADDR + 0x18)) ++#define DANUBE_USBCFG_HDSEL_BIT 11 // 0:host, 1:device ++#define DANUBE_USBCFG_HOST_END_BIT 10 // 0:little_end, 1:big_end ++#define DANUBE_USBCFG_SLV_END_BIT 9 // 0:little_end, 1:big_end ++ ++extern void ltq_mask_and_ack_irq (unsigned int irq_nr); ++#define mask_and_ack_ifx_irq ltq_mask_and_ack_irq ++ ++#endif //__DWC_OTG_IFX_H__ +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_plat.h +@@ -0,0 +1,269 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/platform/dwc_otg_plat.h $ ++ * $Revision: 1.1.1.1 $ ++ * $Date: 2009-04-17 06:15:34 $ ++ * $Change: 510301 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++#if !defined(__DWC_OTG_PLAT_H__) ++#define __DWC_OTG_PLAT_H__ ++ ++#include <linux/types.h> ++#include <linux/slab.h> ++#include <linux/list.h> ++#include <linux/delay.h> ++#include <asm/io.h> ++ ++/** ++ * @file ++ * ++ * This file contains the Platform Specific constants, interfaces ++ * (functions and macros) for Linux. ++ * ++ */ ++/*#if !defined(__LINUX__) ++#error "The contents of this file is Linux specific!!!" ++#endif ++*/ ++#include <lantiq_soc.h> ++#define writel ltq_w32 ++#define readl ltq_r32 ++ ++/** ++ * Reads the content of a register. ++ * ++ * @param _reg address of register to read. ++ * @return contents of the register. ++ * ++ ++ * Usage:<br> ++ * <code>uint32_t dev_ctl = dwc_read_reg32(&dev_regs->dctl);</code> ++ */ ++static __inline__ uint32_t dwc_read_reg32( volatile uint32_t *_reg) ++{ ++ return readl(_reg); ++}; ++ ++/** ++ * Writes a register with a 32 bit value. ++ * ++ * @param _reg address of register to read. ++ * @param _value to write to _reg. ++ * ++ * Usage:<br> ++ * <code>dwc_write_reg32(&dev_regs->dctl, 0); </code> ++ */ ++static __inline__ void dwc_write_reg32( volatile uint32_t *_reg, const uint32_t _value) ++{ ++ writel( _value, _reg ); ++}; ++ ++/** ++ * This function modifies bit values in a register. Using the ++ * algorithm: (reg_contents & ~clear_mask) | set_mask. ++ * ++ * @param _reg address of register to read. ++ * @param _clear_mask bit mask to be cleared. ++ * @param _set_mask bit mask to be set. ++ * ++ * Usage:<br> ++ * <code> // Clear the SOF Interrupt Mask bit and <br> ++ * // set the OTG Interrupt mask bit, leaving all others as they were. ++ * dwc_modify_reg32(&dev_regs->gintmsk, DWC_SOF_INT, DWC_OTG_INT);</code> ++ */ ++static __inline__ ++ void dwc_modify_reg32( volatile uint32_t *_reg, const uint32_t _clear_mask, const uint32_t _set_mask) ++{ ++ writel( (readl(_reg) & ~_clear_mask) | _set_mask, _reg ); ++}; ++ ++ ++/** ++ * Wrapper for the OS micro-second delay function. ++ * @param[in] _usecs Microseconds of delay ++ */ ++static __inline__ void UDELAY( const uint32_t _usecs ) ++{ ++ udelay( _usecs ); ++} ++ ++/** ++ * Wrapper for the OS milli-second delay function. ++ * @param[in] _msecs milliseconds of delay ++ */ ++static __inline__ void MDELAY( const uint32_t _msecs ) ++{ ++ mdelay( _msecs ); ++} ++ ++/** ++ * Wrapper for the Linux spin_lock. On the ARM (Integrator) ++ * spin_lock() is a nop. ++ * ++ * @param _lock Pointer to the spinlock. ++ */ ++static __inline__ void SPIN_LOCK( spinlock_t *_lock ) ++{ ++ spin_lock(_lock); ++} ++ ++/** ++ * Wrapper for the Linux spin_unlock. On the ARM (Integrator) ++ * spin_lock() is a nop. ++ * ++ * @param _lock Pointer to the spinlock. ++ */ ++static __inline__ void SPIN_UNLOCK( spinlock_t *_lock ) ++{ ++ spin_unlock(_lock); ++} ++ ++/** ++ * Wrapper (macro) for the Linux spin_lock_irqsave. On the ARM ++ * (Integrator) spin_lock() is a nop. ++ * ++ * @param _l Pointer to the spinlock. ++ * @param _f unsigned long for irq flags storage. ++ */ ++#define SPIN_LOCK_IRQSAVE( _l, _f ) { \ ++ spin_lock_irqsave(_l,_f); \ ++ } ++ ++/** ++ * Wrapper (macro) for the Linux spin_unlock_irqrestore. On the ARM ++ * (Integrator) spin_lock() is a nop. ++ * ++ * @param _l Pointer to the spinlock. ++ * @param _f unsigned long for irq flags storage. ++ */ ++#define SPIN_UNLOCK_IRQRESTORE( _l,_f ) {\ ++ spin_unlock_irqrestore(_l,_f); \ ++ } ++ ++ ++/* ++ * Debugging support vanishes in non-debug builds. ++ */ ++ ++ ++/** ++ * The Debug Level bit-mask variable. ++ */ ++extern uint32_t g_dbg_lvl; ++/** ++ * Set the Debug Level variable. ++ */ ++static inline uint32_t SET_DEBUG_LEVEL( const uint32_t _new ) ++{ ++ uint32_t old = g_dbg_lvl; ++ g_dbg_lvl = _new; ++ return old; ++} ++ ++/** When debug level has the DBG_CIL bit set, display CIL Debug messages. */ ++#define DBG_CIL (0x2) ++/** When debug level has the DBG_CILV bit set, display CIL Verbose debug ++ * messages */ ++#define DBG_CILV (0x20) ++/** When debug level has the DBG_PCD bit set, display PCD (Device) debug ++ * messages */ ++#define DBG_PCD (0x4) ++/** When debug level has the DBG_PCDV set, display PCD (Device) Verbose debug ++ * messages */ ++#define DBG_PCDV (0x40) ++/** When debug level has the DBG_HCD bit set, display Host debug messages */ ++#define DBG_HCD (0x8) ++/** When debug level has the DBG_HCDV bit set, display Verbose Host debug ++ * messages */ ++#define DBG_HCDV (0x80) ++/** When debug level has the DBG_HCD_URB bit set, display enqueued URBs in host ++ * mode. */ ++#define DBG_HCD_URB (0x800) ++ ++/** When debug level has any bit set, display debug messages */ ++#define DBG_ANY (0xFF) ++ ++/** All debug messages off */ ++#define DBG_OFF 0 ++ ++/** Prefix string for DWC_DEBUG print macros. */ ++#define USB_DWC "DWC_otg: " ++ ++/** ++ * Print a debug message when the Global debug level variable contains ++ * the bit defined in <code>lvl</code>. ++ * ++ * @param[in] lvl - Debug level, use one of the DBG_ constants above. ++ * @param[in] x - like printf ++ * ++ * Example:<p> ++ * <code> ++ * DWC_DEBUGPL( DBG_ANY, "%s(%p)\n", __func__, _reg_base_addr); ++ * </code> ++ * <br> ++ * results in:<br> ++ * <code> ++ * usb-DWC_otg: dwc_otg_cil_init(ca867000) ++ * </code> ++ */ ++#ifdef DEBUG ++ ++# define DWC_DEBUGPL(lvl, x...) do{ if ((lvl)&g_dbg_lvl)printk( KERN_DEBUG USB_DWC x ); }while(0) ++# define DWC_DEBUGP(x...) DWC_DEBUGPL(DBG_ANY, x ) ++ ++# define CHK_DEBUG_LEVEL(level) ((level) & g_dbg_lvl) ++ ++#else ++ ++# define DWC_DEBUGPL(lvl, x...) do{}while(0) ++# define DWC_DEBUGP(x...) ++ ++# define CHK_DEBUG_LEVEL(level) (0) ++ ++#endif /*DEBUG*/ ++ ++/** ++ * Print an Error message. ++ */ ++#define DWC_ERROR(x...) printk( KERN_ERR USB_DWC x ) ++/** ++ * Print a Warning message. ++ */ ++#define DWC_WARN(x...) printk( KERN_WARNING USB_DWC x ) ++/** ++ * Print a notice (normal but significant message). ++ */ ++#define DWC_NOTICE(x...) printk( KERN_NOTICE USB_DWC x ) ++/** ++ * Basic message printing. ++ */ ++#define DWC_PRINT(x...) printk( KERN_INFO USB_DWC x ) ++ ++#endif ++ +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_regs.h +@@ -0,0 +1,1797 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_regs.h $ ++ * $Revision: 1.1.1.1 $ ++ * $Date: 2009-04-17 06:15:34 $ ++ * $Change: 631780 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++#ifndef __DWC_OTG_REGS_H__ ++#define __DWC_OTG_REGS_H__ ++ ++/** ++ * @file ++ * ++ * This file contains the data structures for accessing the DWC_otg core registers. ++ * ++ * The application interfaces with the HS OTG core by reading from and ++ * writing to the Control and Status Register (CSR) space through the ++ * AHB Slave interface. These registers are 32 bits wide, and the ++ * addresses are 32-bit-block aligned. ++ * CSRs are classified as follows: ++ * - Core Global Registers ++ * - Device Mode Registers ++ * - Device Global Registers ++ * - Device Endpoint