aboutsummaryrefslogtreecommitdiffstats
path: root/target/linux/generic/backport-4.9/065-v4.13-0008-mtd-extract-TRX-parser-out-of-bcm47xxpart-into-a-sep.patch
Commit message (Expand)AuthorAgeFilesLines
* kernel: split patches folder up into backport, pending and hack foldersJohn Crispin2017-08-051-0/+320
' href='#n67'>67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2018  whitequark <whitequark@whitequark.org>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

// [[CITE]] FlowMap algorithm
// Jason Cong; Yuzheng Ding, "An Optimal Technology Mapping Algorithm for Delay Optimization in Lookup-Table Based FPGA Designs,"
// Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, Vol. 13, pp. 1-12, Jan. 1994.
// doi: 10.1109/43.273754

// [[CITE]] FlowMap-r algorithm
// Jason Cong; Yuzheng Ding, "On Area/Depth Tradeoff in LUT-Based FPGA Technology Mapping,"
// Very Large Scale Integration Systems, IEEE Transactions on, Vol. 2, June 1994.
// doi: 10.1109/92.28574

// Required reading material:
//
// Min-cut max-flow theorem:
//   https://www.coursera.org/lecture/algorithms-part2/maxflow-mincut-theorem-beb9G
// FlowMap paper:
//   http://cadlab.cs.ucla.edu/~cong/papers/iccad92.pdf   (short version)
//   https://limsk.ece.gatech.edu/book/papers/flowmap.pdf (long version)
// FlowMap-r paper:
//   http://cadlab.cs.ucla.edu/~cong/papers/dac93.pdf     (short version)
//   https://sci-hub.tw/10.1109/92.285741                 (long version)

// Notes on correspondence between paper and implementation:
//
// 1. In the FlowMap paper, the nodes are logic elements (analogous to Yosys cells) and edges are wires. However, in our implementation,
// we use an inverted approach: the nodes are Yosys wire bits, and the edges are derived from (but aren't represented by) Yosys cells.
// This may seem counterintuitive. Three observations may help understanding this. First, for a cell with a 1-bit Y output that is
// the sole driver of its output net (which is the typical case), these representations are equivalent, because there is an exact
// correspondence between cells and output wires. Second, in the paper, primary inputs (analogous to Yosys cell or module ports) are
// nodes, and in Yosys, inputs are wires; our approach allows a direct mapping from both primary inputs and 1-output logic elements to
// flow graph nodes. Third, Yosys cells may have multiple outputs or multi-bit outputs, and by using Yosys wire bits as flow graph nodes,
// such cells are supported without any additional effort; any Yosys cell with n output wire bits ends up being split into n flow graph
// nodes.
//
// 2. The FlowMap paper introduces three networks: Nt, Nt', and Nt''. The network Nt is directly represented by a subgraph of RTLIL graph,
// which is parsed into an equivalent but easier to traverse representation in FlowmapWorker. The network Nt' is built explicitly
// from a subgraph of Nt, and uses a similar representation in FlowGraph. The network Nt'' is implicit in FlowGraph, which is possible
// because of the following observation: each Nt' node corresponds to an Nt'' edge of capacity 1, and each Nt' edge corresponds to
// an Nt'' edge of capacity ∞. Therefore, we only need to explicitly record flow for Nt' edges and through Nt' nodes.
//
// 3. The FlowMap paper ambiguously states: "Moreover, we can find such a cut (X′′, X̅′′) by performing a depth first search starting at
// the source s, and including in X′′ all the nodes which are reachable from s." This actually refers to a specific kind of search,
// min-cut computation. Min-cut computation involves computing the set of nodes reachable from s by an undirected path with no full
// (i.e. zero capacity) forward edges or empty (i.e. no flow) backward edges. In addition, the depth first search is required to compute
// a max-volume max-flow min-cut specifically, because a max-flow min-cut is not, in general, unique.

