aboutsummaryrefslogtreecommitdiffstats
path: root/target/linux/archs38/image/Makefile
Commit message (Expand)AuthorAgeFilesLines
* archs38: only calculate entry point address when necessaryFelix Fietkau2017-03-011-5/+2
* archs38: gzip rootfs image to save some spaceFelix Fietkau2017-01-131-0/+1
* archs38: build dtb files in Image/Prepare so that they are available for Devi...Felix Fietkau2017-01-111-5/+7
* archs38: fix parallel build issueFelix Fietkau2017-01-111-7/+5
* tools: remove old mkdosfs symlink from dosfstoolsÁlvaro Fernández Rojas2016-10-121-1/+1
* archs38: Merge sd and ramfs subtargets in generic againAlexey Brodkin2016-08-201-4/+4
* archs38: Introduce images for SD-cardsAlexey Brodkin2016-08-161-25/+55
* archs38: Reduce generalizationAlexey Brodkin2016-08-161-23/+11
* arc: use patched .dts from sourcesAlexey Brodkin2016-08-161-1/+1
* image.mk: clean up redundant code related to DEVICE_DTSFelix Fietkau2016-07-151-2/+1
* arc: Build uImage as well as vmlinux output filesAlexey Brodkin2016-06-051-8/+36
* linux: add support of Synopsys ARCHS38-based boardsJohn Crispin2016-02-181-0/+41
9' href='#n169'>169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
/**CFile****************************************************************

  FileName    [ndr.h]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Format for word-level design representation.]

  Synopsis    [External declarations.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - August 22, 2014.]

  Revision    [$Id: ndr.h,v 1.00 2014/09/12 00:00:00 alanmi Exp $]

***********************************************************************/

#ifndef ABC__base__ndr__ndr_h
#define ABC__base__ndr__ndr_h


////////////////////////////////////////////////////////////////////////
///                          INCLUDES                                ///
////////////////////////////////////////////////////////////////////////

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>

#include "abcOper.h"

ABC_NAMESPACE_HEADER_START 

#ifdef _WIN32
#define inline __inline
#endif

/*
    For the lack of a better name, this format is called New Data Representation (NDR).

    NDR is designed as an interchange format to pass hierarchical word-level designs between the tools.
    It is relatively simple, uses little memory, and can be easily converted into other ABC data-structures.

    This tutorial discusses how to construct the NDR representation of a hierarchical word-level design.

    First, all names used in the design (including the design name, module names, port names, net names, 
    instance names, etc) are hashed into 1-based integers called "name IDs". Nets are not explicitly represented. 
    The connectivity of a design object is established by specifying name IDs of the nets connected to the object. 
    Object inputs are name IDs of the driving nets; object outputs are name IDs of the driven nets.

    The design is initialized using procedure Ndr_Create(), which takes the design name as an argument.
    A module in the design is initialized using procedure Ndr_AddModule(), which take the design and 
    the module name as arguments. Objects are added to a module in any order using procedure Ndr_AddObject().

    Primary input and primary output objects should be explicitly created, as shown in the examples below.

    Instances of known operators listed in file "abcOper.h" are assumed to have one output. The only known 
    issue due to this restriction concerns an adder, which produces a sum and a carry-out. To make sure the 
    adder instance has only one output, the carry-out has to be concatenated with the sum before the adder 
    instance is created in the NDR format.

    Instances of hierarchical modules defined by the user can have multiple outputs. 

    Bit-slice and concatenation operators should be represented as separate objects.

    If the ordering of inputs/outputs/flops of a module is not provided as a separate record in NDR format, 
    their ordering is determined by the order of their appearance of their records in the body of the module.

    If left limit and right limit of a range are equal, it is assumed that the range contains one bit
    If range limits and signedness are all 0, it is assumed that it is the bit-width is equal to 1.
    
    Word-level constants are represented as char-strings given in the same way as they would appear in a Verilog 
    file. For example, the 16-bit constant 10 is represented as a string "4'b1010" and is given as an argument 
    (char * pFunction) to the procedure Ndr_AddObject().

    Currently two types of flops are supported: a simple flop with implicit clock with two fanins (data and init) 
    and a complex flop with 7 fanins (clock, data, reset, set, enable, async, init), as shown in the examples below.

    The initial value of a flop is represented by input "init", which can be driven by a constant or by a primary 
    input of the module. If it is a primary input, is it assumed that the flop is not initialized. If the input 
    "init" is not driven, it is assumed that the flop is initialized to 0.

    Memory read and write ports are supported, as shown in the example below.

    (to be continued)
*/

////////////////////////////////////////////////////////////////////////
///                         PARAMETERS                               ///
////////////////////////////////////////////////////////////////////////

// record types
typedef enum {
    NDR_NONE = 0,          // 0:  unused
    NDR_DESIGN,            // 1:  design (or library of modules)
    NDR_MODULE,            // 2:  one module
    NDR_OBJECT,            // 3:  object
    NDR_INPUT,             // 4:  input
    NDR_OUTPUT,            // 5:  output
    NDR_OPERTYPE,          // 6:  operator type (buffer, shifter, adder, etc)
    NDR_NAME,              // 7:  name
    NDR_RANGE,             // 8:  bit range
    NDR_FUNCTION,          // 9:  specified for some operators (PLAs, etc)
    NDR_TARGET,            // 10: target
    NDR_UNKNOWN            // 11: unknown
} Ndr_RecordType_t; 


////////////////////////////////////////////////////////////////////////
///                         BASIC TYPES                              ///
////////////////////////////////////////////////////////////////////////