Specific Registers ++ * - Host Mode Registers ++ * - Host Global Registers ++ * - Host Port CSRs ++ * - Host Channel Specific Registers ++ * ++ * Only the Core Global registers can be accessed in both Device and ++ * Host modes. When the HS OTG core is operating in one mode, either ++ * Device or Host, the application must not access registers from the ++ * other mode. When the core switches from one mode to another, the ++ * registers in the new mode of operation must be reprogrammed as they ++ * would be after a power-on reset. ++ */ ++ ++/****************************************************************************/ ++/** DWC_otg Core registers . ++ * The dwc_otg_core_global_regs structure defines the size ++ * and relative field offsets for the Core Global registers. ++ */ ++typedef struct dwc_otg_core_global_regs ++{ ++ /** OTG Control and Status Register. <i>Offset: 000h</i> */ ++ volatile uint32_t gotgctl; ++ /** OTG Interrupt Register. <i>Offset: 004h</i> */ ++ volatile uint32_t gotgint; ++ /**Core AHB Configuration Register. <i>Offset: 008h</i> */ ++ volatile uint32_t gahbcfg; ++#define DWC_GLBINTRMASK 0x0001 ++#define DWC_DMAENABLE 0x0020 ++#define DWC_NPTXEMPTYLVL_EMPTY 0x0080 ++#define DWC_NPTXEMPTYLVL_HALFEMPTY 0x0000 ++#define DWC_PTXEMPTYLVL_EMPTY 0x0100 ++#define DWC_PTXEMPTYLVL_HALFEMPTY 0x0000 ++ ++ ++ /**Core USB Configuration Register. <i>Offset: 00Ch</i> */ ++ volatile uint32_t gusbcfg; ++ /**Core Reset Register. <i>Offset: 010h</i> */ ++ volatile uint32_t grstctl; ++ /**Core Interrupt Register. <i>Offset: 014h</i> */ ++ volatile uint32_t gintsts; ++ /**Core Interrupt Mask Register. <i>Offset: 018h</i> */ ++ volatile uint32_t gintmsk; ++ /**Receive Status Queue Read Register (Read Only). <i>Offset: 01Ch</i> */ ++ volatile uint32_t grxstsr; ++ /**Receive Status Queue Read & POP Register (Read Only). <i>Offset: 020h</i>*/ ++ volatile uint32_t grxstsp; ++ /**Receive FIFO Size Register. <i>Offset: 024h</i> */ ++ volatile uint32_t grxfsiz; ++ /**Non Periodic Transmit FIFO Size Register. <i>Offset: 028h</i> */ ++ volatile uint32_t gnptxfsiz; ++ /**Non Periodic Transmit FIFO/Queue Status Register (Read ++ * Only). <i>Offset: 02Ch</i> */ ++ volatile uint32_t gnptxsts; ++ /**I2C Access Register. <i>Offset: 030h</i> */ ++ volatile uint32_t gi2cctl; ++ /**PHY Vendor Control Register. <i>Offset: 034h</i> */ ++ volatile uint32_t gpvndctl; ++ /**General Purpose Input/Output Register. <i>Offset: 038h</i> */ ++ volatile uint32_t ggpio; ++ /**User ID Register. <i>Offset: 03Ch</i> */ ++ volatile uint32_t guid; ++ /**Synopsys ID Register (Read Only). <i>Offset: 040h</i> */ ++ volatile uint32_t gsnpsid; ++ /**User HW Config1 Register (Read Only). <i>Offset: 044h</i> */ ++ volatile uint32_t ghwcfg1; ++ /**User HW Config2 Register (Read Only). <i>Offset: 048h</i> */ ++ volatile uint32_t ghwcfg2; ++#define DWC_SLAVE_ONLY_ARCH 0 ++#define DWC_EXT_DMA_ARCH 1 ++#define DWC_INT_DMA_ARCH 2 ++ ++#define DWC_MODE_HNP_SRP_CAPABLE 0 ++#define DWC_MODE_SRP_ONLY_CAPABLE 1 ++#define DWC_MODE_NO_HNP_SRP_CAPABLE 2 ++#define DWC_MODE_SRP_CAPABLE_DEVICE 3 ++#define DWC_MODE_NO_SRP_CAPABLE_DEVICE 4 ++#define DWC_MODE_SRP_CAPABLE_HOST 5 ++#define DWC_MODE_NO_SRP_CAPABLE_HOST 6 ++ ++ /**User HW Config3 Register (Read Only). <i>Offset: 04Ch</i> */ ++ volatile uint32_t ghwcfg3; ++ /**User HW Config4 Register (Read Only). <i>Offset: 050h</i>*/ ++ volatile uint32_t ghwcfg4; ++ /** Reserved <i>Offset: 054h-0FFh</i> */ ++ uint32_t reserved[43]; ++ /** Host Periodic Transmit FIFO Size Register. <i>Offset: 100h</i> */ ++ volatile uint32_t hptxfsiz; ++ /** Device Periodic Transmit FIFO#n Register if dedicated fifos are disabled, ++ otherwise Device Transmit FIFO#n Register. ++ * <i>Offset: 104h + (FIFO_Number-1)*04h, 1 <= FIFO Number <= 15 (1<=n<=15).</i> */ ++ //volatile uint32_t dptxfsiz[15]; ++ volatile uint32_t dptxfsiz_dieptxf[15]; ++} dwc_otg_core_global_regs_t; ++ ++/** ++ * This union represents the bit fields of the Core OTG Control ++ * and Status Register (GOTGCTL). Set the bits using the bit ++ * fields then write the <i>d32</i> value to the register. ++ */ ++typedef union gotgctl_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned reserved31_21 : 11; ++ unsigned currmod : 1; ++ unsigned bsesvld : 1; ++ unsigned asesvld : 1; ++ unsigned reserved17 : 1; ++ unsigned conidsts : 1; ++ unsigned reserved15_12 : 4; ++ unsigned devhnpen : 1; ++ unsigned hstsethnpen : 1; ++ unsigned hnpreq : 1; ++ unsigned hstnegscs : 1; ++ unsigned reserved7_2 : 6; ++ unsigned sesreq : 1; ++ unsigned sesreqscs : 1; ++ } b; ++} gotgctl_data_t; ++ ++/** ++ * This union represents the bit fields of the Core OTG Interrupt Register ++ * (GOTGINT). Set/clear the bits using the bit fields then write the <i>d32</i> ++ * value to the register. ++ */ ++typedef union gotgint_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ /** Current Mode */ ++ unsigned reserved31_20 : 12; ++ /** Debounce Done */ ++ unsigned debdone : 1; ++ /** A-Device Timeout Change */ ++ unsigned adevtoutchng : 1; ++ /** Host Negotiation Detected */ ++ unsigned hstnegdet : 1; ++ unsigned reserver16_10 : 7; ++ /** Host Negotiation Success Status Change */ ++ unsigned hstnegsucstschng : 1; ++ /** Session Request Success Status Change */ ++ unsigned sesreqsucstschng : 1; ++ unsigned reserved3_7 : 5; ++ /** Session End Detected */ ++ unsigned sesenddet : 1; ++ /** Current Mode */ ++ unsigned reserved1_0 : 2; ++ } b; ++} gotgint_data_t; ++ ++ ++/** ++ * This union represents the bit fields of the Core AHB Configuration ++ * Register (GAHBCFG). Set/clear the bits using the bit fields then ++ * write the <i>d32</i> value to the register. ++ */ ++typedef union gahbcfg_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++#define DWC_GAHBCFG_TXFEMPTYLVL_EMPTY 1 ++#define DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY 0 ++ unsigned reserved9_31 : 23; ++ unsigned ptxfemplvl : 1; ++ unsigned nptxfemplvl_txfemplvl : 1; ++#define DWC_GAHBCFG_DMAENABLE 1 ++ unsigned reserved : 1; ++ unsigned dmaenable : 1; ++#define DWC_GAHBCFG_INT_DMA_BURST_SINGLE 0 ++#define DWC_GAHBCFG_INT_DMA_BURST_INCR 1 ++#define DWC_GAHBCFG_INT_DMA_BURST_INCR4 3 ++#define DWC_GAHBCFG_INT_DMA_BURST_INCR8 5 ++#define DWC_GAHBCFG_INT_DMA_BURST_INCR16 7 ++ unsigned hburstlen : 4; ++ unsigned glblintrmsk : 1; ++#define DWC_GAHBCFG_GLBINT_ENABLE 1 ++ ++ } b; ++} gahbcfg_data_t; ++ ++/** ++ * This union represents the bit fields of the Core USB Configuration ++ * Register (GUSBCFG). Set the bits using the bit fields then write ++ * the <i>d32</i> value to the register. ++ */ ++typedef union gusbcfg_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned corrupt_tx_packet: 1; /*fscz*/ ++ unsigned force_device_mode: 1; ++ unsigned force_host_mode: 1; ++ unsigned reserved23_28 : 6; ++ unsigned term_sel_dl_pulse : 1; ++ unsigned ulpi_int_vbus_indicator : 1; ++ unsigned ulpi_ext_vbus_drv : 1; ++ unsigned ulpi_clk_sus_m : 1; ++ unsigned ulpi_auto_res : 1; ++ unsigned ulpi_fsls : 1; ++ unsigned otgutmifssel : 1; ++ unsigned phylpwrclksel : 1; ++ unsigned nptxfrwnden : 1; ++ unsigned usbtrdtim : 4; ++ unsigned hnpcap : 1; ++ unsigned srpcap : 1; ++ unsigned ddrsel : 1; ++ unsigned physel : 1; ++ unsigned fsintf : 1; ++ unsigned ulpi_utmi_sel : 1; ++ unsigned phyif : 1; ++ unsigned toutcal : 3; ++ } b; ++} gusbcfg_data_t; ++ ++/** ++ * This union represents the bit fields of the Core Reset Register ++ * (GRSTCTL). Set/clear the bits using the bit fields then write the ++ * <i>d32</i> value to the register. ++ */ ++typedef union grstctl_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ /** AHB Master Idle. Indicates the AHB Master State ++ * Machine is in IDLE condition. */ ++ unsigned ahbidle : 1; ++ /** DMA Request Signal. Indicated DMA request is in ++ * probress. Used for debug purpose. */ ++ unsigned dmareq : 1; ++ /** Reserved */ ++ unsigned reserved29_11 : 19; ++ /** TxFIFO Number (TxFNum) (Device and Host). ++ * ++ * This is the FIFO number which needs to be flushed, ++ * using the TxFIFO Flush bit. This field should not ++ * be changed until the TxFIFO Flush bit is cleared by ++ * the core. ++ * - 0x0 : Non Periodic TxFIFO Flush ++ * - 0x1 : Periodic TxFIFO #1 Flush in device mode ++ * or Periodic TxFIFO in host mode ++ * - 0x2 : Periodic TxFIFO #2 Flush in device mode. ++ * - ... ++ * - 0xF : Periodic TxFIFO #15 Flush in device mode ++ * - 0x10: Flush all the Transmit NonPeriodic and ++ * Transmit Periodic FIFOs in the core ++ */ ++ unsigned txfnum : 5; ++ /** TxFIFO Flush (TxFFlsh) (Device and Host). ++ * ++ * This bit is used to selectively flush a single or ++ * all transmit FIFOs. The application must first ++ * ensure that the core is not in the middle of a ++ * transaction. <p>The application should write into ++ * this bit, only after making sure that neither the ++ * DMA engine is writing into the TxFIFO nor the MAC ++ * is reading the data out of the FIFO. <p>The ++ * application should wait until the core clears this ++ * bit, before performing any operations. This bit ++ * will takes 8 clocks (slowest of PHY or AHB clock) ++ * to clear. ++ */ ++ unsigned txfflsh : 1; ++ /** RxFIFO Flush (RxFFlsh) (Device and Host) ++ * ++ * The application can flush the entire Receive FIFO ++ * using this bit. <p>The application must first ++ * ensure that the core is not in the middle of a ++ * transaction. <p>The application should write into ++ * this bit, only after making sure that neither the ++ * DMA engine is reading from the RxFIFO nor the MAC ++ * is writing the data in to the FIFO. <p>The ++ * application should wait until the bit is cleared ++ * before performing any other operations. This bit ++ * will takes 8 clocks (slowest of PHY or AHB clock) ++ * to clear. ++ */ ++ unsigned rxfflsh : 1; ++ /** In Token Sequence Learning Queue Flush ++ * (INTknQFlsh) (Device Only) ++ */ ++ unsigned intknqflsh : 1; ++ /** Host Frame Counter Reset (Host Only)<br> ++ * ++ * The application can reset the (micro)frame number ++ * counter inside the core, using this bit. When the ++ * (micro)frame counter is reset, the subsequent SOF ++ * sent out by the core, will have a (micro)frame ++ * number of 0. ++ */ ++ unsigned hstfrm : 1; ++ /** Hclk Soft Reset ++ * ++ * The application uses this bit to reset the control logic in ++ * the AHB clock domain. Only AHB clock domain pipelines are ++ * reset. ++ */ ++ unsigned hsftrst : 1; ++ /** Core Soft Reset (CSftRst) (Device and Host) ++ * ++ * The application can flush the control logic in the ++ * entire core using this bit. This bit resets the ++ * pipelines in the AHB Clock domain as well as the ++ * PHY Clock domain. ++ * ++ * The state machines are reset to an IDLE state, the ++ * control bits in the CSRs are cleared, all the ++ * transmit FIFOs and the receive FIFO are flushed. ++ * ++ * The status mask bits that control the generation of ++ * the interrupt, are cleared, to clear the ++ * interrupt. The interrupt status bits are not ++ * cleared, so the application can get the status of ++ * any events that occurred in the core after it has ++ * set this bit. ++ * ++ * Any transactions on the AHB are terminated as soon ++ * as possible following the protocol. Any ++ * transactions on the USB are terminated immediately. ++ * ++ * The configuration settings in the CSRs are ++ * unchanged, so the software doesn't have to ++ * reprogram these registers (Device ++ * Configuration/Host Configuration/Core System ++ * Configuration/Core PHY Configuration). ++ * ++ * The application can write to this bit, any time it ++ * wants to reset the core. This is a self clearing ++ * bit and the core clears this bit after all the ++ * necessary logic is reset in the core, which may ++ * take several clocks, depending on the current state ++ * of the core. ++ */ ++ unsigned csftrst : 1; ++ } b; ++} grstctl_t; ++ ++ ++/** ++ * This union represents the bit fields of the Core Interrupt Mask ++ * Register (GINTMSK). Set/clear the bits using the bit fields then ++ * write the <i>d32</i> value to the register. ++ */ ++typedef union gintmsk_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned wkupintr : 1; ++ unsigned sessreqintr : 1; ++ unsigned disconnect : 1; ++ unsigned conidstschng : 1; ++ unsigned reserved27 : 1; ++ unsigned ptxfempty : 1; ++ unsigned hcintr : 1; ++ unsigned portintr : 1; ++ unsigned reserved22_23 : 2; ++ unsigned incomplisoout : 1; ++ unsigned incomplisoin : 1; ++ unsigned outepintr : 1; ++ unsigned inepintr : 1; ++ unsigned epmismatch : 1; ++ unsigned reserved16 : 1; ++ unsigned eopframe : 1; ++ unsigned isooutdrop : 1; ++ unsigned enumdone : 1; ++ unsigned usbreset : 1; ++ unsigned usbsuspend : 1; ++ unsigned erlysuspend : 1; ++ unsigned i2cintr : 1; ++ unsigned reserved8 : 1; ++ unsigned goutnakeff : 1; ++ unsigned ginnakeff : 1; ++ unsigned nptxfempty : 1; ++ unsigned rxstsqlvl : 1; ++ unsigned sofintr : 1; ++ unsigned otgintr : 1; ++ unsigned modemismatch : 1; ++ unsigned reserved0 : 1; ++ } b; ++} gintmsk_data_t; ++/** ++ * This union represents the bit fields of the Core Interrupt Register ++ * (GINTSTS). Set/clear the bits using the bit fields then write the ++ * <i>d32</i> value to the register. ++ */ ++typedef union gintsts_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++#define DWC_SOF_INTR_MASK 0x0008 ++ /** register bits */ ++ struct ++ { ++#define DWC_HOST_MODE 1 ++ unsigned wkupintr : 1; ++ unsigned sessreqintr : 1; ++ unsigned disconnect : 1; ++ unsigned conidstschng : 1; ++ unsigned reserved27 : 1; ++ unsigned ptxfempty : 1; ++ unsigned hcintr : 1; ++ unsigned portintr : 1; ++ unsigned reserved22_23 : 2; ++ unsigned incomplisoout : 1; ++ unsigned incomplisoin : 1; ++ unsigned outepintr : 1; ++ unsigned inepint: 1; ++ unsigned epmismatch : 1; ++ unsigned intokenrx : 1; ++ unsigned eopframe : 1; ++ unsigned isooutdrop : 1; ++ unsigned enumdone : 1; ++ unsigned usbreset : 1; ++ unsigned usbsuspend : 1; ++ unsigned erlysuspend : 1; ++ unsigned i2cintr : 1; ++ unsigned reserved8 : 1; ++ unsigned goutnakeff : 1; ++ unsigned ginnakeff : 1; ++ unsigned nptxfempty : 1; ++ unsigned rxstsqlvl : 1; ++ unsigned sofintr : 1; ++ unsigned otgintr : 1; ++ unsigned modemismatch : 1; ++ unsigned curmode : 1; ++ } b; ++} gintsts_data_t; ++ ++ ++/** ++ * This union represents the bit fields in the Device Receive Status Read and ++ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the <i>d32</i> ++ * element then read out the bits using the <i>b</i>it elements. ++ */ ++typedef union device_grxsts_data { ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned reserved : 7; ++ unsigned fn : 4; ++#define DWC_STS_DATA_UPDT 0x2 // OUT Data Packet ++#define DWC_STS_XFER_COMP 0x3 // OUT Data Transfer Complete ++ ++#define DWC_DSTS_GOUT_NAK 0x1 // Global OUT NAK ++#define DWC_DSTS_SETUP_COMP 0x4 // Setup Phase Complete ++#define DWC_DSTS_SETUP_UPDT 0x6 // SETUP Packet ++ unsigned pktsts : 4; ++ unsigned dpid : 2; ++ unsigned bcnt : 11; ++ unsigned epnum : 4; ++ } b; ++} device_grxsts_data_t; ++ ++/** ++ * This union represents the bit fields in the Host