// Notes on implementation:
//
// 1. To compute depth optimal packing, an intermediate representation is used, where each cell with n output bits is split into n graph
// nodes. Each such graph node is represented directly with the wire bit (RTLIL::SigBit instance) that corresponds to the output bit
// it is created from. Fan-in and fan-out are represented explicitly by edge lists derived from the RTLIL graph. This IR never changes
// after it has been computed.
//
// In terms of data, this IR is comprised of `inputs`, `outputs`, `nodes`, `edges_fw` and `edges_bw` fields.
//
// We call this IR "gate IR".
//
// 2. To compute area optimal packing, another intermediate representation is used, which consists of some K-feasible cone for every node
// that exists in the gate IR. Immediately after depth optimal packing with FlowMap, each such cone occupies the lowest possible depth,
// but this is not true in general, and transformations of this IR may change the cones, although each transformation has to keep each
// cone K-feasible. In this IR, LUT fan-in and fan-out are represented explicitly by edge lists; if a K-feasible cone chosen for node A
// includes nodes B and C, there are edges between all predecessors of A, B and C in the gate IR and node A in this IR. Moreover, in
// this IR, cones may be *realized* or *derealized*. Only realized cones will end up mapped to actual LUTs in the output of this pass.
//
// Intuitively, this IR contains (some, ideally but not necessarily optimal) LUT representation for each input cell. By starting at outputs
// and traversing the graph of this IR backwards, each K-feasible cone is converted to an actual LUT at the end of the pass. This is
// the same as iterating through each realized LUT.
//
// The following are the invariants of this IR:
//   a) Each gate IR node corresponds to a K-feasible cut.
//   b) Each realized LUT is reachable through backward edges from some output.
//   c) The LUT fan-in is exactly the fan-in of its constituent gates minus the fan-out of its constituent gates.
// The invariants are kept even for derealized LUTs, since the whole point of this IR is ease of packing, unpacking, and repacking LUTs.
//
// In terms of data, this IR is comprised of `lut_nodes` (the set of all realized LUTs), `lut_gates` (the map from a LUT to its
// constituent gates), `lut_edges_fw` and `lut_edges_bw` fields. The `inputs` and `outputs` fields are shared with the gate IR.
//
// We call this IR "LUT IR".

#include "kernel/yosys.h"
#include "kernel/sigtools.h"
#include "kernel/modtools.h"
#include "kernel/consteval.h"

USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN

struct GraphStyle
{
	string label;
	string color, fillcolor;

	GraphStyle(string label = "", string color = "black", string fillcolor = "") :
		label(label), color(color), fillcolor(fillcolor) {}
};

static string dot_escape(string value)
{
	std::string escaped;
	for (char c : value) {
		if (c == '\n')
		{
			escaped += "\\n";
			continue;
		}
		if (c == '\\' || c == '"')
			escaped += "\\";
		escaped += c;
	}
	return escaped;
}

static void dump_dot_graph(string filename,
                           pool<RTLIL::SigBit> nodes, dict<RTLIL::SigBit, pool<RTLIL::SigBit>> edges,
                           pool<RTLIL::SigBit> inputs, pool<RTLIL::SigBit> outputs,
                           std::function<GraphStyle(RTLIL::SigBit)> node_style =
                                   [](RTLIL::SigBit) { return GraphStyle{}; },
                           std::function<GraphStyle(RTLIL::SigBit, RTLIL::SigBit)> edge_style =
                                   [](RTLIL::SigBit, RTLIL::SigBit) { return GraphStyle{}; },
                           string name = "")
{
	FILE *f = fopen(filename.c_str(), "w");
	fprintf(f, "digraph \"%s\" {\n", name.c_str());
	fprintf(f, "  rankdir=\"TB\";\n");

	dict<RTLIL::SigBit, int> ids;
	for (auto node : nodes)
	{
		ids[node] = ids.size();

		string shape = "ellipse";
		if (inputs[node])
			shape = "box";
		if (outputs[node])
			shape = "octagon";
		auto prop = node_style(node);
		string style = "";
		if (!prop.fillcolor.empty())
			style = "filled";
		fprintf(f, "  n%d [ shape=%s, fontname=\"Monospace\", label=\"%s\", color=\"%s\", fillcolor=\"%s\", style=\"%s\" ];\n",
		        ids[node], shape.c_str(), dot_escape(prop.label.c_str()).c_str(), prop.color.c_str(), prop.fillcolor.c_str(), style.c_str());
	}

	fprintf(f, "  { rank=\"source\"; ");
	for (auto input : inputs)
		if (nodes[input])
			fprintf(f, "n%d; ", ids[input]);
	fprintf(f, "}\n");

	fprintf(f, "  { rank=\"sink\"; ");
	for (auto output : outputs)
		if (nodes[output])
			fprintf(f, "n%d; ", ids[output]);
	fprintf(f, "}\n");

	for (auto edge : edges)
	{
		auto source = edge.first;
		for (auto sink : edge.second) {
			if (nodes[source] && nodes[sink])
			{
				auto prop = edge_style(source, sink);
				fprintf(f, "  n%d -> n%d [ label=\"%s\", color=\"%s\", fillcolor=\"%s\" ];\n",
				        ids[source], ids[sink], dot_escape(prop.label.c_str()).c_str(), prop.color.c_str(), prop.fillcolor.c_str());
			}
		}
	}

	fprintf(f, "}\n");
	fclose(f);
}

struct FlowGraph
{
	const RTLIL::SigBit source;
	RTLIL::SigBit sink;
	pool<RTLIL::SigBit> nodes = {source};
	dict<RTLIL::SigBit, pool<RTLIL::SigBit>> edges_fw, edges_bw;