// this is an internal procedure, which is not seen by the user
typedef struct Ndr_Data_t_  Ndr_Data_t;
struct Ndr_Data_t_ 
{
    int                     nSize;
    int                     nCap;
    unsigned char *         pHead;
    unsigned int *          pBody;
};

static inline int           Ndr_DataType( Ndr_Data_t * p, int i )                { assert( p->pHead[i] ); return (int)p->pHead[i];                }
static inline int           Ndr_DataSize( Ndr_Data_t * p, int i )                { return Ndr_DataType(p, i) > NDR_OBJECT ? 1 : p->pBody[i];      }
static inline int           Ndr_DataEntry( Ndr_Data_t * p, int i )               { return (int)p->pBody[i];                                       }
static inline int *         Ndr_DataEntryP( Ndr_Data_t * p, int i )              { return (int *)p->pBody + i;                                    }
static inline int           Ndr_DataEnd( Ndr_Data_t * p, int i )                 { return i + p->pBody[i];                                        }
static inline void          Ndr_DataAddTo( Ndr_Data_t * p, int i, int Add )      { assert(Ndr_DataType(p, i) <= NDR_OBJECT); p->pBody[i] += Add;  } 
static inline void          Ndr_DataPush( Ndr_Data_t * p, int Type, int Entry )  { p->pHead[p->nSize] = Type; p->pBody[p->nSize++] = Entry;       }

////////////////////////////////////////////////////////////////////////
///                          ITERATORS                               ///
////////////////////////////////////////////////////////////////////////

// iterates over modules in the design
#define Ndr_DesForEachMod( p, Mod )                                   \
    for ( Mod = 1; Mod < Ndr_DataEntry(p, 0); Mod += Ndr_DataSize(p, Mod) ) if (Ndr_DataType(p, Mod) != NDR_MODULE) {} else

// iterates over objects in a module
#define Ndr_ModForEachObj( p, Mod, Obj )                              \
    for ( Obj = Mod + 1; Obj < Ndr_DataEnd(p, Mod); Obj += Ndr_DataSize(p, Obj) ) if (Ndr_DataType(p, Obj) != NDR_OBJECT) {} else

// iterates over records in an object
#define Ndr_ObjForEachEntry( p, Obj, Ent )                            \
    for ( Ent = Obj + 1; Ent < Ndr_DataEnd(p, Obj); Ent += Ndr_DataSize(p, Ent) )

// iterates over primary inputs of a module
#define Ndr_ModForEachPi( p, Mod, Obj )                               \
    Ndr_ModForEachObj( p, Mod, Obj ) if ( !Ndr_ObjIsType(p, Obj, ABC_OPER_CI) ) {} else

// iteraots over primary outputs of a module
#define Ndr_ModForEachPo( p, Mod, Obj )                               \
    Ndr_ModForEachObj( p, Mod, Obj ) if ( !Ndr_ObjIsType(p, Obj, ABC_OPER_CO) ) {} else

// iterates over internal nodes of a module
#define Ndr_ModForEachNode( p, Mod, Obj )                             \
    Ndr_ModForEachObj( p, Mod, Obj ) if ( Ndr_ObjIsType(p, Obj, ABC_OPER_CI) || Ndr_ObjIsType(p, Obj, ABC_OPER_CO) ) {} else

// iterates over target signals of a module
#define Ndr_ModForEachTarget( p, Mod, Obj )                           \
    for ( Obj = Mod + 1; Obj < Ndr_DataEnd(p, Mod); Obj += Ndr_DataSize(p, Obj) ) if (Ndr_DataType(p, Obj) != NDR_TARGET) {} else

////////////////////////////////////////////////////////////////////////
///                    INTERNAL PROCEDURES                           ///
////////////////////////////////////////////////////////////////////////


static inline void Ndr_DataResize( Ndr_Data_t * p, int Add )
{
    if ( p->nSize + Add <= p->nCap )
        return;
    p->nCap  = Abc_MaxInt( 2 * p->nCap, p->nSize + Add );
    p->pHead = (unsigned char*)realloc( p->pHead,   p->nCap );
    p->pBody = (unsigned int *)realloc( p->pBody, 4*p->nCap );
}
static inline void Ndr_DataPushRange( Ndr_Data_t * p, int RangeLeft, int RangeRight, int fSignedness )
{ 
    if ( fSignedness )
    {
        Ndr_DataPush( p, NDR_RANGE, RangeLeft );
        Ndr_DataPush( p, NDR_RANGE, RangeRight );
        Ndr_DataPush( p, NDR_RANGE, fSignedness );
        return;
    }
    if ( !RangeLeft && !RangeRight )
        return;
    if ( RangeLeft == RangeRight )
        Ndr_DataPush( p, NDR_RANGE, RangeLeft );
    else
    {
        Ndr_DataPush( p, NDR_RANGE, RangeLeft );
        Ndr_DataPush( p, NDR_RANGE, RangeRight );
    }
}
static inline void Ndr_DataPushArray( Ndr_Data_t * p, int Type, int nArray, int * pArray )
{ 
    if ( !nArray )
        return;
    assert( nArray > 0 );
    Ndr_DataResize( p, nArray );
    memset( p->pHead + p->nSize, Type, nArray );
    memcpy( p->pBody + p->nSize, pArray, 4*nArray );
    p->nSize += nArray;
}
static inline void Ndr_DataPushString( Ndr_Data_t * p, int Type, char * pFunc )
{ 
    if ( !pFunc )
        return;
    Ndr_DataPushArray( p, Type, ((int)strlen(pFunc) + 4) / 4, (int *)pFunc );
}

////////////////////////////////////////////////////////////////////////
///                     VERILOG WRITING                              ///
////////////////////////////////////////////////////////////////////////