Receive Status Read and ++ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the <i>d32</i> ++ * element then read out the bits using the <i>b</i>it elements. ++ */ ++typedef union host_grxsts_data { ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned reserved31_21 : 11; ++#define DWC_GRXSTS_PKTSTS_IN 0x2 ++#define DWC_GRXSTS_PKTSTS_IN_XFER_COMP 0x3 ++#define DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR 0x5 ++#define DWC_GRXSTS_PKTSTS_CH_HALTED 0x7 ++ unsigned pktsts : 4; ++ unsigned dpid : 2; ++ unsigned bcnt : 11; ++ unsigned chnum : 4; ++ } b; ++} host_grxsts_data_t; ++ ++/** ++ * This union represents the bit fields in the FIFO Size Registers (HPTXFSIZ, ++ * GNPTXFSIZ, DPTXFSIZn). Read the register into the <i>d32</i> element then ++ * read out the bits using the <i>b</i>it elements. ++ */ ++typedef union fifosize_data { ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned depth : 16; ++ unsigned startaddr : 16; ++ } b; ++} fifosize_data_t; ++ ++/** ++ * This union represents the bit fields in the Non-Periodic Transmit ++ * FIFO/Queue Status Register (GNPTXSTS). Read the register into the ++ * <i>d32</i> element then read out the bits using the <i>b</i>it ++ * elements. ++ */ ++typedef union gnptxsts_data { ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned reserved : 1; ++ /** Top of the Non-Periodic Transmit Request Queue ++ * - bits 30:27 - Channel/EP Number ++ * - bits 26:25 - Token Type ++ * - bit 24 - Terminate (Last entry for the selected ++ * channel/EP) ++ * - 2'b00 - IN/OUT ++ * - 2'b01 - Zero Length OUT ++ * - 2'b10 - PING/Complete Split ++ * - 2'b11 - Channel Halt ++ ++ */ ++ unsigned nptxqtop_chnep : 4; ++ unsigned nptxqtop_token : 2; ++ unsigned nptxqtop_terminate : 1; ++ unsigned nptxqspcavail : 8; ++ unsigned nptxfspcavail : 16; ++ } b; ++} gnptxsts_data_t; ++ ++/** ++ * This union represents the bit fields in the Transmit ++ * FIFO Status Register (DTXFSTS). Read the register into the ++ * <i>d32</i> element then read out the bits using the <i>b</i>it ++ * elements. ++ */ ++typedef union dtxfsts_data /* fscz */ //* ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned reserved : 16; ++ unsigned txfspcavail : 16; ++ } b; ++} dtxfsts_data_t; ++ ++/** ++ * This union represents the bit fields in the I2C Control Register ++ * (I2CCTL). Read the register into the <i>d32</i> element then read out the ++ * bits using the <i>b</i>it elements. ++ */ ++typedef union gi2cctl_data { ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned bsydne : 1; ++ unsigned rw : 1; ++ unsigned reserved : 2; ++ unsigned i2cdevaddr : 2; ++ unsigned i2csuspctl : 1; ++ unsigned ack : 1; ++ unsigned i2cen : 1; ++ unsigned addr : 7; ++ unsigned regaddr : 8; ++ unsigned rwdata : 8; ++ } b; ++} gi2cctl_data_t; ++ ++/** ++ * This union represents the bit fields in the User HW Config1 ++ * Register. Read the register into the <i>d32</i> element then read ++ * out the bits using the <i>b</i>it elements. ++ */ ++typedef union hwcfg1_data { ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned ep_dir15 : 2; ++ unsigned ep_dir14 : 2; ++ unsigned ep_dir13 : 2; ++ unsigned ep_dir12 : 2; ++ unsigned ep_dir11 : 2; ++ unsigned ep_dir10 : 2; ++ unsigned ep_dir9 : 2; ++ unsigned ep_dir8 : 2; ++ unsigned ep_dir7 : 2; ++ unsigned ep_dir6 : 2; ++ unsigned ep_dir5 : 2; ++ unsigned ep_dir4 : 2; ++ unsigned ep_dir3 : 2; ++ unsigned ep_dir2 : 2; ++ unsigned ep_dir1 : 2; ++ unsigned ep_dir0 : 2; ++ } b; ++} hwcfg1_data_t; ++ ++/** ++ * This union represents the bit fields in the User HW Config2 ++ * Register. Read the register into the <i>d32</i> element then read ++ * out the bits using the <i>b</i>it elements. ++ */ ++typedef union hwcfg2_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ /* GHWCFG2 */ ++ unsigned reserved31 : 1; ++ unsigned dev_token_q_depth : 5; ++ unsigned host_perio_tx_q_depth : 2; ++ unsigned nonperio_tx_q_depth : 2; ++ unsigned rx_status_q_depth : 2; ++ unsigned dynamic_fifo : 1; ++ unsigned perio_ep_supported : 1; ++ unsigned num_host_chan : 4; ++ unsigned num_dev_ep : 4; ++ unsigned fs_phy_type : 2; ++#define DWC_HWCFG2_HS_PHY_TYPE_NOT_SUPPORTED 0 ++#define DWC_HWCFG2_HS_PHY_TYPE_UTMI 1 ++#define DWC_HWCFG2_HS_PHY_TYPE_ULPI 2 ++#define DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI 3 ++ unsigned hs_phy_type : 2; ++ unsigned point2point : 1; ++ unsigned architecture : 2; ++#define DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG 0 ++#define DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG 1 ++#define DWC_HWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE_OTG 2 ++#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE 3 ++#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE 4 ++#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST 5 ++#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST 6 ++ unsigned op_mode : 3; ++ } b; ++} hwcfg2_data_t; ++ ++/** ++ * This union represents the bit fields in the User HW Config3 ++ * Register. Read the register into the <i>d32</i> element then read ++ * out the bits using the <i>b</i>it elements. ++ */ ++typedef union hwcfg3_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ /* GHWCFG3 */ ++ unsigned dfifo_depth : 16; ++ unsigned reserved15_13 : 3; ++ unsigned ahb_phy_clock_synch : 1; ++ unsigned synch_reset_type : 1; ++ unsigned optional_features : 1; ++ unsigned vendor_ctrl_if : 1; ++ unsigned i2c : 1; ++ unsigned otg_func : 1; ++ unsigned packet_size_cntr_width : 3; ++ unsigned xfer_size_cntr_width : 4; ++ } b; ++} hwcfg3_data_t; ++ ++/** ++ * This union represents the bit fields in the User HW Config4 ++ * Register. Read the register into the <i>d32</i> element then read ++ * out the bits using the <i>b</i>it elements. ++ */ ++typedef union hwcfg4_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++unsigned reserved31_30 : 2; /* fscz */ ++ unsigned num_in_eps : 4; ++ unsigned ded_fifo_en : 1; ++ ++ unsigned session_end_filt_en : 1; ++ unsigned b_valid_filt_en : 1; ++ unsigned a_valid_filt_en : 1; ++ unsigned vbus_valid_filt_en : 1; ++ unsigned iddig_filt_en : 1; ++ unsigned num_dev_mode_ctrl_ep : 4; ++ unsigned utmi_phy_data_width : 2; ++ unsigned min_ahb_freq : 9; ++ unsigned power_optimiz : 1; ++ unsigned num_dev_perio_in_ep : 4; ++ } b; ++} hwcfg4_data_t; ++ ++//////////////////////////////////////////// ++// Device Registers ++/** ++ * Device Global Registers. <i>Offsets 800h-BFFh</i> ++ * ++ * The following structures define the size and relative field offsets ++ * for the Device Mode Registers. ++ * ++ * <i>These registers are visible only in Device mode and must not be ++ * accessed in Host mode, as the results are unknown.