aboutsummaryrefslogtreecommitdiffstats
path: root/target/linux/ubicom32/files/arch/ubicom32/kernel/ldsr.c
diff options
context:
space:
mode:
Diffstat (limited to 'target/linux/ubicom32/files/arch/ubicom32/kernel/ldsr.c')
-rw-r--r--target/linux/ubicom32/files/arch/ubicom32/kernel/ldsr.c1185
1 files changed, 0 insertions, 1185 deletions
diff --git a/target/linux/ubicom32/files/arch/ubicom32/kernel/ldsr.c b/target/linux/ubicom32/files/arch/ubicom32/kernel/ldsr.c
deleted file mode 100644
index a608d74cfe..0000000000
--- a/target/linux/ubicom32/files/arch/ubicom32/kernel/ldsr.c
+++ /dev/null
@@ -1,1185 +0,0 @@
-/*
- * arch/ubicom32/kernel/ldsr.c
- * Ubicom32 architecture Linux Device Services Driver Interface
- *
- * (C) Copyright 2009, Ubicom, Inc.
- *
- * This file is part of the Ubicom32 Linux Kernel Port.
- *
- * The Ubicom32 Linux Kernel Port is free software: you can redistribute
- * it and/or modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation, either version 2 of the
- * License, or (at your option) any later version.
- *
- * The Ubicom32 Linux Kernel Port is distributed in the hope that it
- * will be useful, but WITHOUT ANY WARRANTY; without even the implied
- * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
- * the GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with the Ubicom32 Linux Kernel Port. If not,
- * see <http://www.gnu.org/licenses/>.
- *
- * Ubicom32 implementation derived from (with many thanks):
- * arch/m68knommu
- * arch/blackfin
- * arch/parisc
- *
- * NOTES:
- *
- * The LDSR is a programmable interrupt controller that is written in software.
- * It emulates the behavior of an pic by fielding the interrupts, choosing a
- * victim thread to take the interrupt and forcing that thread to take a context
- * switch to the appropriate interrupt handler.
- *
- * Because traps are treated as just a special class of interrupts, the LDSR
- * also handles the processing of traps.
- *
- * Because we compile Linux both UP and SMP, we need the LDSR to use
- * architectural locking that is not "compiled out" when compiling UP. For now,
- * we use the single atomic bit lock.
- */
-#include <linux/kernel.h>
-#include <linux/init.h>
-#include <linux/sched.h>
-#include <linux/interrupt.h>
-#include <linux/irq.h>
-#include <linux/profile.h>
-#include <linux/clocksource.h>
-#include <linux/types.h>
-#include <linux/module.h>
-#include <linux/cpumask.h>
-#include <linux/bug.h>
-#include <linux/delay.h>
-#include <asm/ip5000.h>
-#include <asm/atomic.h>
-#include <asm/machdep.h>
-#include <asm/asm-offsets.h>
-#include <asm/traps.h>
-#include <asm/thread.h>
-#include <asm/range-protect.h>
-
-/*
- * One can not print from the LDSR so the best we can do is
- * check a condition and stall all of the threads.
- */
-
-// #define DEBUG_LDSR 1
-#if defined(DEBUG_LDSR)
-#define DEBUG_ASSERT(cond) \
- if (!(cond)) { \
- THREAD_STALL; \
- }
-#else
-#define DEBUG_ASSERT(cond)
-#endif
-
-/*
- * Make global so that we can use it in the RFI code in assembly.
- */
-unsigned int ldsr_soft_irq_mask;
-EXPORT_SYMBOL(ldsr_soft_irq_mask);
-
-static unsigned int ldsr_suspend_mask;
-static unsigned int ldsr_soft_irq;
-static unsigned int ldsr_stack_space[1024];
-
-static struct ldsr_register_bank {
- volatile unsigned int enabled0;
- volatile unsigned int enabled1;
- volatile unsigned int mask0;
- volatile unsigned int mask1;
- unsigned int total;
- unsigned int retry;
- unsigned int backout;
-} ldsr_interrupt;
-
-/*
- * Which thread/cpu are we?
- */
-static int ldsr_tid = -1;
-
-#if defined(CONFIG_IRQSTACKS)
-/*
- * per-CPU IRQ stacks (thread information and stack)
- *
- * NOTE: Do not use DEFINE_PER_CPU() as it makes it harder
- * to find the location of ctx from assembly language.
- */
-union irq_ctx {
- struct thread_info tinfo;
- u32 stack[THREAD_SIZE/sizeof(u32)];
-};
-static union irq_ctx *percpu_irq_ctxs[NR_CPUS];
-
-/*
- * Storage for the interrupt stack.
- */
-#if !defined(CONFIG_IRQSTACKS_USEOCM)
-static char percpu_irq_stacks[(NR_CPUS * THREAD_SIZE) + (THREAD_SIZE - 1)];
-#else
-/*
- * For OCM, the linker will ensure that space is allocated for the stack
- * see (vmlinux.lds.S)
- */
-static char percpu_irq_stacks[];
-#endif
-
-#endif
-
-/*
- * Save trap IRQ because we need to un-suspend if it gets set.