	const int MAX_NODE_FLOW = 1;
	dict<RTLIL::SigBit, int> node_flow;
	dict<pair<RTLIL::SigBit, RTLIL::SigBit>, int> edge_flow;

	dict<RTLIL::SigBit, pool<RTLIL::SigBit>> collapsed;

	void dump_dot_graph(string filename)
	{
		auto node_style = [&](RTLIL::SigBit node) {
			string label = (node == source) ? "(source)" : log_signal(node);
			for (auto collapsed_node : collapsed[node])
				label += stringf(" %s", log_signal(collapsed_node));
			int flow = node_flow[node];
			if (node != source && node != sink)
				label += stringf("\n%d/%d", flow, MAX_NODE_FLOW);
			else
				label += stringf("\n%d/∞", flow);
			return GraphStyle{label, flow < MAX_NODE_FLOW ? "green" : "black"};
		};
		auto edge_style = [&](RTLIL::SigBit source, RTLIL::SigBit sink) {
			int flow = edge_flow[{source, sink}];
			return GraphStyle{stringf("%d/∞", flow), flow > 0 ? "blue" : "black"};
		};
		::dump_dot_graph(filename, nodes, edges_fw, {source}, {sink}, node_style, edge_style);
	}

	// Here, we are working on the Nt'' network, but our representation is the Nt' network.
	// The difference between these is that where in Nt' we have a subgraph:
	//
	//   v1 -> v2 -> v3
	//
	// in Nt'' we have a corresponding subgraph:
	//
	//   v'1b -∞-> v'2t -f-> v'2b -∞-> v'3t
	//
	// To address this, we split each node v into two nodes, v't and v'b. This representation is virtual,
	// in the sense that nodes v't and v'b are overlaid on top of the original node v, and only exist
	// in paths and worklists.

	struct NodePrime
	{
		RTLIL::SigBit node;
		bool is_bottom;

		NodePrime(RTLIL::SigBit node, bool is_bottom) :
			node(node), is_bottom(is_bottom) {}

		bool operator==(const NodePrime &other) const
		{
			return node == other.node && is_bottom == other.is_bottom;
		}
		bool operator!=(const NodePrime &other) const
		{
			return !(*this == other);
		}
		unsigned int hash() const
		{
			return hash_ops<pair<RTLIL::SigBit, int>>::hash({node, is_bottom});
		}

		static NodePrime top(RTLIL::SigBit node)
		{
			return NodePrime(node, /*is_bottom=*/false);
		}

		static NodePrime bottom(RTLIL::SigBit node)
		{
			return NodePrime(node, /*is_bottom=*/true);
		}

		NodePrime as_top() const
		{
			log_assert(is_bottom);
			return top(node);
		}

		NodePrime as_bottom() const
		{
			log_assert(!is_bottom);
			return bottom(node);
		}
	};

	bool find_augmenting_path(bool commit)
	{
		NodePrime source_prime = {source, true};
		NodePrime sink_prime = {sink, false};
		vector<NodePrime> path = {source_prime};
		pool<NodePrime> visited = {};
		bool found;
		do {
			found = false;

			auto node_prime = path.back();
			visited.insert(node_prime);

			if (!node_prime.is_bottom) // vt
			{
				if (!visited[node_prime.as_bottom()] && node_flow[node_prime.node] < MAX_NODE_FLOW)
				{
					path.push_back(node_prime.as_bottom());
					found = true;
				}
				else
				{
					for (auto node_pred : edges_bw[node_prime.node])
					{
						if (!visited[NodePrime::bottom(node_pred)] && edge_flow[{node_pred, node_prime.node}] > 0)
						{
							path.push_back(NodePrime::bottom(node_pred));
							found = true;
							break;
						}
					}
				}
			}
			else // vb
			{
				if (!visited[node_prime.as_top()] && node_flow[node_prime.node] > 0)
				{
					path.push_back(node_prime.as_top());
					found = true;
				}
				else
				{
					for (auto node_succ : edges_fw[node_prime.node])
					{
						if (!visited[NodePrime::top(node_succ)] /* && edge_flow[...] < ∞ */)
						{
							path.push_back(NodePrime::top(node_succ));
							found = true;
							break;
						}
					}
				}
			}

			if (!found && path.size() > 1)
			{
				path.pop_back();
				found = true;
			}
		} while(path.back() != sink_prime && found);

		if (commit && path.back() == sink_prime)
		{
			auto prev_prime = path.front();
			for (auto node_prime : path)
			{
				if (node_prime == source_prime)
					continue;

