aboutsummaryrefslogtreecommitdiffstats
path: root/target/linux/bcm27xx/patches-5.4/950-0804-drivers-media-Remove-the-downstream-version-of-bcm28.patch
Commit message (Expand)AuthorAgeFilesLines
* bcm27xx: import latest patches from the RPi foundationÁlvaro Fernández Rojas2021-02-191-0/+3175
#n48'>48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
/*
 *	Intel SMP support routines.
 *
 *	(c) 1995 Alan Cox, Building #3 <alan@redhat.com>
 *	(c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
 *
 *	This code is released under the GNU General Public License version 2 or
 *	later.
 */

#include <xen/irq.h>
#include <xen/sched.h>
#include <xen/delay.h>
#include <xen/spinlock.h>
#include <asm/smp.h>
#include <asm/mc146818rtc.h>
#include <asm/flushtlb.h>
#include <asm/smpboot.h>
#include <asm/hardirq.h>

#ifdef CONFIG_SMP

/*
 *	Some notes on x86 processor bugs affecting SMP operation:
 *
 *	Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
 *	The Linux implications for SMP are handled as follows:
 *
 *	Pentium III / [Xeon]
 *		None of the E1AP-E3AP errata are visible to the user.
 *
 *	E1AP.	see PII A1AP
 *	E2AP.	see PII A2AP
 *	E3AP.	see PII A3AP
 *
 *	Pentium II / [Xeon]
 *		None of the A1AP-A3AP errata are visible to the user.
 *
 *	A1AP.	see PPro 1AP
 *	A2AP.	see PPro 2AP
 *	A3AP.	see PPro 7AP
 *
 *	Pentium Pro
 *		None of 1AP-9AP errata are visible to the normal user,
 *	except occasional delivery of 'spurious interrupt' as trap #15.
 *	This is very rare and a non-problem.
 *
 *	1AP.	Linux maps APIC as non-cacheable
 *	2AP.	worked around in hardware
 *	3AP.	fixed in C0 and above steppings microcode update.
 *		Linux does not use excessive STARTUP_IPIs.
 *	4AP.	worked around in hardware
 *	5AP.	symmetric IO mode (normal Linux operation) not affected.
 *		'noapic' mode has vector 0xf filled out properly.
 *	6AP.	'noapic' mode might be affected - fixed in later steppings
 *	7AP.	We do not assume writes to the LVT deassering IRQs
 *	8AP.	We do not enable low power mode (deep sleep) during MP bootup
 *	9AP.	We do not use mixed mode
 */

/*
 * the following functions deal with sending IPIs between CPUs.
 *
 * We use 'broadcast', CPU->CPU IPIs and self-IPIs too.
 */

static inline int __prepare_ICR (unsigned int shortcut, int vector)
{
    return APIC_DM_FIXED | shortcut | vector | APIC_DEST_LOGICAL;
}

static inline int __prepare_ICR2 (unsigned int mask)
{
    return SET_APIC_DEST_FIELD(mask);
}

static inline void __send_IPI_shortcut(unsigned int shortcut, int vector)
{
    /*
     * Subtle. In the case of the 'never do double writes' workaround
     * we have to lock out interrupts to be safe.  As we don't care
     * of the value read we use an atomic rmw access to avoid costly
     * cli/sti.  Otherwise we use an even cheaper single atomic write
     * to the APIC.
	 */
    unsigned int cfg;

    /*
	 * Wait for idle.
	 */
    apic_wait_icr_idle();

    /*
	 * No need to touch the target chip field
	 */
    cfg = __prepare_ICR(shortcut, vector);

    /*
	 * Send the IPI. The write to APIC_ICR fires this off.
	 */
    apic_write_around(APIC_ICR, cfg);
}

void send_IPI_self(int vector)
{
    __send_IPI_shortcut(APIC_DEST_SELF, vector);
}

static inline void send_IPI_mask(int mask, int vector)
{
    unsigned long cfg;
    unsigned long flags;

    __save_flags(flags);
    __cli();

		
    /*
     * Wait for idle.
     */
    apic_wait_icr_idle();
		
    /*
     * prepare target chip field
     */
    cfg = __prepare_ICR2(mask);
    apic_write_around(APIC_ICR2, cfg);
		