- */
-static unsigned int ldsr_trap_irq_mask;
-static unsigned int ldsr_trap_irq;
-
-/*
- * ret_from_interrupt_to_kernel
- * Just restore the context and do nothing else.
- */
-asmlinkage void ret_from_interrupt_to_kernel(void)__attribute__((naked));
-
-/*
- * ret_from_interrupt_to_user
- * Call scheduler if needed. Just restore the context.
- */
-asmlinkage void ret_from_interrupt_to_user(void)__attribute__((naked));
-
-#ifdef DEBUG_LDSR
-u32_t old_sp, old_pc, old_a0, old_a5, old_a3;
-struct pt_regs copy_regs, *copy_save_area;
-#endif
-
-int __user_mode(unsigned long sp)
-{
-
- u32_t saved_stack_base = sp & ~(ASM_THREAD_SIZE - 1);
-#if defined(CONFIG_IRQSTACKS_USEOCM)
- if ((union irq_ctx *)saved_stack_base == percpu_irq_ctxs[smp_processor_id()]) {
- /*
- * On the interrupt stack.
- */
- return 0;
- }
-#endif
-
- if (!(u32_t)current) {
- return 0;
- }
- return saved_stack_base != ((u32_t)current->stack);
-}
-
-/*
- * ldsr_lock_release()
- * Release the LDSR lock.
- */
-static void ldsr_lock_release(void)
-{
- UBICOM32_UNLOCK(LDSR_LOCK_BIT);
-}
-
-/*
- * ldsr_lock_acquire()
- * Acquire the LDSR lock, spin if not available.
- */
-static void ldsr_lock_acquire(void)
-{
- UBICOM32_LOCK(LDSR_LOCK_BIT);
-}
-
-/*
- * ldsr_thread_irq_disable()
- * Disable interrupts for the specified thread.
- */
-static void ldsr_thread_irq_disable(unsigned int tid)
-{
- unsigned int mask = (1 << tid);
-
- asm volatile (
- " or.4 scratchpad1, scratchpad1, %0 \n\t"
- :
- : "d"(mask)
- : "cc"
- );
-}
-
-/*
- * ldsr_thread_get_interrupts()
- * Get the interrupt state for all threads.
- */
-static unsigned long ldsr_thread_get_interrupts(void)
-{
- unsigned long ret = 0;
- asm volatile (
- " move.4 %0, scratchpad1 \n\t"
- : "=r" (ret)
- :
- );
- return ret;
-}
-
-/*
- * ldsr_emulate_and_run()
- * Emulate the instruction and then set the thread to run.
- */
-static void ldsr_emulate_and_run(unsigned int tid)
-{
- unsigned int thread_mask = (1 << tid);
- u32_t write_csr = (tid << 15) | (1 << 14);
-
- /*
- * Emulate the unaligned access.
- */
- unaligned_emulate(tid);
-
- /*
- * Get the thread back in a running state.
- */
- asm volatile (
- " setcsr %0 \n\t"
- " setcsr_flush 0 \n\t"
- " move.4 trap_cause, #0 \n\t" /* Clear the trap cause
- * register */
- " setcsr #0 \n\t"
- " setcsr_flush 0 \n\t"
- " move.4 mt_dbg_active_set, %1 \n\t" /* Activate thread even if
- * in dbg/fault state */
- " move.4 mt_active_set, %1 \n\t" /* Restart target
- * thread. */
- :
- : "r" (write_csr), "d" (thread_mask)
- : "cc"
- );
- thread_enable_mask(thread_mask);
-}
-
-/*
- * ldsr_preemptive_context_save()
- * save thread context from another hardware thread. The other thread must
- * be stalled.