</i> ++ */ ++typedef struct dwc_otg_dev_global_regs ++{ ++ /** Device Configuration Register. <i>Offset 800h</i> */ ++ volatile uint32_t dcfg; ++ /** Device Control Register. <i>Offset: 804h</i> */ ++ volatile uint32_t dctl; ++ /** Device Status Register (Read Only). <i>Offset: 808h</i> */ ++ volatile uint32_t dsts; ++ /** Reserved. <i>Offset: 80Ch</i> */ ++ uint32_t unused; ++ /** Device IN Endpoint Common Interrupt Mask ++ * Register. <i>Offset: 810h</i> */ ++ volatile uint32_t diepmsk; ++ /** Device OUT Endpoint Common Interrupt Mask ++ * Register. <i>Offset: 814h</i> */ ++ volatile uint32_t doepmsk; ++ /** Device All Endpoints Interrupt Register. <i>Offset: 818h</i> */ ++ volatile uint32_t daint; ++ /** Device All Endpoints Interrupt Mask Register. <i>Offset: ++ * 81Ch</i> */ ++ volatile uint32_t daintmsk; ++ /** Device IN Token Queue Read Register-1 (Read Only). ++ * <i>Offset: 820h</i> */ ++ volatile uint32_t dtknqr1; ++ /** Device IN Token Queue Read Register-2 (Read Only). ++ * <i>Offset: 824h</i> */ ++ volatile uint32_t dtknqr2; ++ /** Device VBUS discharge Register. <i>Offset: 828h</i> */ ++ volatile uint32_t dvbusdis; ++ /** Device VBUS Pulse Register. <i>Offset: 82Ch</i> */ ++ volatile uint32_t dvbuspulse; ++ /** Device IN Token Queue Read Register-3 (Read Only). ++ * Device Thresholding control register (Read/Write) ++ * <i>Offset: 830h</i> */ ++ volatile uint32_t dtknqr3_dthrctl; ++ /** Device IN Token Queue Read Register-4 (Read Only). / ++ * Device IN EPs empty Inr. Mask Register (Read/Write) ++ * <i>Offset: 834h</i> */ ++ volatile uint32_t dtknqr4_fifoemptymsk; ++} dwc_otg_device_global_regs_t; ++ ++/** ++ * This union represents the bit fields in the Device Configuration ++ * Register. Read the register into the <i>d32</i> member then ++ * set/clear the bits using the <i>b</i>it elements. Write the ++ * <i>d32</i> member to the dcfg register. ++ */ ++typedef union dcfg_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned reserved31_23 : 9; ++ /** In Endpoint Mis-match count */ ++ unsigned epmscnt : 5; ++ unsigned reserved13_17 : 5; ++ /** Periodic Frame Interval */ ++#define DWC_DCFG_FRAME_INTERVAL_80 0 ++#define DWC_DCFG_FRAME_INTERVAL_85 1 ++#define DWC_DCFG_FRAME_INTERVAL_90 2 ++#define DWC_DCFG_FRAME_INTERVAL_95 3 ++ unsigned perfrint : 2; ++ /** Device Addresses */ ++ unsigned devaddr : 7; ++ unsigned reserved3 : 1; ++ /** Non Zero Length Status OUT Handshake */ ++#define DWC_DCFG_SEND_STALL 1 ++ unsigned nzstsouthshk : 1; ++ /** Device Speed */ ++ unsigned devspd : 2; ++ } b; ++} dcfg_data_t; ++ ++/** ++ * This union represents the bit fields in the Device Control ++ * Register. Read the register into the <i>d32</i> member then ++ * set/clear the bits using the <i>b</i>it elements. ++ */ ++typedef union dctl_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned reserved : 20; ++ /** Power-On Programming Done */ ++ unsigned pwronprgdone : 1; ++ /** Clear Global OUT NAK */ ++ unsigned cgoutnak : 1; ++ /** Set Global OUT NAK */ ++ unsigned sgoutnak : 1; ++ /** Clear Global Non-Periodic IN NAK */ ++ unsigned cgnpinnak : 1; ++ /** Set Global Non-Periodic IN NAK */ ++ unsigned sgnpinnak : 1; ++ /** Test Control */ ++ unsigned tstctl : 3; ++ /** Global OUT NAK Status */ ++ unsigned goutnaksts : 1; ++ /** Global Non-Periodic IN NAK Status */ ++ unsigned gnpinnaksts : 1; ++ /** Soft Disconnect */ ++ unsigned sftdiscon : 1; ++ /** Remote Wakeup */ ++ unsigned rmtwkupsig : 1; ++ } b; ++} dctl_data_t; ++ ++/** ++ * This union represents the bit fields in the Device Status ++ * Register. Read the register into the <i>d32</i> member then ++ * set/clear the bits using the <i>b</i>it elements. ++ */ ++typedef union dsts_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned reserved22_31 : 10; ++ /** Frame or Microframe Number of the received SOF */ ++ unsigned soffn : 14; ++ unsigned reserved4_7: 4; ++ /** Erratic Error */ ++ unsigned errticerr : 1; ++ /** Enumerated Speed */ ++#define DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ 0 ++#define DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ 1 ++#define DWC_DSTS_ENUMSPD_LS_PHY_6MHZ 2 ++#define DWC_DSTS_ENUMSPD_FS_PHY_48MHZ 3 ++ unsigned enumspd : 2; ++ /** Suspend Status */ ++ unsigned suspsts : 1; ++ } b; ++} dsts_data_t; ++ ++ ++/** ++ * This union represents the bit fields in the Device IN EP Interrupt ++ * Register and the Device IN EP Common Mask Register. ++ * ++ * - Read the register into the <i>d32</i> member then set/clear the ++ * bits using the <i>b</i>it elements. ++ */ ++typedef union diepint_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned reserved07_31 : 23; ++ unsigned txfifoundrn : 1; ++ /** IN Endpoint HAK Effective mask */ ++ unsigned emptyintr : 1; ++ /** IN Endpoint NAK Effective mask */ ++ unsigned inepnakeff : 1; ++ /** IN Token Received with EP mismatch mask */ ++ unsigned intknepmis : 1; ++ /** IN Token received with TxF Empty mask */ ++ unsigned intktxfemp : 1; ++ /** TimeOUT Handshake mask (non-ISOC EPs) */ ++ unsigned timeout : 1; ++ /** AHB Error mask */ ++ unsigned ahberr : 1; ++ /** Endpoint disable mask */ ++ unsigned epdisabled : 1; ++ /** Transfer complete mask */ ++ unsigned xfercompl : 1; ++ } b; ++} diepint_data_t; ++/** ++ * This union represents the bit fields in the Device IN EP Common ++ * Interrupt Mask Register. ++ */ ++typedef union diepint_data diepmsk_data_t; ++ ++/** ++ * This union represents the bit fields in the Device OUT EP Interrupt ++ * Registerand Device OUT EP Common Interrupt Mask Register. ++ * ++ * - Read the register into the <i>d32</i> member then set/clear the ++ * bits using the <i>b</i>it elements. ++ */ ++typedef union doepint_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned reserved04_31 : 27; ++ /** OUT Token Received when Endpoint Disabled */ ++ unsigned outtknepdis : 1; ++ /** Setup Phase Done (contorl EPs) */ ++ unsigned setup : 1; ++ /** AHB Error */ ++ unsigned ahberr : 1; ++ /** Endpoint disable */ ++ unsigned epdisabled : 1; ++ /** Transfer complete */ ++ unsigned xfercompl : 1; ++ } b; ++} doepint_data_t; ++/** ++ * This union represents the bit fields in the Device OUT EP Common ++ * Interrupt Mask Register. ++ */ ++typedef union doepint_data doepmsk_data_t; ++ ++ ++/** ++ * This union represents the bit fields in the Device All EP Interrupt ++ * and Mask Registers. ++ * - Read the register into the <i>d32</i> member then set/clear the ++ * bits using the <i>b</i>it elements. ++ */ ++typedef union daint_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ /** OUT Endpoint bits */ ++ unsigned out : 16; ++ /** IN Endpoint bits */ ++ unsigned in : 16; ++ } ep; ++ struct { ++ /** OUT Endpoint bits */ ++ unsigned outep15 : 1; ++ unsigned outep14 : 1; ++ unsigned outep13 : 1; ++ unsigned outep12 : 1; ++ unsigned outep11 : 1; ++ unsigned outep10 : 1; ++ unsigned outep9 : 1; ++ unsigned outep8 : 1; ++ unsigned outep7 : 1; ++ unsigned outep6 : 1; ++ unsigned outep5 : 1; ++ unsigned outep4 : 1; ++ unsigned outep3 : 1; ++ unsigned outep2 : 1; ++ unsigned outep1 : 1; ++ unsigned outep0 : 1; ++ /** IN Endpoint bits */ ++ unsigned inep15 : 1; ++ unsigned inep14 : 1; ++ unsigned inep13 : 1; ++ unsigned inep12 : 1; ++ unsigned inep11 : 1; ++ unsigned inep10 : 1; ++ unsigned inep9 : 1; ++ unsigned inep8 : 1; ++ unsigned inep7 : 1; ++ unsigned inep6 : 1; ++ unsigned inep5 : 1; ++ unsigned inep4 : 1; ++ unsigned inep3 : 1; ++ unsigned inep2 : 1; ++ unsigned inep1 : 1; ++ unsigned inep0 : 1; ++ } b; ++} daint_data_t; ++ ++/** ++ * This union represents the bit fields in the Device IN Token Queue ++ * Read Registers. ++ * - Read the register into the <i>d32</i> member. ++ * - READ-ONLY Register ++ */ ++typedef union dtknq1_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ /** EP Numbers of IN Tokens 0 ... 