static inline int Ndr_ObjReadEntry( Ndr_Data_t * p, int Obj, int Type )
{
    int Ent;
    Ndr_ObjForEachEntry( p, Obj, Ent )
        if ( Ndr_DataType(p, Ent) == Type )
            return Ndr_DataEntry(p, Ent);
    return -1;
}
static inline int Ndr_ObjReadArray( Ndr_Data_t * p, int Obj, int Type, int ** ppStart )
{
    int Ent, Counter = 0; *ppStart = NULL;
    Ndr_ObjForEachEntry( p, Obj, Ent )
        if ( Ndr_DataType(p, Ent) == Type )
        {
            Counter++;
            if ( *ppStart == NULL )
                *ppStart = (int *)p->pBody + Ent;
        }
        else if ( *ppStart )
            return Counter;
    return Counter;
} 
static inline int Ndr_ObjIsType( Ndr_Data_t * p, int Obj, int Type )
{
    int Ent;
    Ndr_ObjForEachEntry( p, Obj, Ent )
        if ( Ndr_DataType(p, Ent) == NDR_OPERTYPE )
            return (int)(Ndr_DataEntry(p, Ent) == Type);
    return -1;
}
static inline int Ndr_ObjReadBody( Ndr_Data_t * p, int Obj, int Type )
{
    int Ent;
    Ndr_ObjForEachEntry( p, Obj, Ent )
        if ( Ndr_DataType(p, Ent) == Type )
            return Ndr_DataEntry(p, Ent);
    return -1;
}
static inline int * Ndr_ObjReadBodyP( Ndr_Data_t * p, int Obj, int Type )
{
    int Ent;
    Ndr_ObjForEachEntry( p, Obj, Ent )
        if ( Ndr_DataType(p, Ent) == Type )
            return Ndr_DataEntryP(p, Ent);
    return NULL;
}
static inline void Ndr_ObjWriteRange( Ndr_Data_t * p, int Obj, FILE * pFile, int fSkipBin )
{
    int * pArray, nArray = Ndr_ObjReadArray( p, Obj, NDR_RANGE, &pArray );
    if ( (nArray == 0 || nArray == 1) && fSkipBin )
        return;
    if ( nArray == 3 && fSkipBin )
        fprintf( pFile, "signed " ); 
    else if ( nArray == 1 )
    {
        if ( fSkipBin )
            fprintf( pFile, "[%d:%d]", pArray[0], pArray[0] );
        else
            fprintf( pFile, "[%d]", pArray[0] );
    }
    else if ( nArray == 0 )
    {
        if ( fSkipBin )
            fprintf( pFile, "[%d:%d]", 0, 0 );
        else
            fprintf( pFile, "[%d]", 0 );
    }
    else
        fprintf( pFile, "[%d:%d]", pArray[0], pArray[1] );
}
static inline char * Ndr_ObjReadOutName( Ndr_Data_t * p, int Obj, char ** pNames )
{
    return pNames[Ndr_ObjReadBody(p, Obj, NDR_OUTPUT)];
}
static inline char * Ndr_ObjReadInName( Ndr_Data_t * p, int Obj, char ** pNames )
{
    return pNames[Ndr_ObjReadBody(p, Obj, NDR_INPUT)];
}

static inline int Ndr_DataCiNum( Ndr_Data_t * p, int Mod )
{ 
    int Obj, Count = 0;
    Ndr_ModForEachPi( p, Mod, Obj )
        Count++;
    return Count;
}
static inline int Ndr_DataCoNum( Ndr_Data_t * p, int Mod )
{ 
    int Obj, Count = 0;
    Ndr_ModForEachPo( p, Mod, Obj )
        Count++;
    return Count;
}
static inline int Ndr_DataObjNum( Ndr_Data_t * p, int Mod )
{ 
    int Obj, Count = 0;
    Ndr_ModForEachObj( p, Mod, Obj )
        Count++;
    return Count;
}

// to write signal names, this procedure takes a mapping of name IDs into actual char-strings (pNames)
static inline void Ndr_WriteVerilogModule( FILE * pFile, void * pDesign, int Mod, char ** pNames )
{
    Ndr_Data_t * p = (Ndr_Data_t *)pDesign; 
    int Obj, nArray, * pArray, fFirst = 1;

    fprintf( pFile, "\nmodule %s (\n  ", pNames[Ndr_ObjReadEntry(p, Mod, NDR_NAME)] );

    Ndr_ModForEachPi( p, Mod, Obj )
        fprintf( pFile, "%s, ", Ndr_ObjReadOutName(p, Obj, pNames) );

    fprintf( pFile, "\n  " );

    Ndr_ModForEachPo( p, Mod, Obj )
        fprintf( pFile, "%s%s", fFirst ? "":", ", Ndr_ObjReadInName(p, Obj, pNames) ), fFirst = 0;

    fprintf( pFile, "\n);\n\n" );

    Ndr_ModForEachPi( p, Mod, Obj )
    {
        fprintf( pFile, "  input " );
        Ndr_ObjWriteRange( p, Obj, pFile, 1 );
        fprintf( pFile, " %s;\n", Ndr_ObjReadOutName(p, Obj, pNames) );
    }

    Ndr_ModForEachPo( p, Mod, Obj )
    {
        fprintf( pFile, "  output " );
        Ndr_ObjWriteRange( p, Obj, pFile, 1 );
        fprintf( pFile, " %s;\n", Ndr_ObjReadInName(p, Obj, pNames) );
    }

    fprintf( pFile, "\n" );

    Ndr_ModForEachNode( p, Mod, Obj )
    {
        fprintf( pFile, "  wire " );
        Ndr_ObjWriteRange( p, Obj, pFile, 1 );
        fprintf( pFile, " %s;\n", Ndr_ObjReadOutName(p, Obj, pNames) );
    }

    fprintf( pFile, "\n" );