- */
-static inline void ldsr_preemptive_context_save(u32_t thread,
- struct pt_regs *regs)
-{
- /*
- * Save the current state of the specified thread
- */
- asm volatile (
- " move.4 a3, %0 \n\t"
-
- /* set src1 from the target thread */
- " move.4 csr, %1 \n\t"
- " setcsr_flush 0 \n\t"
- " setcsr_flush 0 \n\t"
-
- /* copy state from the other thread */
- " move.4 "D(PT_D0)"(a3), d0 \n\t"
- " move.4 "D(PT_D1)"(a3), d1 \n\t"
- " move.4 "D(PT_D2)"(a3), d2 \n\t"
- " move.4 "D(PT_D3)"(a3), d3 \n\t"
- " move.4 "D(PT_D4)"(a3), d4 \n\t"
- " move.4 "D(PT_D5)"(a3), d5 \n\t"
- " move.4 "D(PT_D6)"(a3), d6 \n\t"
- " move.4 "D(PT_D7)"(a3), d7 \n\t"
- " move.4 "D(PT_D8)"(a3), d8 \n\t"
- " move.4 "D(PT_D9)"(a3), d9 \n\t"
- " move.4 "D(PT_D10)"(a3), d10 \n\t"
- " move.4 "D(PT_D11)"(a3), d11 \n\t"
- " move.4 "D(PT_D12)"(a3), d12 \n\t"
- " move.4 "D(PT_D13)"(a3), d13 \n\t"
- " move.4 "D(PT_D14)"(a3), d14 \n\t"
- " move.4 "D(PT_D15)"(a3), d15 \n\t"
- " move.4 "D(PT_A0)"(a3), a0 \n\t"
- " move.4 "D(PT_A1)"(a3), a1 \n\t"
- " move.4 "D(PT_A2)"(a3), a2 \n\t"
- " move.4 "D(PT_A3)"(a3), a3 \n\t"
- " move.4 "D(PT_A4)"(a3), a4 \n\t"
- " move.4 "D(PT_A5)"(a3), a5 \n\t"
- " move.4 "D(PT_A6)"(a3), a6 \n\t"
- " move.4 "D(PT_SP)"(a3), a7 \n\t"
- " move.4 "D(PT_ACC0HI)"(a3), acc0_hi \n\t"
- " move.4 "D(PT_ACC0LO)"(a3), acc0_lo \n\t"
- " move.4 "D(PT_MAC_RC16)"(a3), mac_rc16 \n\t"
- " move.4 "D(PT_ACC1HI)"(a3), acc1_hi \n\t"
- " move.4 "D(PT_ACC1LO)"(a3), acc1_lo \n\t"
- " move.4 "D(PT_SOURCE3)"(a3), source3 \n\t"
- " move.4 "D(PT_INST_CNT)"(a3), inst_cnt \n\t"
- " move.4 "D(PT_CSR)"(a3), csr \n\t"
- " move.4 "D(PT_DUMMY_UNUSED)"(a3), #0 \n\t"
- " move.4 "D(PT_INT_MASK0)"(a3), int_mask0 \n\t"
- " move.4 "D(PT_INT_MASK1)"(a3), int_mask1 \n\t"
- " move.4 "D(PT_TRAP_CAUSE)"(a3), trap_cause \n\t"
- " move.4 "D(PT_PC)"(a3), pc \n\t"
- " move.4 "D(PT_PREVIOUS_PC)"(a3), previous_pc \n\t"
- /* disable csr thread select */
- " movei csr, #0 \n\t"
- " setcsr_flush 0 \n\t"
- :
- : "r" (regs->dn), "d" ((thread << 9) | (1 << 8))
- : "a3"
- );
-}
-
-/*
- * ldsr_rotate_threads()
- * Simple round robin algorithm for choosing the next cpu
- */
-static int ldsr_rotate_threads(unsigned long cpus)
-{
- static unsigned char ldsr_bits[8] = {
- 3, 0, 1, 0, 2, 0, 1, 0
- };
-
- static int nextbit;
- int thisbit;
-
- /*
- * Move the interrupts down so that we consider interrupts from where
- * we left off, then take the interrupts we would lose and move them
- * to the top half of the interrupts value.
- */
- cpus = (cpus >> nextbit) | (cpus << ((sizeof(cpus) * 8) - nextbit));
-
- /*
- * 50% of the time we won't take this at all and then of the cases where
- * we do about 50% of those we only execute once.
- */
- if (!(cpus & 0xffff)) {
- nextbit += 16;
- cpus >>= 16;
- }
-
- if (!(cpus & 0xff)) {
- nextbit += 8;
- cpus >>= 8;
- }
-
- if (!(cpus & 0xf)) {
- nextbit += 4;
- cpus >>= 4;
- }
-
- nextbit += ldsr_bits[cpus & 0x7];
- thisbit = (nextbit & ((sizeof(cpus) * 8) - 1));
- nextbit = (thisbit + 1) & ((sizeof(cpus) * 8) - 1);
- DEBUG_ASSERT(thisbit < THREAD_ARCHITECTURAL_MAX);
- return thisbit;
-}
-
-/*
- * ldsr_rotate_interrupts()
- * Get rotating next set bit value.
- */
-static int ldsr_rotate_interrupts(unsigned long long interrupts)
-{
- static unsigned char ldsr_bits[8] = {
- 3, 0, 1, 0, 2, 0, 1, 0
- };
-
- static int nextbit;
- int thisbit;
-
- /*
- * Move the interrupts down so that we consider interrupts from where
- * we left off, then take the interrupts we would lose and move them
- * to the top half of the interrupts value.
- */
- interrupts = (interrupts >> nextbit) |
- (interrupts << ((sizeof(interrupts) * 8) - nextbit));
-
- /*
- * 50% of the time we won't take this at all and then of the cases where
- * we do about 50% of those we only execute once.
- */
- if (!(interrupts & 0xffffffff)) {
- nextbit += 32;
- interrupts >>= 32;
- }
-
- if (!(interrupts & 0xffff)) {
- nextbit += 16;
- interrupts >>= 16;
- }
-
- if (!(interrupts & 0xff)) {
- nextbit += 8;
- interrupts >>= 8;
- }
-
- if (!(interrupts & 0xf)) {
- nextbit += 4;
- interrupts >>= 4;
- }
-
- nextbit += ldsr_bits[interrupts & 0x7];
- thisbit = (nextbit & ((sizeof(interrupts) * 8) - 1));
- nextbit = (thisbit + 1) & ((sizeof(interrupts) * 8) - 1);
-
- DEBUG_ASSERT(thisbit < (sizeof(interrupts) * 8));
- return thisbit;
-}
-
-/*
- * ldsr_backout_or_irq()
- *
- * One way or the other this interrupt is not being
- * processed, make sure that it is reset. We are
- * not going to call irq_end_vector() so unmask the
- * interrupt.