4 */ ++ unsigned epnums0_5 : 24; ++ /** write pointer has wrapped. */ ++ unsigned wrap_bit : 1; ++ /** Reserved */ ++ unsigned reserved05_06 : 2; ++ /** In Token Queue Write Pointer */ ++ unsigned intknwptr : 5; ++ }b; ++} dtknq1_data_t; ++ ++/** ++ * This union represents Threshold control Register ++ * - Read and write the register into the <i>d32</i> member. ++ * - READ-WRITABLE Register ++ */ ++typedef union dthrctl_data //* /*fscz */ ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ /** Reserved */ ++ unsigned reserved26_31 : 6; ++ /** Rx Thr. Length */ ++ unsigned rx_thr_len : 9; ++ /** Rx Thr. Enable */ ++ unsigned rx_thr_en : 1; ++ /** Reserved */ ++ unsigned reserved11_15 : 5; ++ /** Tx Thr. Length */ ++ unsigned tx_thr_len : 9; ++ /** ISO Tx Thr. Enable */ ++ unsigned iso_thr_en : 1; ++ /** non ISO Tx Thr. Enable */ ++ unsigned non_iso_thr_en : 1; ++ ++ }b; ++} dthrctl_data_t; ++ ++/** ++ * Device Logical IN Endpoint-Specific Registers. <i>Offsets ++ * 900h-AFCh</i> ++ * ++ * There will be one set of endpoint registers per logical endpoint ++ * implemented. ++ * ++ * <i>These registers are visible only in Device mode and must not be ++ * accessed in Host mode, as the results are unknown.</i> ++ */ ++typedef struct dwc_otg_dev_in_ep_regs ++{ ++ /** Device IN Endpoint Control Register. <i>Offset:900h + ++ * (ep_num * 20h) + 00h</i> */ ++ volatile uint32_t diepctl; ++ /** Reserved. <i>Offset:900h + (ep_num * 20h) + 04h</i> */ ++ uint32_t reserved04; ++ /** Device IN Endpoint Interrupt Register. <i>Offset:900h + ++ * (ep_num * 20h) + 08h</i> */ ++ volatile uint32_t diepint; ++ /** Reserved. <i>Offset:900h + (ep_num * 20h) + 0Ch</i> */ ++ uint32_t reserved0C; ++ /** Device IN Endpoint Transfer Size ++ * Register. <i>Offset:900h + (ep_num * 20h) + 10h</i> */ ++ volatile uint32_t dieptsiz; ++ /** Device IN Endpoint DMA Address Register. <i>Offset:900h + ++ * (ep_num * 20h) + 14h</i> */ ++ volatile uint32_t diepdma; ++ /** Reserved. <i>Offset:900h + (ep_num * 20h) + 18h - 900h + ++ * (ep_num * 20h) + 1Ch</i>*/ ++ volatile uint32_t dtxfsts; ++ /** Reserved. <i>Offset:900h + (ep_num * 20h) + 1Ch - 900h + ++ * (ep_num * 20h) + 1Ch</i>*/ ++ uint32_t reserved18; ++} dwc_otg_dev_in_ep_regs_t; ++ ++/** ++ * Device Logical OUT Endpoint-Specific Registers. <i>Offsets: ++ * B00h-CFCh</i> ++ * ++ * There will be one set of endpoint registers per logical endpoint ++ * implemented. ++ * ++ * <i>These registers are visible only in Device mode and must not be ++ * accessed in Host mode, as the results are unknown.</i> ++ */ ++typedef struct dwc_otg_dev_out_ep_regs ++{ ++ /** Device OUT Endpoint Control Register. <i>Offset:B00h + ++ * (ep_num * 20h) + 00h</i> */ ++ volatile uint32_t doepctl; ++ /** Device OUT Endpoint Frame number Register. <i>Offset: ++ * B00h + (ep_num * 20h) + 04h</i> */ ++ volatile uint32_t doepfn; ++ /** Device OUT Endpoint Interrupt Register. <i>Offset:B00h + ++ * (ep_num * 20h) + 08h</i> */ ++ volatile uint32_t doepint; ++ /** Reserved. <i>Offset:B00h + (ep_num * 20h) + 0Ch</i> */ ++ uint32_t reserved0C; ++ /** Device OUT Endpoint Transfer Size Register. <i>Offset: ++ * B00h + (ep_num * 20h) + 10h</i> */ ++ volatile uint32_t doeptsiz; ++ /** Device OUT Endpoint DMA Address Register. <i>Offset:B00h ++ * + (ep_num * 20h) + 14h</i> */ ++ volatile uint32_t doepdma; ++ /** Reserved. <i>Offset:B00h + (ep_num * 20h) + 18h - B00h + ++ * (ep_num * 20h) + 1Ch</i> */ ++ uint32_t unused[2]; ++} dwc_otg_dev_out_ep_regs_t; ++ ++/** ++ * This union represents the bit fields in the Device EP Control ++ * Register. Read the register into the <i>d32</i> member then ++ * set/clear the bits using the <i>b</i>it elements. ++ */ ++typedef union depctl_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ /** Endpoint Enable */ ++ unsigned epena : 1; ++ /** Endpoint Disable */ ++ unsigned epdis : 1; ++ /** Set DATA1 PID (INTR/Bulk IN and OUT endpoints) ++ * Writing to this field sets the Endpoint DPID (DPID) ++ * field in this register to DATA1 Set Odd ++ * (micro)frame (SetOddFr) (ISO IN and OUT Endpoints) ++ * Writing to this field sets the Even/Odd ++ * (micro)frame (EO_FrNum) field to odd (micro) frame. ++ */ ++ unsigned setd1pid : 1; ++ /** Set DATA0 PID (INTR/Bulk IN and OUT endpoints) ++ * Writing to this field sets the Endpoint DPID (DPID) ++ * field in this register to DATA0. Set Even ++ * (micro)frame (SetEvenFr) (ISO IN and OUT Endpoints) ++ * Writing to this field sets the Even/Odd ++ * (micro)frame (EO_FrNum) field to even (micro) ++ * frame. ++ */ ++ unsigned setd0pid : 1; ++ /** Set NAK */ ++ unsigned snak : 1; ++ /** Clear NAK */ ++ unsigned cnak : 1; ++ /** Tx Fifo Number ++ * IN EPn/IN EP0 ++ * OUT EPn/OUT EP0 - reserved */ ++ unsigned txfnum : 4; ++ /** Stall Handshake */ ++ unsigned stall : 1; ++ /** Snoop Mode ++ * OUT EPn/OUT EP0 ++ * IN EPn/IN EP0 - reserved */ ++ unsigned snp : 1; ++ /** Endpoint Type ++ * 2'b00: Control ++ * 2'b01: Isochronous ++ * 2'b10: Bulk ++ * 2'b11: Interrupt */ ++ unsigned eptype : 2; ++ /** NAK Status */ ++ unsigned naksts : 1; ++ /** Endpoint DPID (INTR/Bulk IN and OUT endpoints) ++ * This field contains the PID of the packet going to ++ * be received or transmitted on this endpoint. The ++ * application should program the PID of the first ++ * packet going to be received or transmitted on this ++ * endpoint , after the endpoint is ++ * activated. Application use the SetD1PID and ++ * SetD0PID fields of this register to program either ++ * D0 or D1 PID. ++ * ++ * The encoding for this field is ++ * - 0: D0 ++ * - 1: D1 ++ */ ++ unsigned dpid : 1; ++ /** USB Active Endpoint */ ++ unsigned usbactep : 1; ++ /** Next Endpoint ++ * IN EPn/IN EP0 ++ * OUT EPn/OUT EP0 - reserved */ ++ unsigned nextep : 4; ++ /** Maximum Packet Size ++ * IN/OUT EPn ++ * IN/OUT EP0 - 2 bits ++ * 2'b00: 64 Bytes ++ * 2'b01: 32 ++ * 2'b10: 16 ++ * 2'b11: 8 */ ++#define DWC_DEP0CTL_MPS_64 0 ++#define DWC_DEP0CTL_MPS_32 1 ++#define DWC_DEP0CTL_MPS_16 2 ++#define DWC_DEP0CTL_MPS_8 3 ++ unsigned mps : 11; ++ } b; ++} depctl_data_t; ++ ++/** ++ * This union represents the bit fields in the Device EP Transfer ++ * Size Register. Read the register into the <i>d32</i> member then ++ * set/clear the bits using the <i>b</i>it elements. ++ */ ++typedef union deptsiz_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned reserved : 1; ++ /** Multi Count - Periodic IN endpoints */ ++ unsigned mc : 2; ++ /** Packet Count */ ++ unsigned pktcnt : 10; ++ /** Transfer size */ ++ unsigned xfersize : 19; ++ } b; ++} deptsiz_data_t; ++ ++/** ++ * This union represents the bit fields in the Device EP 0 Transfer ++ * Size Register. Read the register into the <i>d32</i> member then ++ * set/clear the bits using the <i>b</i>it elements. ++ */ ++typedef union deptsiz0_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned reserved31 : 1; ++ /**Setup Packet Count (DOEPTSIZ0 Only) */ ++ unsigned supcnt : 2; ++ /** Reserved */ ++ unsigned reserved28_20 : 9; ++ /** Packet Count */ ++ unsigned pktcnt : 1; ++ /** Reserved */ ++ unsigned reserved18_7 : 12; ++ /** Transfer size */ ++ unsigned xfersize : 7; ++ } b; ++} deptsiz0_data_t; ++ ++ ++/** Maximum number of Periodic FIFOs */ ++#define MAX_PERIO_FIFOS 15 ++/** Maximum number of TX FIFOs */ ++#define MAX_TX_FIFOS 15 ++/** Maximum number of Endpoints/HostChannels */ ++#define MAX_EPS_CHANNELS 16 ++//#define MAX_EPS_CHANNELS 4 ++ ++/** ++ * The dwc_otg_dev_if structure contains information needed to manage ++ * the DWC_otg controller acting in device mode. It represents the ++ * programming view of the device-specific aspects of the controller. ++ */ ++typedef struct dwc_otg_dev_if { ++ /** Pointer to device Global registers. ++ * Device Global Registers starting at offset 800h ++ */ ++ dwc_otg_device_global_regs_t *dev_global_regs; ++#define DWC_DEV_GLOBAL_REG_OFFSET 0x800 ++ ++ /** ++ * Device Logical IN Endpoint-Specific Registers 900h-AFCh ++ */ ++ dwc_otg_dev_in_ep_regs_t *in_ep_regs[MAX_EPS_CHANNELS]; ++#define DWC_DEV_IN_EP_REG_OFFSET 0x900 ++#define DWC_EP_REG_OFFSET 0x20 ++ ++ /** Device Logical OUT Endpoint-Specific Registers B00h-CFCh */ ++ dwc_otg_dev_out_ep_regs_t *out_ep_regs[MAX_EPS_CHANNELS]; ++#define DWC_DEV_OUT_EP_REG_OFFSET 0xB00 ++ ++ /* Device configuration information*/ ++ uint8_t speed; /**< Device Speed 0: Unknown, 1: LS, 2:FS, 3: HS */ ++ //uint8_t num_eps; /**< Number of EPs range: 0-16 (includes EP0) */ ++ //uint8_t num_perio_eps; /**< # of Periodic EP range: 0-15 */ ++ /*fscz */ ++ uint8_t num_in_eps; /**< Number # of Tx EP range: 0-15 exept ep0 */ ++ uint8_t num_out_eps; /**< Number # of Rx EP range: 0-15 exept ep 0*/ ++ ++ /** Size of periodic FIFOs (Bytes) */ ++ uint16_t perio_tx_fifo_size[MAX_PERIO_FIFOS]; ++ ++ /** Size of Tx FIFOs (Bytes) */ ++ uint16_t tx_fifo_size[MAX_TX_FIFOS]; ++ ++ /** Thresholding enable flags and length varaiables **/ ++ uint16_t rx_thr_en; ++ uint16_t iso_tx_thr_en; ++ uint16_t non_iso_tx_thr_en; ++ ++ uint16_t rx_thr_length; ++ uint16_t tx_thr_length; ++} dwc_otg_dev_if_t; ++ ++/** ++ * This union represents the bit fields in the Power and Clock Gating Control ++ * Register. Read the register into the <i>d32</i> member then set/clear the ++ * bits using the <i>b</i>it elements. ++ */ ++typedef union pcgcctl_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct { ++ unsigned reserved31_05 : 27; ++ /** PHY Suspended */ ++ unsigned physuspended : 1; ++ /** Reset Power Down Modules */ ++ unsigned rstpdwnmodule : 1; ++ /** Power Clamp */ ++ unsigned pwrclmp : 1; ++ /** Gate Hclk */ ++ unsigned gatehclk : 1; ++ /** Stop Pclk */ ++ unsigned stoppclk : 1; ++ } b; ++} pcgcctl_data_t; ++ ++///////////////////////////////////////////////// ++// Host Mode Register Structures ++// ++/** ++ * The Host Global Registers structure defines the size and relative ++ * field offsets for the Host Mode Global Registers. Host Global ++ * Registers offsets 400h-7FFh. ++*/ ++typedef struct dwc_otg_host_global_regs ++{ ++ /** Host Configuration Register. <i>Offset: 400h</i> */ ++ volatile uint32_t hcfg; ++ /** Host Frame Interval Register. <i>Offset: 404h</i> */ ++ volatile uint32_t hfir; ++ /** Host Frame Number / Frame Remaining Register. <i>Offset: 408h</i> */ ++ volatile uint32_t hfnum; ++ /** Reserved. <i>Offset: 40Ch</i> */ ++ uint32_t reserved40C; ++ /** Host Periodic Transmit FIFO/ Queue Status Register. <i>Offset: 410h</i> */ ++ volatile uint32_t hptxsts; ++ /** Host All Channels Interrupt Register. <i>Offset: 414h</i> */ ++ volatile uint32_t haint; ++ /** Host All Channels Interrupt Mask Register. <i>Offset: 418h</i> */ ++ volatile uint32_t haintmsk; ++} dwc_otg_host_global_regs_t; ++ ++/** ++ * This union represents the bit fields in the Host Configuration Register. ++ * Read the register into the <i>d32</i> member then set/clear the bits using ++ * the <i>b</i>it elements. Write the <i>d32</i> member to the hcfg register. ++ */ ++typedef union hcfg_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct { ++ /** Reserved */ ++ //unsigned reserved31_03 : 29; ++ /** FS/LS Only Support */ ++ unsigned fslssupp : 1; ++ /** FS/LS Phy Clock Select */ ++#define DWC_HCFG_30_60_MHZ 0 ++#define DWC_HCFG_48_MHZ 1 ++#define DWC_HCFG_6_MHZ 2 ++ unsigned fslspclksel : 2; ++ } b; ++} hcfg_data_t; ++ ++/** ++ * This union represents the bit fields in the Host Frame Remaing/Number ++ * Register. ++ */ ++typedef union hfir_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct { ++ unsigned reserved : 16; ++ unsigned frint : 16; ++ } b; ++} hfir_data_t; ++ ++/** ++ * This union represents the bit fields in the Host Frame Remaing/Number ++ * Register. ++ */ ++typedef union hfnum_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct { ++ unsigned frrem : 16; ++#define DWC_HFNUM_MAX_FRNUM 0x3FFF ++ unsigned frnum : 16; ++ } b; ++} hfnum_data_t; ++ ++typedef union hptxsts_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct { ++ /** Top of the Periodic Transmit Request Queue ++ * - bit 24 - Terminate (last entry for the selected channel) ++ * - bits 26:25 - Token Type ++ * - 2'b00 - Zero length ++ * - 2'b01 - Ping ++ * - 2'b10 - Disable ++ * - bits 30:27 - Channel Number ++ * - bit 31 - Odd/even microframe ++ */ ++ unsigned ptxqtop_odd : 1; ++ unsigned ptxqtop_chnum : 4; ++ unsigned ptxqtop_token : 2; ++ unsigned ptxqtop_terminate : 1; ++ unsigned ptxqspcavail : 8; ++ unsigned ptxfspcavail : 16; ++ } b; ++} hptxsts_data_t; ++ ++/** ++ * This union represents the bit fields in the Host Port Control and Status ++ * Register. Read the register into the <i>d32</i> member then set/clear the ++ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the ++ * hprt0 register. ++ */ ++typedef union hprt0_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned reserved19_31 : 13; ++#define DWC_HPRT0_PRTSPD_HIGH_SPEED 0 ++#define DWC_HPRT0_PRTSPD_FULL_SPEED 1 ++#define DWC_HPRT0_PRTSPD_LOW_SPEED 2 ++ unsigned prtspd : 2; ++ unsigned prttstctl : 4; ++ unsigned prtpwr : 1; ++ unsigned prtlnsts : 2; ++ unsigned reserved9 : 1; ++ unsigned prtrst : 1; ++ unsigned prtsusp : 1; ++ unsigned prtres : 1; ++ unsigned prtovrcurrchng : 1; ++ unsigned prtovrcurract : 1; ++ unsigned prtenchng : 1; ++ unsigned prtena : 1; ++ unsigned prtconndet : 1; ++ unsigned prtconnsts : 1; ++ } b; ++} hprt0_data_t; ++ ++/** ++ * This union represents the bit fields in the Host All Interrupt ++ * Register. ++ */ ++typedef union haint_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned reserved : 16; ++ unsigned ch15 : 1; ++ unsigned ch14 : 1; ++ unsigned ch13 : 1; ++ unsigned ch12 : 1; ++ unsigned ch11 : 1; ++ unsigned ch10 : 1; ++ unsigned ch9 : 1; ++ unsigned ch8 : 1; ++ unsigned ch7 : 1; ++ unsigned ch6 : 1; ++ unsigned ch5 : 1; ++ unsigned ch4 : 1; ++ unsigned ch3 : 1; ++ unsigned ch2 : 1; ++ unsigned ch1 : 1; ++ unsigned ch0 : 1; ++ } b; ++ struct { ++ unsigned reserved : 16; ++ unsigned chint : 16; ++ } b2; ++} haint_data_t; ++ ++/** ++ * This union represents the bit fields in the Host All Interrupt ++ * Register. ++ */ ++typedef union haintmsk_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned reserved : 16; ++ unsigned ch15 : 1; ++ unsigned ch14 : 1; ++ unsigned ch13 : 1; ++ unsigned ch12 : 1; ++ unsigned ch11 : 1; ++ unsigned ch10 : 1; ++ unsigned ch9 : 1; ++ unsigned ch8 : 1; ++ unsigned ch7 : 1; ++ unsigned ch6 : 1; ++ unsigned ch5 : 1; ++ unsigned ch4 : 1; ++ unsigned ch3 : 1; ++ unsigned ch2 : 1; ++ unsigned ch1 : 1; ++ unsigned ch0 : 1; ++ } b; ++ struct { ++ unsigned reserved : 16; ++ unsigned chint : 16; ++ } b2; ++} haintmsk_data_t; ++ ++/** ++ * Host Channel Specific Registers. <i>500h-5FCh</i> ++ */ ++typedef struct dwc_otg_hc_regs ++{ ++ /** Host Channel 0 Characteristic Register. <i>Offset: 500h + (chan_num * 20h) + 00h</i> */ ++ volatile uint32_t hcchar; ++ /** Host Channel 0 Split Control Register. <i>Offset: 500h + (chan_num * 20h) + 04h</i> */ ++ volatile uint32_t hcsplt; ++ /** Host Channel 0 Interrupt Register. <i>Offset: 500h + (chan_num * 20h) + 08h</i> */ ++ volatile uint32_t hcint; ++ /** Host Channel 0 Interrupt Mask Register. <i>Offset: 500h + (chan_num * 20h) + 0Ch</i> */ ++ volatile uint32_t hcintmsk; ++ /** Host Channel 0 Transfer Size Register. <i>Offset: 500h + (chan_num * 20h) + 10h</i> */ ++ volatile uint32_t hctsiz; ++ /** Host Channel 0 DMA Address Register. <i>Offset: 500h + (chan_num * 20h) + 14h</i> */ ++ volatile uint32_t hcdma; ++ /** Reserved. <i>Offset: 500h + (chan_num * 20h) + 18h - 500h + (chan_num * 20h) + 1Ch</i> */ ++ uint32_t reserved[2]; ++} dwc_otg_hc_regs_t; ++ ++/** ++ * This union represents the bit fields in the Host Channel Characteristics ++ * Register. Read the register into the <i>d32</i> member then set/clear the ++ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the ++ * hcchar register. ++ */ ++typedef union hcchar_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct { ++ /** Channel enable */ ++ unsigned chen : 1; ++ /** Channel disable */ ++ unsigned chdis : 1; ++ /** ++ * Frame to transmit periodic transaction. ++ * 0: even, 1: odd ++ */ ++ unsigned oddfrm : 1; ++ /** Device address */ ++ unsigned devaddr : 7; ++ /** Packets per frame for periodic transfers. 