    Ndr_ModForEachNode( p, Mod, Obj )
    {
        int i, Type = Ndr_ObjReadBody(p, Obj, NDR_OPERTYPE);
        if ( Type >= 256 )
        {
            fprintf( pFile, "  %s ", pNames[Ndr_ObjReadEntry(p, Type-256, NDR_NAME)] );
            if ( Ndr_ObjReadBody(p, Obj, NDR_NAME) > 0 )
                fprintf( pFile, "%s ", pNames[Ndr_ObjReadBody(p, Obj, NDR_NAME)] );
            fprintf( pFile, "( " );
            nArray = Ndr_ObjReadArray( p, Obj, NDR_INPUT, &pArray );
            for ( i = 0; i < nArray; i++ )
                fprintf( pFile, "%s%s ", pNames[pArray[i]], i==nArray-1 ? "":"," );
            fprintf( pFile, ");\n" );
            continue;
        }
        if ( Type == ABC_OPER_DFF )
        {
            fprintf( pFile, "  %s ", "ABC_DFF" );
            if ( Ndr_ObjReadBody(p, Obj, NDR_NAME) > 0 )
                fprintf( pFile, "%s ", pNames[Ndr_ObjReadBody(p, Obj, NDR_NAME)] );
            fprintf( pFile, "( " );
            nArray = Ndr_ObjReadArray( p, Obj, NDR_INPUT, &pArray );
            fprintf( pFile, ".q(%s), ",    Ndr_ObjReadOutName(p, Obj, pNames) );
            fprintf( pFile, ".d(%s), ",    pNames[pArray[0]] );
            fprintf( pFile, ".init(%s) ",  pNames[pArray[1]] );
            fprintf( pFile, ");\n" );
            continue;
        }
        if ( Type == ABC_OPER_DFFRSE )
        {
            fprintf( pFile, "  %s ", "ABC_DFFRSE" );
            if ( Ndr_ObjReadBody(p, Obj, NDR_NAME) > 0 )
                fprintf( pFile, "%s ", pNames[Ndr_ObjReadBody(p, Obj, NDR_NAME)] );
            fprintf( pFile, "( " );
            nArray = Ndr_ObjReadArray( p, Obj, NDR_INPUT, &pArray );
            fprintf( pFile, ".q(%s), ",      Ndr_ObjReadOutName(p, Obj, pNames) );
            fprintf( pFile, ".d(%s), ",      pNames[pArray[0]] );
            fprintf( pFile, ".clk(%s), ",    pNames[pArray[1]] );
            fprintf( pFile, ".reset(%s), ",  pNames[pArray[2]] );
            fprintf( pFile, ".set(%s), ",    pNames[pArray[3]] );
            fprintf( pFile, ".enable(%s), ", pNames[pArray[4]] );
            fprintf( pFile, ".async(%s), ",  pNames[pArray[5]] );
            fprintf( pFile, ".init(%s) ",    pNames[pArray[6]] );
            fprintf( pFile, ");\n" );
            continue;
        }
        if ( Type == ABC_OPER_RAMR )
        {
            fprintf( pFile, "  %s ", "ABC_READ" );
            if ( Ndr_ObjReadBody(p, Obj, NDR_NAME) > 0 )
                fprintf( pFile, "%s ", pNames[Ndr_ObjReadBody(p, Obj, NDR_NAME)] );
            fprintf( pFile, "( " );
            nArray = Ndr_ObjReadArray( p, Obj, NDR_INPUT, &pArray );
            fprintf( pFile, ".data(%s), ",   Ndr_ObjReadOutName(p, Obj, pNames) );
            fprintf( pFile, ".mem_in(%s), ", pNames[pArray[0]] );
            fprintf( pFile, ".addr(%s) ",    pNames[pArray[1]] );
            fprintf( pFile, ");\n" );
            continue;
        }
        if ( Type == ABC_OPER_RAMW )
        {
            fprintf( pFile, "  %s ", "ABC_WRITE" );
            if ( Ndr_ObjReadBody(p, Obj, NDR_NAME) > 0 )
                fprintf( pFile, "%s ", pNames[Ndr_ObjReadBody(p, Obj, NDR_NAME)] );
            fprintf( pFile, "( " );
            nArray = Ndr_ObjReadArray( p, Obj, NDR_INPUT, &pArray );
            fprintf( pFile, ".mem_out(%s), ",  Ndr_ObjReadOutName(p, Obj, pNames) );
            fprintf( pFile, ".mem_in(%s), ",   pNames[pArray[0]] );
            fprintf( pFile, ".addr(%s), ",     pNames[pArray[1]] );
            fprintf( pFile, ".data(%s) ",      pNames[pArray[2]] );
            fprintf( pFile, ");\n" );
            continue;
        }
        fprintf( pFile, "  assign %s = ", Ndr_ObjReadOutName(p, Obj, pNames) );
        nArray = Ndr_ObjReadArray( p, Obj, NDR_INPUT, &pArray );
        if ( nArray == 0 )
            fprintf( pFile, "%s;\n", (char *)Ndr_ObjReadBodyP(p, Obj, NDR_FUNCTION) );
        else if ( nArray == 1 && Ndr_ObjReadBody(p, Obj, NDR_OPERTYPE) == ABC_OPER_BIT_BUF )
            fprintf( pFile, "%s;\n", pNames[pArray[0]] );
        else if ( Type == ABC_OPER_SLICE )
            fprintf( pFile, "%s", pNames[pArray[0]] ),
            Ndr_ObjWriteRange( p, Obj, pFile, 0 ),
            fprintf( pFile, ";\n" );
        else if ( Type == ABC_OPER_CONCAT )
        {
            fprintf( pFile, "{" );
            for ( i = 0; i < nArray; i++ )
                fprintf( pFile, "%s%s", pNames[pArray[i]], i==nArray-1 ? "":", " );
            fprintf( pFile, "};\n" );
        }
        else if ( nArray == 1 )
            fprintf( pFile, "%s %s;\n", Abc_OperName(Ndr_ObjReadBody(p, Obj, NDR_OPERTYPE)), pNames[pArray[0]] );
        else if ( nArray == 2 )
            fprintf( pFile, "%s %s %s;\n", pNames[pArray[0]], Abc_OperName(Ndr_ObjReadBody(p, Obj, NDR_OPERTYPE)), pNames[pArray[1]] );
        else if ( nArray == 3 && Type == ABC_OPER_ARI_ADD )
            fprintf( pFile, "%s + %s + %s;\n", pNames[pArray[0]], pNames[pArray[1]], pNames[pArray[2]] );
        else if ( Type == ABC_OPER_BIT_MUX )
            fprintf( pFile, "%s ? %s : %s;\n", pNames[pArray[0]], pNames[pArray[1]], pNames[pArray[2]] );
        else
            fprintf( pFile, "<cannot write operation %s>;\n", Abc_OperName(Ndr_ObjReadBody(p, Obj, NDR_OPERTYPE)) );
    }

    fprintf( pFile, "\nendmodule\n\n" );
}

// to write signal names, this procedure takes a mapping of name IDs into actual char-strings (pNames)
static inline void Ndr_WriteVerilog( char * pFileName, void * pDesign, char ** pNames )
{
    Ndr_Data_t * p = (Ndr_Data_t *)pDesign; int Mod;