- */
-static void ldsr_backout_of_irq(int vector, unsigned long tid_mask)
-{
-#if defined(CONFIG_SMP)
- if (unlikely(vector == smp_ipi_irq)) {
- smp_reset_ipi(tid_mask);
- }
-#endif
- ldsr_unmask_vector(vector);
- ldsr_interrupt.backout++;
-}
-
-#if defined(CONFIG_IRQSTACKS)
-/*
- * ldsr_choose_savearea_and_returnvec()
- * Test our current state (user, kernel, interrupt) and set things up.
- *
- * This version of the function uses 3 stacks and nests interrupts
- * on the interrupt stack.
- */
-static struct pt_regs *ldsr_choose_savearea_and_returnvec(thread_t tid, u32_t linux_sp, u32_t *pvec)
-{
- struct pt_regs *save_area;
- u32_t masked_linux_sp = linux_sp & ~(THREAD_SIZE - 1);
- struct thread_info * ti= (struct thread_info *)sw_ksp[tid];
-
-#if defined(CONFIG_SMP)
- union irq_ctx *icp = percpu_irq_ctxs[tid];
-#else
- union irq_ctx *icp = percpu_irq_ctxs[0];
-#endif
-
- if (masked_linux_sp == (u32_t)icp) {
- /*
- * Fault/Interrupt occurred while on the interrupt stack.
- */
- save_area = (struct pt_regs *)((char *)linux_sp - sizeof(struct pt_regs) - 8);
- *pvec = (u32_t)(&ret_from_interrupt_to_kernel);
- } else {
- /*
- * Fault/Interrupt occurred while on user/kernel stack. This is a new
- * first use of the interrupt stack.
- */
- save_area = (struct pt_regs *) ((char *)icp + sizeof(icp->stack) - sizeof(struct pt_regs) - 8);
- if (masked_linux_sp == (u32_t)ti) {
- *pvec = (u32_t)(&ret_from_interrupt_to_kernel);
- } else {
- *pvec = (u32_t)(&ret_from_interrupt_to_user);
- }
-
- /*
- * Because the softirq code will execute on the "interrupt" stack, we
- * need to maintain the knowledge of what "task" was executing on the
- * cpu. This is done by copying the thread_info->task from the cpu
- * we are about to context switch into the interrupt contexts thread_info
- * structure.
- */
- icp->tinfo.task = ti->task;
- icp->tinfo.preempt_count =
- (icp->tinfo.preempt_count & ~SOFTIRQ_MASK) |
- (ti->preempt_count & SOFTIRQ_MASK);
- icp->tinfo.interrupt_nesting = 0;
- }
- save_area->nesting_level = icp->tinfo.interrupt_nesting;
- return save_area;
-}
-
-#else
-/*
- * ldsr_choose_savearea_and_returnvec()
- * Test our current state (user, kernel, interrupt) and set things up.
- *
- * The version of the function uses just the user & kernel stack and
- * nests interrupts on the existing kernel stack.
- */
-static struct pt_regs *ldsr_choose_savearea_and_returnvec(thread_t tid, u32_t linux_sp, u32_t *pvec)
-{
- struct pt_regs *save_area;
- u32_t masked_linux_sp = linux_sp & ~(THREAD_SIZE - 1);
- struct thread_info *ti = (struct thread_info *)sw_ksp[tid];
-
- if (masked_linux_sp == (u32_t)ti) {
- /*
- * Fault/Interrupt occurred while on the kernel stack.
- */
- save_area = (struct pt_regs *)((char *)linux_sp - sizeof(struct pt_regs) - 8);
- *pvec = (u32_t) (&ret_from_interrupt_to_kernel);
- } else {
- /*
- * Fault/Interrupt occurred while on user stack.
- */
- ti->interrupt_nesting = 0;
- save_area = (struct pt_regs *)((u32_t)ti + THREAD_SIZE - sizeof(struct pt_regs) - 8);
- *pvec = (u32_t) (&ret_from_interrupt_to_user);
- }
- save_area->nesting_level = ti->interrupt_nesting;
- return save_area;
-}
-#endif
-
-/*
- * ldsr_ctxsw_thread()
- * Context switch a mainline thread to execute do_IRQ() for the specified
- * vector.
- */
-static void ldsr_ctxsw_thread(int vector, thread_t tid)
-{
- u32_t linux_sp;
- u32_t return_vector;
- struct pt_regs *save_area, *regs;
- u32_t thread_mask = (1 << tid);
- u32_t read_csr = ((tid << 9) | (1 << 8));
- u32_t write_csr = (tid << 15) | (1 << 14);
- u32_t interrupt_vector = (u32_t)(&do_IRQ);
-
- unsigned int frame_type = UBICOM32_FRAME_TYPE_INTERRUPT;
-
-
- DEBUG_ASSERT(!thread_is_enabled(tid));
-
- /*
- * Acquire the necessary global and per thread locks for tid.