				log_assert(prev_prime.is_bottom ^ node_prime.is_bottom);
				if (prev_prime.node == node_prime.node)
				{
					auto node = node_prime.node;
					if (!prev_prime.is_bottom && node_prime.is_bottom)
					{
						log_assert(node_flow[node] == 0);
						node_flow[node]++;
					}
					else
					{
						log_assert(node_flow[node] != 0);
						node_flow[node]--;
					}
				}
				else
				{
					if (prev_prime.is_bottom && !node_prime.is_bottom)
					{
						log_assert(true /* edge_flow[...] < ∞ */);
						edge_flow[{prev_prime.node, node_prime.node}]++;
					}
					else
					{
						log_assert((edge_flow[{node_prime.node, prev_prime.node}] > 0));
						edge_flow[{node_prime.node, prev_prime.node}]--;
					}
				}
				prev_prime = node_prime;
			}

			node_flow[source]++;
			node_flow[sink]++;
		}
		return path.back() == sink_prime;
	}

	int maximum_flow(int order)
	{
		int flow = 0;
		while (flow < order && find_augmenting_path(/*commit=*/true))
			flow++;
		return flow + find_augmenting_path(/*commit=*/false);
	}

	pair<pool<RTLIL::SigBit>, pool<RTLIL::SigBit>> edge_cut()
	{
		pool<RTLIL::SigBit> x = {source}, xi; // X and XÌ… in the paper

		NodePrime source_prime = {source, true};
		pool<NodePrime> visited;
		vector<NodePrime> worklist = {source_prime};
		while (!worklist.empty())
		{
			auto node_prime = worklist.back();
			worklist.pop_back();
			if (visited[node_prime])
				continue;
			visited.insert(node_prime);

			if (!node_prime.is_bottom)
				x.insert(node_prime.node);

			// Mincut is constructed by traversing a graph in an undirected way along forward edges that aren't full, or backward edges
			// that aren't empty.
			if (!node_prime.is_bottom) // top
			{
				if (node_flow[node_prime.node] < MAX_NODE_FLOW)
					worklist.push_back(node_prime.as_bottom());
				for (auto node_pred : edges_bw[node_prime.node])
					if (edge_flow[{node_pred, node_prime.node}] > 0)
						worklist.push_back(NodePrime::bottom(node_pred));
			}
			else // bottom
			{
				if (node_flow[node_prime.node] > 0)
					worklist.push_back(node_prime.as_top());
				for (auto node_succ : edges_fw[node_prime.node])
					if (true /* edge_flow[...] < ∞ */)
						worklist.push_back(NodePrime::top(node_succ));
			}
		}

		for (auto node : nodes)
			if (!x[node])
				xi.insert(node);

		for (auto collapsed_node : collapsed[sink])
			xi.insert(collapsed_node);

		log_assert(x[source] && !xi[source]);
		log_assert(!x[sink] && xi[sink]);
		return {x, xi};
	}
};

struct FlowmapWorker
{
	int order;
	int r_alpha, r_beta, r_gamma;
	bool debug, debug_relax;

	RTLIL::Module *module;
	SigMap sigmap;
	ModIndex index;

	dict<RTLIL::SigBit, ModIndex::PortInfo> node_origins;

	// Gate IR
	pool<RTLIL::SigBit> nodes, inputs, outputs;
	dict<RTLIL::SigBit, pool<RTLIL::SigBit>> edges_fw, edges_bw;
	dict<RTLIL::SigBit, int> labels;

	// LUT IR
	pool<RTLIL::SigBit> lut_nodes;
	dict<RTLIL::SigBit, pool<RTLIL::SigBit>> lut_gates;
	dict<RTLIL::SigBit, pool<RTLIL::SigBit>> lut_edges_fw, lut_edges_bw;
	dict<RTLIL::SigBit, int> lut_depths, lut_altitudes, lut_slacks;

	int gate_count = 0, lut_count = 0, packed_count = 0;
	int gate_area = 0, lut_area = 0;

	enum class GraphMode {
		Label,
		Cut,
		Slack,
	};

	void dump_dot_graph(string filename, GraphMode mode,
	                    pool<RTLIL::SigBit> subgraph_nodes = {}, dict<RTLIL::SigBit, pool<RTLIL::SigBit>> subgraph_edges = {},
	                    dict<RTLIL::SigBit, pool<RTLIL::SigBit>> collapsed = {},
	                    pair<pool<RTLIL::SigBit>, pool<RTLIL::SigBit>> cut = {})
	{
		if (subgraph_nodes.empty())
			subgraph_nodes = nodes;
		if (subgraph_edges.empty())
			subgraph_edges = edges_fw;

		auto node_style = [&](RTLIL::SigBit node) {
			string label = log_signal(node);
			for (auto collapsed_node : collapsed[node])
				if (collapsed_node != node)
					label += stringf(" %s", log_signal(collapsed_node));
			switch (mode)
			{
				case GraphMode::Label:
					if (labels[node] == -1)
					{
						label += "\nl=?";
						return GraphStyle{label};
					}
					else
					{
						label += stringf("\nl=%d", labels[node]);
						string fillcolor = stringf("/set311/%d", 1 + labels[node] % 11);
						return GraphStyle{label, "", fillcolor};
					}