    FILE * pFile = pFileName ? fopen( pFileName, "wb" ) : stdout;
    if ( pFile == NULL ) { printf( "Cannot open file \"%s\" for writing.\n", pFileName ); return; }

    Ndr_DesForEachMod( p, Mod )
        Ndr_WriteVerilogModule( pFile, p, Mod, pNames );
    
    if ( pFileName ) fclose( pFile );
}


////////////////////////////////////////////////////////////////////////
///                     EXTERNAL PROCEDURES                          ///
////////////////////////////////////////////////////////////////////////

// creating a new module (returns pointer to the memory buffer storing the module info)
static inline void * Ndr_Create( int Name )
{
    Ndr_Data_t * p = ABC_ALLOC( Ndr_Data_t, 1 );
    p->nSize = 0;
    p->nCap  = 16;
    p->pHead = ABC_ALLOC( unsigned char, p->nCap );
    p->pBody = ABC_ALLOC( unsigned int, p->nCap * 4 );
    Ndr_DataPush( p, NDR_DESIGN, 0 );
    Ndr_DataPush( p, NDR_NAME, Name );
    Ndr_DataAddTo( p, 0, p->nSize );
    assert( p->nSize == 2 );
    assert( Name );
    return p;
}

// creating a new module in an already started design 
// returns module ID to be used when adding objects to the module
static inline int Ndr_AddModule( void * pDesign, int Name )
{
    Ndr_Data_t * p = (Ndr_Data_t *)pDesign;
    int Mod = p->nSize;  
    Ndr_DataResize( p, 6 );
    Ndr_DataPush( p, NDR_MODULE, 0 );
    Ndr_DataPush( p, NDR_NAME, Name );
    Ndr_DataAddTo( p, Mod, p->nSize - Mod );
    Ndr_DataAddTo( p, 0, p->nSize - Mod );
    assert( (int)p->pBody[0] == p->nSize );
    return Mod + 256;
}

// adding a new object (input/output/flop/intenal node) to an already started module
// this procedure takes the design, the module ID, and the parameters of the boject
// (please note that all objects should be added to a given module before starting a new module)
static inline void Ndr_AddObject( void * pDesign, int ModuleId,
                                  int ObjType, int InstName, 
                                  int RangeLeft, int RangeRight, int fSignedness, 
                                  int nInputs, int * pInputs, 
                                  int nOutputs, int * pOutputs, 
                                  char * pFunction )
{
    Ndr_Data_t * p = (Ndr_Data_t *)pDesign;
    int Mod = ModuleId - 256;  
    int Obj = p->nSize;  assert( ObjType != 0 );
    Ndr_DataResize( p, 6 );
    Ndr_DataPush( p, NDR_OBJECT, 0 );
    Ndr_DataPush( p, NDR_OPERTYPE, ObjType );
    Ndr_DataPushRange( p, RangeLeft, RangeRight, fSignedness );
    if ( InstName )
        Ndr_DataPush( p, NDR_NAME, InstName );
    Ndr_DataPushArray( p, NDR_INPUT, nInputs, pInputs );
    Ndr_DataPushArray( p, NDR_OUTPUT, nOutputs, pOutputs );
    Ndr_DataPushString( p, NDR_FUNCTION, pFunction );
    Ndr_DataAddTo( p, Obj, p->nSize - Obj );
    Ndr_DataAddTo( p, Mod, p->nSize - Obj );
    Ndr_DataAddTo( p, 0, p->nSize - Obj );
    assert( (int)p->pBody[0] == p->nSize );
}

// deallocate the memory buffer
static inline void Ndr_Delete( void * pDesign )
{
    Ndr_Data_t * p = (Ndr_Data_t *)pDesign;
    if ( !p ) return;
    free( p->pHead );
    free( p->pBody );
    free( p );
}


////////////////////////////////////////////////////////////////////////
///                  FILE READING AND WRITING                        ///
////////////////////////////////////////////////////////////////////////

// file reading/writing
static inline void * Ndr_Read( char * pFileName )
{
    Ndr_Data_t * p; int nFileSize, RetValue;
    FILE * pFile = fopen( pFileName, "rb" );
    if ( pFile == NULL ) { printf( "Cannot open file \"%s\" for reading.\n", pFileName ); return NULL; }
    // check file size
    fseek( pFile, 0, SEEK_END );
    nFileSize = ftell( pFile ); 
    assert( nFileSize % 5 == 0 );
    rewind( pFile );
    // create structure
    p = ABC_ALLOC( Ndr_Data_t, 1 );
    p->nSize = p->nCap = nFileSize / 5;
    p->pHead = ABC_ALLOC( unsigned char, p->nCap );
    p->pBody = ABC_ALLOC( unsigned int, p->nCap * 4 );
    RetValue = (int)fread( p->pBody, 4, p->nCap, pFile );
    RetValue = (int)fread( p->pHead, 1, p->nCap, pFile );
    assert( p->nSize == (int)p->pBody[0] );
    fclose( pFile );
    //printf( "Read the design from file \"%s\".\n", pFileName );
    return p;
}
static inline void Ndr_Write( char * pFileName, void * pDesign )
{
    Ndr_Data_t * p = (Ndr_Data_t *)pDesign; int RetValue;
    FILE * pFile = fopen( pFileName, "wb" );
    if ( pFile == NULL ) { printf( "Cannot open file \"%s\" for writing.\n", pFileName ); return; }
    RetValue = (int)fwrite( p->pBody, 4, p->pBody[0], pFile );
    RetValue = (int)fwrite( p->pHead, 1, p->pBody[0], pFile );
    fclose( pFile );
    //printf( "Dumped the design into file \"%s\".\n", pFileName );
}


////////////////////////////////////////////////////////////////////////
///                     TESTING PROCEDURE                            ///
////////////////////////////////////////////////////////////////////////

// This testing procedure creates and writes into a Verilog file 
// the following design composed of one module