- * As a side effect, we ensure that the thread has not trapped
- * and return true if it has.
- */
- if (unlikely(thread_is_trapped(tid))) {
- /*
- * Read the trap cause, the sp and clear the MT_TRAP bits.
- */
- unsigned int cause;
- asm volatile (
- " setcsr %3 \n\t"
- " setcsr_flush 0 \n\t"
- " setcsr_flush 0 \n\t"
- " move.4 %0, TRAP_CAUSE \n\t"
- " move.4 %1, SP \n\t"
- " setcsr #0 \n\t"
- " setcsr_flush 0 \n\t"
- " move.4 MT_BREAK_CLR, %2\n\t"
- " move.4 MT_TRAP_CLR, %2 \n\t"
- : "=&r" (cause), "=&r" (linux_sp)
- : "r" (thread_mask), "m" (read_csr)
- );
-
- ldsr_backout_of_irq(vector, (1 << tid));
-
-#if !defined(CONFIG_UNALIGNED_ACCESS_DISABLED)
- /*
- * See if the unaligned trap handler can deal with this.
- * If so, emulate the instruction and then just restart
- * the thread.
- */
- if (unaligned_only(cause)) {
-#if defined(CONFIG_UNALIGNED_ACCESS_USERSPACE_ONLY)
- /*
- * Check if this is a kernel stack if so we will not
- * handle the trap
- */
- u32_t masked_linux_sp = linux_sp & ~(THREAD_SIZE - 1);
- if ((masked_linux_sp != (u32_t)sw_ksp[tid]) &&
- unaligned_only(cause)) {
- ldsr_emulate_and_run(tid);
- return;
- }
-#else
- ldsr_emulate_and_run(tid);
- return;
-#endif
-
- }
-#endif
-
- interrupt_vector = (u32_t)(&trap_handler);
- frame_type = UBICOM32_FRAME_TYPE_TRAP;
- } else {
- /*
- * Read the target thread's SP
- */
- asm volatile (
- " setcsr %1 \n\t"
- " setcsr_flush 0 \n\t"
- " setcsr_flush 0 \n\t"
- " move.4 %0, SP \n\t"
- " setcsr #0 \n\t"
- " setcsr_flush 0 \n\t"
- : "=m" (linux_sp)
- : "m" (read_csr)
- );
- }
-
- /*
- * We are delivering an interrupt, count it.
- */
- ldsr_interrupt.total++;
-
- /*
- * At this point, we will definitely force this thread to
- * a new context, show its interrupts as disabled.
- */
- ldsr_thread_irq_disable(tid);
-
- /*
- * Test our current state (user, kernel, interrupt). Save the
- * appropriate data and setup for the return.
- */
- save_area = ldsr_choose_savearea_and_returnvec(tid, linux_sp, &return_vector);
-
- /*
- * The pt_regs (save_area) contains the type of thread that we are dealing
- * with (KERNEL/NORMAL) and is copied into each pt_regs area. We get this
- * from the current tasks kernel pt_regs area that always exists at the
- * top of the kernel stack.
- */
- regs = (struct pt_regs *)((u32_t)sw_ksp[tid] + THREAD_SIZE - sizeof(struct pt_regs) - 8);
- save_area->thread_type = regs->thread_type;
-
- /*
- * Preserve the context of the Linux thread.
- */
- ldsr_preemptive_context_save(tid, save_area);
-
- /*
- * Load the fram_type into the save_area.
- */
- save_area->frame_type = frame_type;
-
-#ifdef CONFIG_STOP_ON_TRAP
- /*
- * Before we get backtrace and showing stacks working well, it sometimes
- * helps to enter the debugger when a trap occurs before we change the
- * thread to handle the fault. This optional code causes all threads to
- * stop on every trap frame. One assumes that GDB connected via the
- * mailbox interface will be used to recover from this state.
- */
- if (frame_type == UBICOM32_FRAME_TYPE_TRAP) {
- THREAD_STALL;
- }
-#endif
-
-#ifdef DEBUG_LDSR
- copy_regs = *save_area;
- copy_save_area = save_area;
-
- old_a0 = save_area->an[0];
- old_a3 = save_area->an[3];
- old_sp = save_area->an[7];
- old_a5 = save_area->an[5];
- old_pc = save_area->pc;
-#endif
-
- /*
- * Now we have to switch the kernel thread to run do_IRQ function.
- * Set pc to do_IRQ
- * Set d0 to vector
- * Set d1 to save_area.
- * Set a5 to the proper return vector.