				case GraphMode::Cut:
					if (cut.first[node])
						return GraphStyle{label, "blue"};
					if (cut.second[node])
						return GraphStyle{label, "red"};
					return GraphStyle{label};

				case GraphMode::Slack:
					label += stringf("\nd=%d a=%d\ns=%d", lut_depths[node], lut_altitudes[node], lut_slacks[node]);
					return GraphStyle{label, lut_slacks[node] == 0 ? "red" : "black"};
			}
			return GraphStyle{label};
		};
		auto edge_style = [&](RTLIL::SigBit, RTLIL::SigBit) {
			return GraphStyle{};
		};
		::dump_dot_graph(filename, subgraph_nodes, subgraph_edges, inputs, outputs, node_style, edge_style, module->name.str());
	}

	void dump_dot_lut_graph(string filename, GraphMode mode)
	{
		pool<RTLIL::SigBit> lut_and_input_nodes;
		lut_and_input_nodes.insert(lut_nodes.begin(), lut_nodes.end());
		lut_and_input_nodes.insert(inputs.begin(), inputs.end());
		dump_dot_graph(filename, mode, lut_and_input_nodes, lut_edges_fw, lut_gates);
	}

	pool<RTLIL::SigBit> find_subgraph(RTLIL::SigBit sink)
	{
		pool<RTLIL::SigBit> subgraph;
		pool<RTLIL::SigBit> worklist = {sink};
		while (!worklist.empty())
		{
			auto node = worklist.pop();
			subgraph.insert(node);
			for (auto source : edges_bw[node])
			{
				if (!subgraph[source])
					worklist.insert(source);
			}
		}
		return subgraph;
	}

	FlowGraph build_flow_graph(RTLIL::SigBit sink, int p)
	{
		FlowGraph flow_graph;
		flow_graph.sink = sink;

		pool<RTLIL::SigBit> worklist = {sink}, visited;
		while (!worklist.empty())
		{
			auto node = worklist.pop();
			visited.insert(node);

			auto collapsed_node = labels[node] == p ? sink : node;
			if (node != collapsed_node)
				flow_graph.collapsed[collapsed_node].insert(node);
			flow_graph.nodes.insert(collapsed_node);

			for (auto node_pred : edges_bw[node])
			{
				auto collapsed_node_pred = labels[node_pred] == p ? sink : node_pred;
				if (node_pred != collapsed_node_pred)
					flow_graph.collapsed[collapsed_node_pred].insert(node_pred);
				if (collapsed_node != collapsed_node_pred)
				{
					flow_graph.edges_bw[collapsed_node].insert(collapsed_node_pred);
					flow_graph.edges_fw[collapsed_node_pred].insert(collapsed_node);
				}
				if (inputs[node_pred])
				{
					flow_graph.edges_bw[collapsed_node_pred].insert(flow_graph.source);
					flow_graph.edges_fw[flow_graph.source].insert(collapsed_node_pred);
				}

				if (!visited[node_pred])
					worklist.insert(node_pred);
			}
		}
		return flow_graph;
	}

	void discover_nodes(pool<IdString> cell_types)
	{
		for (auto cell : module->selected_cells())
		{
			if (!cell_types[cell->type])
				continue;

			if (!cell->known())
				log_error("Cell %s (%s.%s) is unknown.\n", cell->type.c_str(), log_id(module), log_id(cell));

			pool<RTLIL::SigBit> fanout;
			for (auto conn : cell->connections())
			{
				if (!cell->output(conn.first)) continue;
				int offset = -1;
				for (auto bit : conn.second)
				{
					offset++;
					if (!bit.wire) continue;
					auto mapped_bit = sigmap(bit);
					if (nodes[mapped_bit])
						log_error("Multiple drivers found for wire %s.\n", log_signal(mapped_bit));
					nodes.insert(mapped_bit);
					node_origins[mapped_bit] = ModIndex::PortInfo(cell, conn.first, offset);
					fanout.insert(mapped_bit);
				}
			}

			int fanin = 0;
			for (auto conn : cell->connections())
			{
				if (!cell->input(conn.first)) continue;
				for (auto bit : sigmap(conn.second))
				{
					if (!bit.wire) continue;
					for (auto fanout_bit : fanout)
					{
						edges_fw[bit].insert(fanout_bit);
						edges_bw[fanout_bit].insert(bit);
					}
					fanin++;
				}
			}

			if (fanin > order)
				log_error("Cell %s (%s.%s) with fan-in %d cannot be mapped to a %d-LUT.\n",
				          cell->type.c_str(), log_id(module), log_id(cell), fanin, order);