// module add10 ( input [3:0] a, output [3:0] s );
//   wire [3:0] const10 = 4'b1010;
//   assign s = a + const10;
// endmodule

static inline void Ndr_ModuleTest()
{
    // name IDs
    int NameIdA = 2;
    int NameIdS = 3;
    int NameIdC = 4;
    // array of fanins of node s
    int Fanins[2] = { NameIdA, NameIdC };
    // map name IDs into char strings
    char * ppNames[5] = { NULL, "add10", "a", "s", "const10" };

    // create a new module
    void * pDesign = Ndr_Create( 1 );

    int ModuleID = Ndr_AddModule( pDesign, 1 );

    // add objects to the modele
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI,       0,   3, 0, 0,   0, NULL,      1, &NameIdA,   NULL      ); // no fanins
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CONST,    0,   3, 0, 0,   0, NULL,      1, &NameIdC,   "4'b1010" ); // no fanins
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_ARI_ADD,  0,   3, 0, 0,   2, Fanins,    1, &NameIdS,   NULL      ); // fanins are a and const10 
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CO,       0,   3, 0, 0,   1, &NameIdS,  0, NULL,       NULL      ); // fanin is a

    // write Verilog for verification
    Ndr_WriteVerilog( NULL, pDesign, ppNames );
    Ndr_Write( "add4.ndr", pDesign );
    Ndr_Delete( pDesign );
}



// This testing procedure creates and writes into a Verilog file 
// the following design composed of one adder divided into two

// module add8 ( input [7:0] a, input [7:0] b, output [7:0] s, output co );
//   wire [3:0] a0 = a[3:0];
//   wire [3:0] b0 = b[3:0];

//   wire [7:4] a1 = a[7:4];
//   wire [7:4] b1 = b[7:4];

//   wire [4:0] r0 = a0 + b0;
//   wire [3:0] s0 = r0[3:0];
//   wire rco = r0[4];

//   wire [4:0] r1 = a1 + b1 + rco;
//   wire [3:0] s1 = r1[3:0];
//   assign co = r1[4];

//   assign s = {s1, s0};
// endmodule

static inline void Ndr_ModuleTestAdder()
{
    // map name IDs into char strings
    char * ppNames[20] = {  NULL, 
                           "a", "b", "s", "co",          // 1,  2,  3,  4
                           "a0",  "a1",  "b0",  "b1",    // 5,  6,  7,  8
                           "r0", "s0", "rco",            // 9,  10, 11
                           "r1", "s1", "add8"            // 12, 13, 14
                         };
    // fanins 
    int FaninA        =  1;
    int FaninB        =  2;
    int FaninS        =  3;
    int FaninCO       =  4;

    int FaninA0       =  5;
    int FaninA1       =  6;
    int FaninB0       =  7;
    int FaninB1       =  8;

    int FaninR0       =  9;
    int FaninS0       = 10;
    int FaninRCO      = 11;

    int FaninR1       = 12;
    int FaninS1       = 13;

    int Fanins1[2]    = { FaninA0, FaninB0 };
    int Fanins2[3]    = { FaninA1, FaninB1, FaninRCO };
    int Fanins3[4]    = { FaninS1, FaninS0 };

    // create a new module
    void * pDesign = Ndr_Create( 14 );

    int ModuleID = Ndr_AddModule( pDesign, 14 );

    // add objects to the modele
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI,       0,   7, 0, 0,   0, NULL,      1, &FaninA,   NULL  );  // no fanins
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI,       0,   7, 0, 0,   0, NULL,      1, &FaninB,   NULL  );  // no fanins

    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_SLICE,    0,   3, 0, 0,   1, &FaninA,   1, &FaninA0,   NULL );  // wire [3:0] a0 = a[3:0];
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_SLICE,    0,   3, 0, 0,   1, &FaninB,   1, &FaninB0,   NULL );  // wire [3:0] b0 = a[3:0];

    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_SLICE,    0,   7, 4, 0,   1, &FaninA,   1, &FaninA1,   NULL );  // wire [7:4] a1 = a[7:4];
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_SLICE,    0,   7, 4, 0,   1, &FaninB,   1, &FaninB1,   NULL );  // wire [7:4] b1 = b[7:4];

    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_ARI_ADD,  0,   4, 0, 0,   2, Fanins1,   1, &FaninR0,   NULL );  // wire [4:0] r0 = a0 + b0;
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_SLICE,    0,   3, 0, 0,   1, &FaninR0,  1, &FaninS0,   NULL );  // wire [3:0] s0 = r0[3:0];
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_SLICE,    0,   4, 4, 0,   1, &FaninR0,  1, &FaninRCO,  NULL );  // wire rco = r0[4];

    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_ARI_ADD,  0,   4, 0, 0,   3, Fanins2,   1, &FaninR1,   NULL );  // wire [4:0] r1 = a1 + b1 + rco;
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_SLICE,    0,   3, 0, 0,   1, &FaninR1,  1, &FaninS1,   NULL );  // wire [3:0] s1 = r1[3:0];
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_SLICE,    0,   4, 4, 0,   1, &FaninR1,  1, &FaninCO,   NULL );  // assign co = r1[4];

    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CONCAT,   0,   7, 0, 0,   2, Fanins3,   1, &FaninS,    NULL );  // s = {s1, s0};

    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CO,       0,   7, 0, 0,   1, &FaninS,   0, NULL,       NULL ); 
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CO,       0,   0, 0, 0,   1, &FaninCO,  0, NULL,       NULL ); 

    // write Verilog for verification
    Ndr_WriteVerilog( NULL, pDesign, ppNames );
    Ndr_Write( "add8.ndr", pDesign );
    Ndr_Delete( pDesign );

}

// This testing procedure creates and writes into a Verilog file 
// the following hierarchical design composed of two modules

// module mux21w ( input sel, input [3:0] d1, input [3:0] d0, output [3:0] out );
//   assign out = sel ? d1 : d0;
// endmodule