- */
- asm volatile (
- " setcsr %0 \n\t"
- " setcsr_flush 0 \n\t"
- " move.4 d0, %5 \n\t" /* d0 = 0 vector # */
- " move.4 d1, %1 \n\t" /* d1 = save_area */
- " move.4 sp, %1 \n\t" /* sp = save_area */
- " move.4 a5, %2 \n\t" /* a5 = return_vector */
- " move.4 pc, %3 \n\t" /* pc = do_IRQ routine. */
- " move.4 trap_cause, #0 \n\t" /* Clear the trap cause
- * register */
- " setcsr #0 \n\t"
- " setcsr_flush 0 \n\t"
- " enable_kernel_ranges %4 \n\t"
- " move.4 mt_dbg_active_set, %4 \n\t" /* Activate thread even if
- * in dbg/fault state */
- " move.4 mt_active_set, %4 \n\t" /* Restart target
- * thread. */
- :
- : "r" (write_csr), "r" (save_area),
- "r" (return_vector), "r" (interrupt_vector),
- "d" (thread_mask), "r" (vector)
- : "cc"
- );
- thread_enable_mask(thread_mask);
-}
-
-/*
- * ldsr_deliver_interrupt()
- * Deliver the interrupt to one of the threads or all of the threads.
- */
-static void ldsr_deliver_interrupt(int vector,
- unsigned long deliver_to,
- int all)
-{
- unsigned long disabled_threads;
- unsigned long possible_threads;
- unsigned long trapped_threads;
- unsigned long global_locks;
-
- /*
- * Disable all of the threads that we might want to send
- * this interrupt to.
- */
-retry:
- DEBUG_ASSERT(deliver_to);
- thread_disable_mask(deliver_to);
-
- /*
- * If any threads are in the trap state, we have to service the
- * trap for those threads first.
- */
- asm volatile (
- "move.4 %0, MT_TRAP \n\t"
- : "=r" (trapped_threads)
- :
- );
-
- trapped_threads &= deliver_to;
- if (unlikely(trapped_threads)) {
- /*
- * all traps will be handled, so clear the trap bit before restarting any threads
- */
- ubicom32_clear_interrupt(ldsr_trap_irq);
-
- /*
- * Let the remaining untrapped threads, continue.
- */
- deliver_to &= ~trapped_threads;
- if (deliver_to) {
- thread_enable_mask(deliver_to);
- }
-
- /*
- * For the trapped threads force them to handle
- * a trap.
- */
- while (trapped_threads) {
- unsigned long which = ffz(~trapped_threads);
- trapped_threads &= ~(1 << which);
- ldsr_ctxsw_thread(vector, which);
- }
- return;
- }
-
- /*
- * Can we deliver an interrupt to any of the threads?
- */
- disabled_threads = ldsr_thread_get_interrupts();
- possible_threads = deliver_to & ~disabled_threads;
- if (unlikely(!possible_threads)) {
-#if defined(CONFIG_SMP)
- /*
- * In the SMP case, we can not wait because 1 cpu might be
- * sending an IPI to another cpu which is currently blocked.
- * The only way to ensure IPI delivery is to backout and
- * keep trying. For SMP, we don't sleep until the interrupts
- * are delivered.
- */
- thread_enable_mask(deliver_to);
- ldsr_backout_of_irq(vector, deliver_to);
- return;
-#else
- /*
- * In the UP case, we have nothing to do so we should wait.
- *
- * Since the INT_MASK0 and INT_MASK1 are "re-loaded" before we
- * suspend in the outer loop, we do not need to save them here.
- *
- * We test that we were awakened for our specific interrupts
- * because the ldsr mask/unmask operations will force the ldsr
- * awake even if the interrupt on the mainline thread is not
- * completed.
- */
- unsigned int scratch = 0;
- thread_enable_mask(deliver_to);
- asm volatile (
- " move.4 INT_MASK0, %1 \n\t"
- " move.4 INT_MASK1, #0 \n\t"
-
- "1: suspend \n\t"
- " move.4 %0, INT_STAT0 \n\t"
- " and.4 %0, %0, %1 \n\t"
- " jmpeq.f 1b \n\t"
-
- " move.4 INT_CLR0, %2 \n\t"
- : "+r" (scratch)
- : "d" (ldsr_suspend_mask), "r" (ldsr_soft_irq_mask)
- : "cc"
- );
-
- /*
- * This delay is sized to coincide with the time it takes a
- * thread to complete the exit (see return_from_interrupt).
- */
- ldsr_interrupt.retry++;
- __delay(10);
- goto retry;
-#endif
- }
-
- /*
- * If any of the global locks are held, we can not deliver any
- * interrupts, we spin delay(10) and then try again. If our
- * spinning becomes a bottle neck, we will need to suspend but for
- * now lets just spin.
- */
- asm volatile (
- "move.4 %0, scratchpad1 \n\t"
- : "=r" (global_locks)
- :
- );
- if (unlikely(global_locks & 0xffff0000)) {
- thread_enable_mask(deliver_to);
-
- /*
- * This delay is sized to coincide with the average time it
- * takes a thread to release a global lock.
- */
- ldsr_interrupt.retry++;
- __delay(10);
- goto retry;
- }
-
- /*
- * Deliver to one cpu.
- */
- if (!all) {
- /*
- * Find our victim and then enable everyone else.