			gate_count++;
			gate_area += 1 << fanin;
		}

		for (auto edge : edges_fw)
		{
			if (!nodes[edge.first])
			{
				inputs.insert(edge.first);
				nodes.insert(edge.first);
			}
		}

		for (auto node : nodes)
		{
			auto node_info = index.query(node);
			if (node_info->is_output && !inputs[node])
				outputs.insert(node);
			for (auto port : node_info->ports)
				if (!cell_types[port.cell->type] && !inputs[node])
					outputs.insert(node);
		}

		if (debug)
		{
			dump_dot_graph("flowmap-initial.dot", GraphMode::Label);
			log("Dumped initial graph to `flowmap-initial.dot`.\n");
		}
	}

	void label_nodes()
	{
		for (auto node : nodes)
			labels[node] = -1;
		for (auto input : inputs)
		{
			if (input.wire->attributes.count(ID($flowmap_level)))
				labels[input] = input.wire->attributes[ID($flowmap_level)].as_int();
			else
				labels[input] = 0;
		}

		pool<RTLIL::SigBit> worklist = nodes;
		int debug_num = 0;
		while (!worklist.empty())
		{
			auto sink = worklist.pop();
			if (labels[sink] != -1)
				continue;

			bool inputs_have_labels = true;
			for (auto sink_input : edges_bw[sink])
			{
				if (labels[sink_input] == -1)
				{
					inputs_have_labels = false;
					break;
				}
			}
			if (!inputs_have_labels)
				continue;

			if (debug)
			{
				debug_num++;
				log("Examining subgraph %d rooted in %s.\n", debug_num, log_signal(sink));
			}

			pool<RTLIL::SigBit> subgraph = find_subgraph(sink);

			int p = 1;
			for (auto subgraph_node : subgraph)
				p = max(p, labels[subgraph_node]);

			FlowGraph flow_graph = build_flow_graph(sink, p);
			int flow = flow_graph.maximum_flow(order);
			pool<RTLIL::SigBit> x, xi;
			if (flow <= order)
			{
				labels[sink] = p;
				auto cut = flow_graph.edge_cut();
				x = cut.first;
				xi = cut.second;
			}
			else
			{
				labels[sink] = p + 1;
				x = subgraph;
				x.erase(sink);
				xi.insert(sink);
			}
			lut_gates[sink] = xi;

			pool<RTLIL::SigBit> k;
			for (auto xi_node : xi)
			{
				for (auto xi_node_pred : edges_bw[xi_node])
					if (x[xi_node_pred])
						k.insert(xi_node_pred);
			}
			log_assert((int)k.size() <= order);
			lut_edges_bw[sink] = k;
			for (auto k_node : k)
				lut_edges_fw[k_node].insert(sink);

			if (debug)
			{
				log("  Maximum flow: %d. Assigned label %d.\n", flow, labels[sink]);
				dump_dot_graph(stringf("flowmap-%d-sub.dot", debug_num), GraphMode::Cut, subgraph, {}, {}, {x, xi});
				log("  Dumped subgraph to `flowmap-%d-sub.dot`.\n", debug_num);
				flow_graph.dump_dot_graph(stringf("flowmap-%d-flow.dot", debug_num));
				log("  Dumped flow graph to `flowmap-%d-flow.dot`.\n", debug_num);
				log("    LUT inputs:");
				for (auto k_node : k)
					log(" %s", log_signal(k_node));
				log(".\n");
				log("    LUT packed gates:");
				for (auto xi_node : xi)
					log(" %s", log_signal(xi_node));
				log(".\n");
			}

			for (auto sink_succ : edges_fw[sink])
				worklist.insert(sink_succ);
		}

		if (debug)
		{
			dump_dot_graph("flowmap-labeled.dot", GraphMode::Label);
			log("Dumped labeled graph to `flowmap-labeled.dot`.\n");
		}
	}

	int map_luts()
	{
		pool<RTLIL::SigBit> worklist = outputs;
		while (!worklist.empty())
		{
			auto lut_node = worklist.pop();
			lut_nodes.insert(lut_node);
			for (auto input_node : lut_edges_bw[lut_node])
				if (!lut_nodes[input_node] && !inputs[input_node])
					worklist.insert(input_node);
		}

		int depth = 0;
		for (auto label : labels)
			depth = max(depth, label.second);
		log("Mapped to %d LUTs with maximum depth %d.\n", GetSize(lut_nodes), depth);

		if (debug)
		{
			dump_dot_lut_graph("flowmap-mapped.dot", GraphMode::Label);
			log("Dumped mapped graph to `flowmap-mapped.dot`.\n");
		}

		return depth;
	}

	void realize_derealize_lut(RTLIL::SigBit lut, pool<RTLIL::SigBit> *changed = nullptr)
	{
		pool<RTLIL::SigBit> worklist = {lut};
		while (!worklist.empty())
		{
			auto lut = worklist.pop();
			if (inputs[lut])
				continue;