// module mux41w ( input [1:0] sel, input [15:0] d, output [3:0] out );
//   wire [3:0] t0, t1;
//   wire [3:0] d0 = d[3:0];
//   wire [3:0] d1 = d[7:4];
//   wire [3:0] d2 = d[11:8];
//   wire [3:0] d3 = d[15:12];
//   wire sel0 = sel[0];
//   wire sel1 = sel[1];
//   mux21w i0 ( sel0, d1, d0, t0 );
//   mux21w i1 ( sel0, d3, d2, t1 );
//   mux21w i2 ( sel1, t1, t0, out );
// endmodule

static inline void Ndr_ModuleTestHierarchy()
{
    // map name IDs into char strings
    char * ppNames[20] = {  NULL, 
                           "mux21w", "mux41w",     // 1,  2
                           "sel",  "d",  "out",    // 3,  4,  5
                           "d0", "d1", "d2", "d3", // 6,  7,  8,  9
                           "sel0", "sel1",         // 10, 11,
                           "t0", "t1",             // 12, 13
                           "i0", "i1", "i2"        // 14, 15, 16
                         };
    // fanins 
    int FaninSel      =  3;
    int FaninSel0     = 10;
    int FaninSel1     = 11;
    int FaninD        =  4;
    int FaninD0       =  6;
    int FaninD1       =  7;
    int FaninD2       =  8;
    int FaninD3       =  9;
    int FaninT0       = 12;
    int FaninT1       = 13;
    int FaninOut      =  5;
    int Fanins1[3]    = {  FaninSel,  FaninD1, FaninD0 };
    int Fanins3[3][3] = { {FaninSel0, FaninD1, FaninD0 },  
                          {FaninSel0, FaninD3, FaninD2 },  
                          {FaninSel1, FaninT1, FaninT0 } };

    // create a new module
    void * pDesign = Ndr_Create( 2 );

    int Module21, Module41;

    Module21 = Ndr_AddModule( pDesign, 1 );
    
    Ndr_AddObject( pDesign, Module21, ABC_OPER_CI,        0,   0, 0, 0,   0, NULL,        1, &FaninSel,  NULL ); 
    Ndr_AddObject( pDesign, Module21, ABC_OPER_CI,        0,   3, 0, 0,   0, NULL,        1, &FaninD1,   NULL ); 
    Ndr_AddObject( pDesign, Module21, ABC_OPER_CI,        0,   3, 0, 0,   0, NULL,        1, &FaninD0,   NULL ); 
    Ndr_AddObject( pDesign, Module21, ABC_OPER_BIT_MUX,   0,   3, 0, 0,   3, Fanins1,     1, &FaninOut,  NULL ); 
    Ndr_AddObject( pDesign, Module21, ABC_OPER_CO,        0,   3, 0, 0,   1, &FaninOut,   0, NULL,       NULL ); 

    Module41 = Ndr_AddModule( pDesign, 2 );

    Ndr_AddObject( pDesign, Module41, ABC_OPER_CI,        0,   1, 0, 0,   0, NULL,        1, &FaninSel,  NULL ); 
    Ndr_AddObject( pDesign, Module41, ABC_OPER_CI,        0,   15,0, 0,   0, NULL,        1, &FaninD,    NULL ); 

    Ndr_AddObject( pDesign, Module41, ABC_OPER_SLICE,     0,   3, 0, 0,   1, &FaninD,     1, &FaninD0,   NULL ); 
    Ndr_AddObject( pDesign, Module41, ABC_OPER_SLICE,     0,   7, 4, 0,   1, &FaninD,     1, &FaninD1,   NULL ); 
    Ndr_AddObject( pDesign, Module41, ABC_OPER_SLICE,     0,   11,8, 0,   1, &FaninD,     1, &FaninD2,   NULL ); 
    Ndr_AddObject( pDesign, Module41, ABC_OPER_SLICE,     0,   15,12,0,   1, &FaninD,     1, &FaninD3,   NULL ); 

    Ndr_AddObject( pDesign, Module41, ABC_OPER_SLICE,     0,   0, 0, 0,   1, &FaninSel,   1, &FaninSel0, NULL ); 
    Ndr_AddObject( pDesign, Module41, ABC_OPER_SLICE,     0,   1, 1, 0,   1, &FaninSel,   1, &FaninSel1, NULL ); 

    Ndr_AddObject( pDesign, Module41, Module21,          14,   3, 0, 0,   3, Fanins3[0],  1, &FaninT0,   NULL ); 
    Ndr_AddObject( pDesign, Module41, Module21,          15,   3, 0, 0,   3, Fanins3[1],  1, &FaninT1,   NULL ); 
    Ndr_AddObject( pDesign, Module41, Module21,          16,   3, 0, 0,   3, Fanins3[2],  1, &FaninOut,  NULL ); 
    Ndr_AddObject( pDesign, Module41, ABC_OPER_CO,        0,   3, 0, 0,   1, &FaninOut,   0, NULL,       NULL ); 

    // write Verilog for verification
    Ndr_WriteVerilog( NULL, pDesign, ppNames );
    Ndr_Write( "mux41w.ndr", pDesign );
    Ndr_Delete( pDesign );
}


// This testing procedure creates and writes into a Verilog file 
// the following design with read/write memory ports

// module test ( input clk, input [8:0] raddr, input [8:0] waddr, input [31:0] data, input [16383:0] mem_init, output out );
// 
//    wire [31:0] read1, read2;
// 
//    wire [16383:0] mem_fo1, mem_fo2,  mem_fi1, mem_fi2;
// 
//    ABC_FF    i_reg1   ( .q(mem_fo1), .d(mem_fi1), .init(mem_init) );
//    ABC_FF    i_reg2   ( .q(mem_fo2), .d(mem_fi2), .init(mem_init) );
// 
//    ABC_WRITE i_write1 ( .mem_out(mem_fi1), .mem_in(mem_fo1), .addr(waddr), .data(data) );
//    ABC_WRITE i_write2 ( .mem_out(mem_fi2), .mem_in(mem_fo2), .addr(waddr), .data(data) );
// 
//    ABC_READ  i_read1  ( .data(read1), .mem_in(mem_fi1), .addr(raddr) );
//    ABC_READ  i_read2  ( .data(read2), .mem_in(mem_fi2), .addr(raddr) );
//
//    assign out = read1 != read2;
//endmodule