- */
- unsigned long victim = ldsr_rotate_threads(possible_threads);
- DEBUG_ASSERT((deliver_to & (1 << victim)));
- DEBUG_ASSERT((possible_threads & (1 << victim)));
-
- deliver_to &= ~(1 << victim);
- if (deliver_to) {
- thread_enable_mask(deliver_to);
- }
- ldsr_ctxsw_thread(vector, victim);
- return;
- }
-
- /*
- * If we can't deliver to some threads, wake them
- * back up and reset things to deliver to them.
- */
- deliver_to &= ~possible_threads;
- if (unlikely(deliver_to)) {
- thread_enable_mask(deliver_to);
- ldsr_backout_of_irq(vector, deliver_to);
- }
-
- /*
- * Deliver to all possible threads(s).
- */
- while (possible_threads) {
- unsigned long victim = ffz(~possible_threads);
- possible_threads &= ~(1 << victim);
- ldsr_ctxsw_thread(vector, victim);
- }
-}
-
-/*
- * ldsr_thread()
- * This thread acts as the interrupt controller for Linux.
- */
-static void ldsr_thread(void *arg)
-{
- int stat0;
- int stat1;
- int interrupt0;
- int interrupt1;
- long long interrupts;
- unsigned long cpus;
-
-#if !defined(CONFIG_SMP)
- /*
- * In a non-smp configuration, we can not use the cpu(s) arrays because
- * there is not a 1-1 correspondence between cpus(s) and our threads.
- * Thus we must get a local idea of the mainline threads and use the
- * one and only 1 set as the victim. We do this once before the ldsr
- * loop.
- *
- * In the SMP case, we will use the cpu(s) map to determine which cpu(s)
- * are valid to send interrupts to.
- */
- int victim = 0;
- unsigned int mainline = thread_get_mainline();
- if (mainline == 0) {
- panic("no mainline Linux threads to interrupt");
- return;
- }
- victim = ffz(~mainline);
- cpus = (1 << victim);
-#endif
-
- while (1) {
- /*
- * If one changes this code not to reload the INT_MASK(s), you
- * need to know that code in the lock waiting above does not
- * reset the MASK registers back; so that code will need to be
- * changed.
- */
- ldsr_lock_acquire();
- asm volatile (
- " move.4 INT_MASK0, %0 \n\t"
- " move.4 INT_MASK1, %1 \n\t"
- :
- : "U4" (ldsr_interrupt.mask0), "U4" (ldsr_interrupt.mask1)
- );
- ldsr_lock_release();
- thread_suspend();
-
- /*
- * Read the interrupt status registers
- */
- asm volatile (
- "move.4 %0, INT_STAT0 \n\t"
- "move.4 %1, INT_STAT1 \n\t"
- : "=r" (stat0), "=r" (stat1)
- :
- );
-
- /*
- * We only care about interrupts that we have been told to care
- * about. The interrupt must be enabled, unmasked, and have
- * occurred in the hardware.
- */
- ldsr_lock_acquire();
- interrupt0 = ldsr_interrupt.enabled0 &
- ldsr_interrupt.mask0 & stat0;
- interrupt1 = ldsr_interrupt.enabled1 &
- ldsr_interrupt.mask1 & stat1;
- ldsr_lock_release();
-
- /*
- * For each interrupt in the "snapshot" we will mask the
- * interrupt handle the interrupt (typically calling do_IRQ()).
- *
- * The interrupt is unmasked by desc->chip->end() function in
- * the per chip generic interrupt handling code
- * (arch/ubicom32/kernel/irq.c).8
- */
- interrupts = ((unsigned long long)interrupt1 << 32) |
- interrupt0;
- while (interrupts) {
- int all = 0;
- int vector = ldsr_rotate_interrupts(interrupts);
- interrupts &= ~((unsigned long long)1 << vector);
-
- /*
- * Now mask off this vector so that the LDSR ignores
- * it until it is acknowledged.
- */
- ldsr_mask_vector(vector);
-#if !defined(CONFIG_SMP)
- ldsr_deliver_interrupt(vector, cpus, all);
-#else
- cpus = smp_get_affinity(vector, &all);
- if (!cpus) {
- /*
- * No CPU to deliver to so just leave
- * the interrupt unmasked and increase
- * the backout count. We will eventually
- * return and deliver it again.
- */
- ldsr_unmask_vector(vector);
- ldsr_interrupt.backout++;
- continue;
- }
- ldsr_deliver_interrupt(vector, cpus, all);
-#endif
- }
- }
-
- /* NOTREACHED */
-}
-
-/*
- * ldsr_mask_vector()
- * Temporarily mask the interrupt vector, turn off the bit in the mask
- * register.
- */
-void ldsr_mask_vector(unsigned int vector)
-{
- unsigned int mask;
- if (vector < 32) {
- mask = ~(1 << vector);
- ldsr_lock_acquire();
- ldsr_interrupt.mask0 &= mask;
- ldsr_lock_release();
- thread_resume(ldsr_tid);
- return;
- }
-
- mask = ~(1 << (vector - 32));
- ldsr_lock_acquire();
- ldsr_interrupt.mask1 &= mask;
- ldsr_lock_release();
- thread_resume(ldsr_tid);
-}
-
-/*
- * ldsr_unmask_vector()
- * Unmask the interrupt vector so that it can be used, turn on the bit in
- * the mask register.