    /*
     * program the ICR 
     */
    cfg = __prepare_ICR(0, vector);
			
    /*
     * Send the IPI. The write to APIC_ICR fires this off.
     */
    apic_write_around(APIC_ICR, cfg);

    __restore_flags(flags);
}

static inline void send_IPI_allbutself(int vector)
{
    /*
     * if there are no other CPUs in the system then
     * we get an APIC send error if we try to broadcast.
     * thus we have to avoid sending IPIs in this case.
     */
    if (!(smp_num_cpus > 1))
        return;

    __send_IPI_shortcut(APIC_DEST_ALLBUT, vector);
}

/*
 * ********* XEN NOTICE **********
 * I've left the following comments lying around as they look liek they might
 * be useful to get multiprocessor guest OSes going. However, I suspect the
 * issues we face will be quite different so I've ripped out all the
 * TLBSTATE logic (I didn't understand it anyway :-). These comments do
 * not apply to Xen, therefore! -- Keir (8th Oct 2003).
 */
/*
 *	Smarter SMP flushing macros. 
 *		c/o Linus Torvalds.
 *
 *	These mean you can really definitely utterly forget about
 *	writing to user space from interrupts. (Its not allowed anyway).
 *
 *	Optimizations Manfred Spraul <manfred@colorfullife.com>
 *
 * The flush IPI assumes that a thread switch happens in this order:
 * [cpu0: the cpu that switches]
 * 1) switch_mm() either 1a) or 1b)
 * 1a) thread switch to a different mm
 * 1a1) clear_bit(cpu, &old_mm.cpu_vm_mask);
 * 	Stop ipi delivery for the old mm. This is not synchronized with
 * 	the other cpus, but smp_invalidate_interrupt ignore flush ipis
 * 	for the wrong mm, and in the worst case we perform a superflous
 * 	tlb flush.
 * 1a2) set cpu_tlbstate to TLBSTATE_OK
 * 	Now the smp_invalidate_interrupt won't call leave_mm if cpu0
 *	was in lazy tlb mode.
 * 1a3) update cpu_tlbstate[].active_mm
 * 	Now cpu0 accepts tlb flushes for the new mm.
 * 1a4) set_bit(cpu, &new_mm.cpu_vm_mask);
 * 	Now the other cpus will send tlb flush ipis.
 * 1a4) change cr3.
 * 1b) thread switch without mm change
 *	cpu_tlbstate[].active_mm is correct, cpu0 already handles
 *	flush ipis.
 * 1b1) set cpu_tlbstate to TLBSTATE_OK
 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
 * 	Atomically set the bit [other cpus will start sending flush ipis],
 * 	and test the bit.
 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
 * 2) switch %%esp, ie current
 *
 * The interrupt must handle 2 special cases:
 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
 *   runs in kernel space, the cpu could load tlb entries for user space
 *   pages.
 *
 * The good news is that cpu_tlbstate is local to each cpu, no
 * write/read ordering problems.
 *
 * TLB flush IPI:
 *
 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
 * 2) Leave the mm if we are in the lazy tlb mode.
 */

static spinlock_t flush_lock = SPIN_LOCK_UNLOCKED;
static unsigned long flush_cpumask;

asmlinkage void smp_invalidate_interrupt(void)
{
    ack_APIC_irq();
    perfc_incrc(ipis);
    local_flush_tlb();
    clear_bit(smp_processor_id(), &flush_cpumask);
}

void flush_tlb_mask(unsigned long mask)
{
    ASSERT(local_irq_is_enabled());
    
    if ( mask & (1 << smp_processor_id()) )
    {
        local_flush_tlb();
        mask &= ~(1 << smp_processor_id());
    }

    if ( mask != 0 )
    {
        spin_lock(&flush_lock);

        flush_cpumask = mask;
        send_IPI_mask(mask, INVALIDATE_TLB_VECTOR);
        while ( flush_cpumask != 0 )
        {
            rep_nop();
            barrier();
        }

        spin_unlock(&flush_lock);
    }
}

/* Call with no locks held and interrupts enabled (e.g., softirq context). */
void new_tlbflush_clock_period(void)
{
    ASSERT(local_irq_is_enabled());
    