			bool realized_successors = false;
			for (auto lut_succ : lut_edges_fw[lut])
				if (lut_nodes[lut_succ])
					realized_successors = true;

			if (realized_successors && !lut_nodes[lut])
				lut_nodes.insert(lut);
			else if (!realized_successors && lut_nodes[lut])
				lut_nodes.erase(lut);
			else
				continue;

			for (auto lut_pred : lut_edges_bw[lut])
				worklist.insert(lut_pred);

			if (changed)
				changed->insert(lut);
		}
	}

	void add_lut_edge(RTLIL::SigBit pred, RTLIL::SigBit succ, pool<RTLIL::SigBit> *changed = nullptr)
	{
		log_assert(!lut_edges_fw[pred][succ] && !lut_edges_bw[succ][pred]);
		log_assert((int)lut_edges_bw[succ].size() < order);

		lut_edges_fw[pred].insert(succ);
		lut_edges_bw[succ].insert(pred);
		realize_derealize_lut(pred, changed);

		if (changed)
		{
			changed->insert(pred);
			changed->insert(succ);
		}
	}

	void remove_lut_edge(RTLIL::SigBit pred, RTLIL::SigBit succ, pool<RTLIL::SigBit> *changed = nullptr)
	{
		log_assert(lut_edges_fw[pred][succ] && lut_edges_bw[succ][pred]);

		lut_edges_fw[pred].erase(succ);
		lut_edges_bw[succ].erase(pred);
		realize_derealize_lut(pred, changed);

		if (changed)
		{
			if (lut_nodes[pred])
				changed->insert(pred);
			changed->insert(succ);
		}
	}

	pair<pool<RTLIL::SigBit>, pool<RTLIL::SigBit>> cut_lut_at_gate(RTLIL::SigBit lut, RTLIL::SigBit lut_gate)
	{
		pool<RTLIL::SigBit> gate_inputs = lut_edges_bw[lut];
		pool<RTLIL::SigBit> other_inputs;
		pool<RTLIL::SigBit> worklist = {lut};
		while (!worklist.empty())
		{
			auto node = worklist.pop();
			for (auto node_pred : edges_bw[node])
			{
				if (node_pred == lut_gate)
					continue;
				if (lut_gates[lut][node_pred])
					worklist.insert(node_pred);
				else
				{
					gate_inputs.erase(node_pred);
					other_inputs.insert(node_pred);
				}
			}
		}
		return {gate_inputs, other_inputs};
	}

	void compute_lut_distances(dict<RTLIL::SigBit, int> &lut_distances, bool forward,
	                          pool<RTLIL::SigBit> initial = {}, pool<RTLIL::SigBit> *changed = nullptr)
	{
		pool<RTLIL::SigBit> terminals = forward ? inputs : outputs;
		auto &lut_edges_next = forward ? lut_edges_fw : lut_edges_bw;
		auto &lut_edges_prev = forward ? lut_edges_bw : lut_edges_fw;

		if (initial.empty())
			initial = terminals;
		for (auto node : initial)
			lut_distances.erase(node);

		pool<RTLIL::SigBit> worklist = initial;
		while (!worklist.empty())
		{
			auto lut = worklist.pop();
			int lut_distance = 0;
			if (forward && inputs[lut])
				lut_distance = labels[lut]; // to support (* $flowmap_level=n *)
			for (auto lut_prev : lut_edges_prev[lut])
				if ((lut_nodes[lut_prev] || inputs[lut_prev]) && lut_distances.count(lut_prev))
					lut_distance = max(lut_distance, lut_distances[lut_prev] + 1);
			if (!lut_distances.count(lut) || lut_distances[lut] != lut_distance)
			{
				lut_distances[lut] = lut_distance;
				if (changed != nullptr && !inputs[lut])
					changed->insert(lut);
				for (auto lut_next : lut_edges_next[lut])
					if (lut_nodes[lut_next] || inputs[lut_next])
						worklist.insert(lut_next);
			}
		}
	}

	void check_lut_distances(const dict<RTLIL::SigBit, int> &lut_distances, bool forward)
	{
		dict<RTLIL::SigBit, int> gold_lut_distances;
		compute_lut_distances(gold_lut_distances, forward);
		for (auto lut_distance : lut_distances)
			if (lut_nodes[lut_distance.first])
				log_assert(lut_distance.second == gold_lut_distances[lut_distance.first]);
	}

	// LUT depth is the length of the longest path from any input in LUT fan-in to LUT.
	// LUT altitude (for lack of a better term) is the length of the longest path from LUT to any output in LUT fan-out.
	void update_lut_depths_altitudes(pool<RTLIL::SigBit> worklist = {}, pool<RTLIL::SigBit> *changed = nullptr)
	{
		compute_lut_distances(lut_depths, /*forward=*/true, worklist, changed);
		compute_lut_distances(lut_altitudes, /*forward=*/false, worklist, changed);
		if (debug_relax && !worklist.empty()) {
			check_lut_distances(lut_depths, /*forward=*/true);
			check_lut_distances(lut_altitudes, /*forward=*/false);
		}
	}