- *
- * Because it is legal for the interrupt path to disable an interrupt,
- * the unmasking code must ensure that disabled interrupts are not
- * unmasked.
- */
-void ldsr_unmask_vector(unsigned int vector)
-{
- unsigned int mask;
- if (vector < 32) {
- mask = (1 << vector);
- ldsr_lock_acquire();
- ldsr_interrupt.mask0 |= (mask & ldsr_interrupt.enabled0);
- ldsr_lock_release();
- thread_resume(ldsr_tid);
- return;
- }
-
- mask = (1 << (vector - 32));
- ldsr_lock_acquire();
- ldsr_interrupt.mask1 |= (mask & ldsr_interrupt.enabled1);
- ldsr_lock_release();
- thread_resume(ldsr_tid);
-}
-
-/*
- * ldsr_enable_vector()
- * The LDSR implements an interrupt controller and has a local (to the
- * LDSR) copy of its interrupt mask.
- */
-void ldsr_enable_vector(unsigned int vector)
-{
- unsigned int mask;
- if (vector < 32) {
- mask = (1 << vector);
- ldsr_lock_acquire();
- ldsr_interrupt.enabled0 |= mask;
- ldsr_interrupt.mask0 |= mask;
- ldsr_lock_release();
- thread_resume(ldsr_tid);
- return;
- }
-
- mask = (1 << (vector - 32));
- ldsr_lock_acquire();
- ldsr_interrupt.enabled1 |= mask;
- ldsr_interrupt.mask1 |= mask;
- ldsr_lock_release();
- thread_resume(ldsr_tid);
-}
-
-/*
- * ldsr_disable_vector()
- * The LDSR implements an interrupt controller and has a local (to the
- * LDSR) copy of its interrupt mask.
- */
-void ldsr_disable_vector(unsigned int vector)
-{
- unsigned int mask;
-
- if (vector < 32) {
- mask = ~(1 << vector);
- ldsr_lock_acquire();
- ldsr_interrupt.enabled0 &= mask;
- ldsr_interrupt.mask0 &= mask;
- ldsr_lock_release();
- thread_resume(ldsr_tid);
- return;
- }
-
- mask = ~(1 << (vector - 32));
- ldsr_lock_acquire();
- ldsr_interrupt.enabled1 &= mask;
- ldsr_interrupt.mask1 &= mask;
- ldsr_lock_release();
- thread_resume(ldsr_tid);
-}
-
-/*
- * ldsr_get_threadid()
- * Return the threadid of the LDSR thread.
- */
-thread_t ldsr_get_threadid(void)
-{
- return ldsr_tid;
-}
-
-/*
- * ldsr_set_trap_irq()
- * Save away the trap Soft IRQ
- *
- * See the per thread lock suspend code above for an explination.
- */
-void ldsr_set_trap_irq(unsigned int irq)
-{
- ldsr_trap_irq = irq;
- ldsr_trap_irq_mask = (1 << irq);
- ldsr_suspend_mask |= ldsr_trap_irq_mask;
-}
-
-/*
- * ldsr_init()
- * Initialize the LDSR (Interrupt Controller)
- */
-void ldsr_init(void)
-{
-#if defined(CONFIG_IRQSTACKS)
- int i;
- union irq_ctx *icp;
-#endif
-
- void *stack_high = (void *)ldsr_stack_space;
- stack_high += sizeof(ldsr_stack_space);
- stack_high -= 8;
-
-
- /*
- * Obtain a soft IRQ to use
- */
- if (irq_soft_alloc(&ldsr_soft_irq) < 0) {
- panic("no software IRQ is available\n");
- return;
- }
- ldsr_soft_irq_mask |= (1 << ldsr_soft_irq);
- ldsr_suspend_mask |= ldsr_soft_irq_mask;
-
- /*
- * Now allocate and start the LDSR thread.
- */
- ldsr_tid = thread_alloc();
- if (ldsr_tid < 0) {
- panic("no thread available to run LDSR");
- return;
- }
-
-#if defined(CONFIG_IRQSTACKS)
- /*
- * Initialize the per-cpu irq thread_info structure that
- * is at the top of each per-cpu irq stack.
- */
- icp = (union irq_ctx *)
- (((unsigned long)percpu_irq_stacks + (THREAD_SIZE - 1)) & ~(THREAD_SIZE - 1));
- for (i = 0; i < NR_CPUS; i++) {
- struct thread_info *ti = &(icp->tinfo);
- ti->task = NULL;
- ti->exec_domain = NULL;
- ti->cpu = i;
- ti->preempt_count = 0;
- ti->interrupt_nesting = 0;
- percpu_irq_ctxs[i] = icp++;
- }
-#endif
- thread_start(ldsr_tid, ldsr_thread, NULL,
- stack_high, THREAD_TYPE_NORMAL);
-}