    /* Flush everyone else. We definitely flushed just before entry. */
    if ( smp_num_cpus > 1 )
    {
        spin_lock(&flush_lock);
        flush_cpumask = ((1 << smp_num_cpus) - 1) & ~(1 << smp_processor_id());
        send_IPI_allbutself(INVALIDATE_TLB_VECTOR);
        while ( flush_cpumask != 0 )
        {
            rep_nop();
            barrier();
        }
        spin_unlock(&flush_lock);
    }

    /* No need for atomicity: we are the only possible updater. */
    ASSERT(tlbflush_clock == 0);
    tlbflush_clock++;
}

static void flush_tlb_all_pge_ipi(void* info)
{
    __flush_tlb_pge();
}

void flush_tlb_all_pge(void)
{
    smp_call_function (flush_tlb_all_pge_ipi,0,1,1);
    __flush_tlb_pge();
}

void smp_send_event_check_mask(unsigned long cpu_mask)
{
    cpu_mask &= ~(1<<smp_processor_id());
    if ( cpu_mask != 0 )
        send_IPI_mask(cpu_mask, EVENT_CHECK_VECTOR);
}

/*
 * Structure and data for smp_call_function(). This is designed to minimise
 * static memory requirements. It also looks cleaner.
 */
static spinlock_t call_lock = SPIN_LOCK_UNLOCKED;

struct call_data_struct {
    void (*func) (void *info);
    void *info;
    atomic_t started;
    atomic_t finished;
    int wait;
};

static struct call_data_struct * call_data;

/*
 * this function sends a 'generic call function' IPI to all other CPUs
 * in the system.
 */

int smp_call_function (void (*func) (void *info), void *info, int nonatomic,
                       int wait)
/*
 * [SUMMARY] Run a function on all other CPUs.
 * <func> The function to run. This must be fast and non-blocking.
 * <info> An arbitrary pointer to pass to the function.
 * <nonatomic> currently unused.
 * <wait> If true, wait (atomically) until function has completed on other CPUs.
 * [RETURNS] 0 on success, else a negative status code. Does not return until
 * remote CPUs are nearly ready to execute <<func>> or are or have executed.
 *
 * You must not call this function with disabled interrupts or from a
 * hardware interrupt handler, or bottom halfs.
 */
{
    struct call_data_struct data;
    int cpus = smp_num_cpus-1;

    if (!cpus)
        return 0;

    data.func = func;
    data.info = info;
    atomic_set(&data.started, 0);
    data.wait = wait;
    if (wait)
        atomic_set(&data.finished, 0);

    ASSERT(local_irq_is_enabled());

    spin_lock(&call_lock);

    call_data = &data;
    wmb();
    /* Send a message to all other CPUs and wait for them to respond */
    send_IPI_allbutself(CALL_FUNCTION_VECTOR);

    /* Wait for response */
    while (atomic_read(&data.started) != cpus)
        barrier();

    if (wait)
        while (atomic_read(&data.finished) != cpus)
            barrier();

    spin_unlock(&call_lock);

    return 0;
}

static void stop_this_cpu (void * dummy)
{
    /*
     * Remove this CPU:
     */
    clear_bit(smp_processor_id(), &cpu_online_map);
    __cli();
    disable_local_APIC();
    for(;;) __asm__("hlt");
}

/*
 * this function calls the 'stop' function on all other CPUs in the system.
 */

void smp_send_stop(void)
{
    smp_call_function(stop_this_cpu, NULL, 1, 0);
    smp_num_cpus = 1;

    __cli();
    disable_local_APIC();
    __sti();
}

/*
 * Nothing to do, as all the work is done automatically when
 * we return from the interrupt.
 */
asmlinkage void smp_event_check_interrupt(void)
{
    ack_APIC_irq();
    perfc_incrc(ipis);
}

asmlinkage void smp_call_function_interrupt(void)
{
    void (*func) (void *info) = call_data->func;
    void *info = call_data->info;
    int wait = call_data->wait;

    ack_APIC_irq();
    perfc_incrc(ipis);

    /*
     * Notify initiating CPU that I've grabbed the data and am
     * about to execute the function
     */
    mb();
    atomic_inc(&call_data->started);
    /*
     * At this point the info structure may be out of scope unless wait==1
     */
    (*func)(info);
    if (wait) {
        mb();
        atomic_inc(&call_data->finished);
    }
}

#endif /* CONFIG_SMP */