0 is reserved. */ ++ unsigned multicnt : 2; ++ /** 0: Control, 1: Isoc, 2: Bulk, 3: Intr */ ++ unsigned eptype : 2; ++ /** 0: Full/high speed device, 1: Low speed device */ ++ unsigned lspddev : 1; ++ unsigned reserved : 1; ++ /** 0: OUT, 1: IN */ ++ unsigned epdir : 1; ++ /** Endpoint number */ ++ unsigned epnum : 4; ++ /** Maximum packet size in bytes */ ++ unsigned mps : 11; ++ } b; ++} hcchar_data_t; ++ ++typedef union hcsplt_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct { ++ /** Split Enble */ ++ unsigned spltena : 1; ++ /** Reserved */ ++ unsigned reserved : 14; ++ /** Do Complete Split */ ++ unsigned compsplt : 1; ++ /** Transaction Position */ ++#define DWC_HCSPLIT_XACTPOS_MID 0 ++#define DWC_HCSPLIT_XACTPOS_END 1 ++#define DWC_HCSPLIT_XACTPOS_BEGIN 2 ++#define DWC_HCSPLIT_XACTPOS_ALL 3 ++ unsigned xactpos : 2; ++ /** Hub Address */ ++ unsigned hubaddr : 7; ++ /** Port Address */ ++ unsigned prtaddr : 7; ++ } b; ++} hcsplt_data_t; ++ ++ ++/** ++ * This union represents the bit fields in the Host All Interrupt ++ * Register. ++ */ ++typedef union hcint_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ /** Reserved */ ++ unsigned reserved : 21; ++ /** Data Toggle Error */ ++ unsigned datatglerr : 1; ++ /** Frame Overrun */ ++ unsigned frmovrun : 1; ++ /** Babble Error */ ++ unsigned bblerr : 1; ++ /** Transaction Err */ ++ unsigned xacterr : 1; ++ /** NYET Response Received */ ++ unsigned nyet : 1; ++ /** ACK Response Received */ ++ unsigned ack : 1; ++ /** NAK Response Received */ ++ unsigned nak : 1; ++ /** STALL Response Received */ ++ unsigned stall : 1; ++ /** AHB Error */ ++ unsigned ahberr : 1; ++ /** Channel Halted */ ++ unsigned chhltd : 1; ++ /** Transfer Complete */ ++ unsigned xfercomp : 1; ++ } b; ++} hcint_data_t; ++ ++/** ++ * This union represents the bit fields in the Host Channel Transfer Size ++ * Register. Read the register into the <i>d32</i> member then set/clear the ++ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the ++ * hcchar register. ++ */ ++typedef union hctsiz_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct { ++ /** Do PING protocol when 1 */ ++ unsigned dopng : 1; ++ /** ++ * Packet ID for next data packet ++ * 0: DATA0 ++ * 1: DATA2 ++ * 2: DATA1 ++ * 3: MDATA (non-Control), SETUP (Control) ++ */ ++#define DWC_HCTSIZ_DATA0 0 ++#define DWC_HCTSIZ_DATA1 2 ++#define DWC_HCTSIZ_DATA2 1 ++#define DWC_HCTSIZ_MDATA 3 ++#define DWC_HCTSIZ_SETUP 3 ++ unsigned pid : 2; ++ /** Data packets to transfer */ ++ unsigned pktcnt : 10; ++ /** Total transfer size in bytes */ ++ unsigned xfersize : 19; ++ } b; ++} hctsiz_data_t; ++ ++/** ++ * This union represents the bit fields in the Host Channel Interrupt Mask ++ * Register. Read the register into the <i>d32</i> member then set/clear the ++ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the ++ * hcintmsk register. ++ */ ++typedef union hcintmsk_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct { ++ unsigned reserved : 21; ++ unsigned datatglerr : 1; ++ unsigned frmovrun : 1; ++ unsigned bblerr : 1; ++ unsigned xacterr : 1; ++ unsigned nyet : 1; ++ unsigned ack : 1; ++ unsigned nak : 1; ++ unsigned stall : 1; ++ unsigned ahberr : 1; ++ unsigned chhltd : 1; ++ unsigned xfercompl : 1; ++ } b; ++} hcintmsk_data_t; ++ ++/** OTG Host Interface Structure. ++ * ++ * The OTG Host Interface Structure structure contains information ++ * needed to manage the DWC_otg controller acting in host mode. It ++ * represents the programming view of the host-specific aspects of the ++ * controller. ++ */ ++typedef struct dwc_otg_host_if { ++ /** Host Global Registers starting at offset 400h.*/ ++ dwc_otg_host_global_regs_t *host_global_regs; ++#define DWC_OTG_HOST_GLOBAL_REG_OFFSET 0x400 ++ ++ /** Host Port 0 Control and Status Register */ ++ volatile uint32_t *hprt0; ++#define DWC_OTG_HOST_PORT_REGS_OFFSET 0x440 ++ ++ ++ /** Host Channel Specific Registers at offsets 500h-5FCh. */ ++ dwc_otg_hc_regs_t *hc_regs[MAX_EPS_CHANNELS]; ++#define DWC_OTG_HOST_CHAN_REGS_OFFSET 0x500 ++#define DWC_OTG_CHAN_REGS_OFFSET 0x20 ++ ++ ++ /* Host configuration information */ ++ /** Number of Host Channels (range: 1-16) */ ++ uint8_t num_host_channels; ++ /** Periodic EPs supported (0: no, 1: yes) */ ++ uint8_t perio_eps_supported; ++ /** Periodic Tx FIFO Size (Only 1 host periodic Tx FIFO) */ ++ uint16_t perio_tx_fifo_size; ++ ++} dwc_otg_host_if_t; ++ ++#endif +--- a/arch/mips/lantiq/xway/Makefile ++++ b/arch/mips/lantiq/xway/Makefile +@@ -6,3 +6,4 @@ + obj-$(CONFIG_LANTIQ_MACH_EASY50712) += mach-easy50712.o + obj-$(CONFIG_LANTIQ_MACH_EASY50601) += mach-easy50601.o + obj-$(CONFIG_LANTIQ_MACH_ARV45XX) += mach-arv45xx.o ++obj-y += dev-dwc_otg.o +--- /dev/null ++++ b/arch/mips/lantiq/xway/dev-dwc_otg.c +@@ -0,0 +1,68 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ * ++ * Copyright (C) 2010 John Crispin <blogic@openwrt.org> ++ */ ++ ++#include <linux/init.h> ++#include <linux/module.h> ++#include <linux/types.h> ++#include <linux/string.h> ++#include <linux/mtd/physmap.h> ++#include <linux/kernel.h> ++#include <linux/reboot.h> ++#include <linux/platform_device.h> ++#include <linux/leds.h> ++#include <linux/etherdevice.h> ++#include <linux/reboot.h> ++#include <linux/time.h> ++#include <linux/io.h> ++#include <linux/gpio.h> ++#include <linux/leds.h> ++ ++#include <asm/bootinfo.h> ++#include <asm/irq.h> ++ ++#include <lantiq_soc.h> ++#include <lantiq_irq.h> ++#include <lantiq_platform.h> ++ ++#define LTQ_USB_IOMEM_BASE 0x1e101000 ++#define LTQ_USB_IOMEM_SIZE 0x00001000 ++ ++static struct resource resources[] = ++{ ++ [0] = { ++ .name = "dwc_otg_membase", ++ .start = LTQ_USB_IOMEM_BASE, ++ .end = LTQ_USB_IOMEM_BASE + LTQ_USB_IOMEM_SIZE - 1, ++ .flags = IORESOURCE_MEM, ++ }, ++ [1] = { ++ .name = "dwc_otg_irq", ++ .start = LTQ_USB_INT, ++ .flags = IORESOURCE_IRQ, ++ }, ++}; ++ ++static u64 dwc_dmamask = (u32)0x1fffffff; ++ ++static struct platform_device platform_dev = { ++ .name = "dwc_otg", ++ .dev = { ++ .dma_mask = &dwc_dmamask, ++ }, ++ .resource = resources, ++ .num_resources = ARRAY_SIZE(resources), ++}; ++ ++int __init ++xway_register_dwc(int pin) ++{ ++ ltq_enable_irq(resources[1].start); ++ platform_dev.dev.platform_data = (void*) pin; ++ return platform_device_register(&platform_dev); ++} +--- /dev/null ++++ b/arch/mips/lantiq/xway/dev-dwc_otg.h +@@ -0,0 +1,17 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ * ++ * Copyright (C) 2010 John Crispin <blogic@openwrt.org> ++ */ ++ ++#ifndef _LTQ_DEV_DWC_H__ ++#define _LTQ_DEV_DWC_H__ ++ ++#include <lantiq_platform.h> ++ ++extern void __init xway_register_dwc(int pin); ++ ++#endif +--- a/drivers/usb/core/hub.c ++++ b/drivers/usb/core/hub.c +@@ -2704,11 +2704,11 @@ + udev->ttport = hdev->ttport; + } else if (udev->speed != USB_SPEED_HIGH + && hdev->speed == USB_SPEED_HIGH) { +- if (!hub->tt.hub) { ++/* if (!hub->tt.hub) { + dev_err(&udev->dev, "parent hub has no TT\n"); + retval = -EINVAL; + goto fail; +- } ++ }*/ + udev->tt = &hub->tt; + udev->ttport = port1; + } |