static inline void Ndr_ModuleTestMemory()
{
    // map name IDs into char strings
    char * ppNames[20] = {  NULL, 
                           "clk", "raddr", "waddr", "data", "mem_init", "out",  // 1, 2, 3, 4, 5, 6
                           "read1",  "read2",                                   // 7. 8
                           "mem_fo1", "mem_fo2", "mem_fi1", "mem_fi2",          // 9, 10, 11, 12
                           "i_reg1", "i_reg2",                                  // 13, 14
                           "i_read1", "i_read2",                                // 15, 16
                           "i_write1", "i_write2", "memtest"                    // 17, 18, 19
                         };
    // inputs
    int NameIdClk     = 1;
    int NameIdRaddr   = 2;
    int NameIdWaddr   = 3;
    int NameIdData    = 4;
    int NameIdMemInit = 5;
    // flops
    int NameIdFF1     =  9;
    int NameIdFF2     = 10;
    int FaninsFF1[2]  = { 11, 5 };
    int FaninsFF2[2]  = { 12, 5 };
    // writes
    int NameIdWrite1    = 11;
    int NameIdWrite2    = 12;
    int FaninsWrite1[3] = {  9, 3, 4 };
    int FaninsWrite2[3] = { 10, 3, 4 };
    // reads
    int NameIdRead1    =  7;
    int NameIdRead2    =  8;
    int FaninsRead1[2] = { 11, 2 };
    int FaninsRead2[2] = { 12, 2 };
    // compare
    int NameIdComp      = 6;
    int FaninsComp[2]   = { 7, 8 };

    // create a new module 
    void * pDesign = Ndr_Create( 19 );           // create design named "memtest"

    int ModuleID = Ndr_AddModule( pDesign, 19 ); // create module named "memtest"

    // add objects to the module
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI,           0,     0, 0, 0,   0, NULL,         1, &NameIdClk,     NULL );
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI,           0,     8, 0, 0,   0, NULL,         1, &NameIdRaddr,   NULL );
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI,           0,     8, 0, 0,   0, NULL,         1, &NameIdWaddr,   NULL );
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI,           0,    31, 0, 0,   0, NULL,         1, &NameIdData,    NULL );
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI,           0, 16383, 0, 0,   0, NULL,         1, &NameIdMemInit, NULL );

    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CO,           0,     0, 0, 0,   1, &NameIdComp,  0, NULL,           NULL );

    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_DFF,         13, 16383, 0, 0,   2, FaninsFF1,    1, &NameIdFF1,     NULL );
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_DFF,         14, 16383, 0, 0,   2, FaninsFF2,    1, &NameIdFF2,     NULL );

    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_RAMW,        17, 16383, 0, 0,   3, FaninsWrite1, 1, &NameIdWrite1,  NULL );
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_RAMW,        18, 16383, 0, 0,   3, FaninsWrite2, 1, &NameIdWrite2,  NULL );

    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_RAMR,        15,    31, 0, 0,   2, FaninsRead1,  1, &NameIdRead1,   NULL );
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_RAMR,        16,    31, 0, 0,   2, FaninsRead2,  1, &NameIdRead2,   NULL );

    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_COMP_NOTEQU,  0,     0, 0, 0,   2, FaninsComp,   1, &NameIdComp,    NULL );

    // write Verilog for verification
    Ndr_WriteVerilog( NULL, pDesign, ppNames );
    Ndr_Write( "memtest.ndr", pDesign );
    Ndr_Delete( pDesign );
}

// This testing procedure creates and writes into a Verilog file 
// the following design composed of one word-level flop

// module flop ( input [3:0] data, input clk, input reset, input set, input enable, input async, input [3:0] init, output [3:0] q );
//   ABC_DFFRSE reg1 ( .d(data), .clk(clk), .reset(reset), .set(set), .enable(enable), .async(async), .init(init), .q(q) ) ;
// endmodule

static inline void Ndr_ModuleTestFlop()
{
    // map name IDs into char strings
    char * ppNames[10] = { NULL, "flop", "data", "clk", "reset", "set", "enable", "async", "init", "q" };
    // name IDs
    int NameIdData   = 2;
    int NameIdClk    = 3;
    int NameIdReset  = 4;
    int NameIdSet    = 5;
    int NameIdEnable = 6;
    int NameIdAsync  = 7;
    int NameIdInit   = 8;
    int NameIdQ      = 9;
    // array of fanins of node s
    int Fanins[7] = { NameIdData, NameIdClk, NameIdReset, NameIdSet, NameIdEnable, NameIdAsync, NameIdInit };

    // create a new module
    void * pDesign = Ndr_Create( 1 );

    int ModuleID = Ndr_AddModule( pDesign, 1 );

    // add objects to the modele
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI,       0,   3, 0, 0,   0, NULL,      1, &NameIdData,   NULL );
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI,       0,   0, 0, 0,   0, NULL,      1, &NameIdClk,    NULL );
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI,       0,   0, 0, 0,   0, NULL,      1, &NameIdReset,  NULL );
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI,       0,   0, 0, 0,   0, NULL,      1, &NameIdSet,    NULL );
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI,       0,   0, 0, 0,   0, NULL,      1, &NameIdEnable, NULL );
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI,       0,   0, 0, 0,   0, NULL,      1, &NameIdAsync,  NULL );
    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CI,       0,   3, 0, 0,   0, NULL,      1, &NameIdInit,   NULL );

    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_DFFRSE,   0,   3, 0, 0,   7, Fanins,    1, &NameIdQ,      NULL );

    Ndr_AddObject( pDesign, ModuleID, ABC_OPER_CO,       0,   3, 0, 0,   1, &NameIdQ,  0, NULL,          NULL );

    // write Verilog for verification
    Ndr_WriteVerilog( NULL, pDesign, ppNames );
    Ndr_Write( "flop.ndr", pDesign );
    Ndr_Delete( pDesign );
}

ABC_NAMESPACE_HEADER_END

#endif

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////