	// LUT critical output set is the set of outputs whose depth will increase (equivalently, slack will decrease) if the depth of
	// the LUT increases. (This is referred to as RPOv for LUTv in the paper.)
	void compute_lut_critical_outputs(dict<RTLIL::SigBit, pool<RTLIL::SigBit>> &lut_critical_outputs,
	                                  pool<RTLIL::SigBit> worklist = {})
	{
		if (worklist.empty())
			worklist = lut_nodes;

		while (!worklist.empty())
		{
			bool updated_some = false;
			for (auto lut : worklist)
			{
				if (outputs[lut])
					lut_critical_outputs[lut] = {lut};
				else
				{
					bool all_succ_computed = true;
					lut_critical_outputs[lut] = {};
					for (auto lut_succ : lut_edges_fw[lut])
					{
						if (lut_nodes[lut_succ] && lut_depths[lut_succ] == lut_depths[lut] + 1)
						{
							if (lut_critical_outputs.count(lut_succ))
								lut_critical_outputs[lut].insert(lut_critical_outputs[lut_succ].begin(), lut_critical_outputs[lut_succ].end());
							else
							{
								all_succ_computed = false;
								break;
							}
						}
					}
					if (!all_succ_computed)
					{
						lut_critical_outputs.erase(lut);
						continue;
					}
				}
				worklist.erase(lut);
				updated_some = true;
			}
			log_assert(updated_some);
		}
	}

	// Invalidating LUT critical output sets is tricky, because increasing the depth of a LUT may take other, adjacent LUTs off the critical
	// path to the output. Conservatively, if we increase depth of some LUT, every LUT in its input cone needs to have its critical output
	// set invalidated, too.
	pool<RTLIL::SigBit> invalidate_lut_critical_outputs(dict<RTLIL::SigBit, pool<RTLIL::SigBit>> &lut_critical_outputs,
	                                                    pool<RTLIL::SigBit> worklist)
	{
		pool<RTLIL::SigBit> changed;
		while (!worklist.empty())
		{
			auto lut = worklist.pop();
			changed.insert(lut);
			lut_critical_outputs.erase(lut);
			for (auto lut_pred : lut_edges_bw[lut])
			{
				if (lut_nodes[lut_pred] && !changed[lut_pred])
				{
					changed.insert(lut_pred);
					worklist.insert(lut_pred);
				}
			}
		}
		return changed;
	}

	void check_lut_critical_outputs(const dict<RTLIL::SigBit, pool<RTLIL::SigBit>> &lut_critical_outputs)
	{
		dict<RTLIL::SigBit, pool<RTLIL::SigBit>> gold_lut_critical_outputs;
		compute_lut_critical_outputs(gold_lut_critical_outputs);
		for (auto lut_critical_output : lut_critical_outputs)
			if (lut_nodes[lut_critical_output.first])
				log_assert(lut_critical_output.second == gold_lut_critical_outputs[lut_critical_output.first]);
	}

	void update_lut_critical_outputs(dict<RTLIL::SigBit, pool<RTLIL::SigBit>> &lut_critical_outputs,
	                                 pool<RTLIL::SigBit> worklist = {})
	{
		if (!worklist.empty())
		{
			pool<RTLIL::SigBit> invalidated = invalidate_lut_critical_outputs(lut_critical_outputs, worklist);
			compute_lut_critical_outputs(lut_critical_outputs, invalidated);
			check_lut_critical_outputs(lut_critical_outputs);
		}
		else
			compute_lut_critical_outputs(lut_critical_outputs);
	}

	void update_breaking_node_potentials(dict<RTLIL::SigBit, dict<RTLIL::SigBit, int>> &potentials,
	                                     const dict<RTLIL::SigBit, pool<RTLIL::SigBit>> &lut_critical_outputs)
	{
		for (auto lut : lut_nodes)
		{
			if (potentials.count(lut))
				continue;
			if (lut_gates[lut].size() == 1 || lut_slacks[lut] == 0)
				continue;

			if (debug_relax)
				log("  Computing potentials for LUT %s.\n", log_signal(lut));

			for (auto lut_gate : lut_gates[lut])
			{
				if (lut == lut_gate)
					continue;

				if (debug_relax)
					log("    Considering breaking node %s.\n", log_signal(lut_gate));

				int r_ex, r_im, r_slk;

				auto cut_inputs = cut_lut_at_gate(lut, lut_gate);
				pool<RTLIL::SigBit> gate_inputs = cut_inputs.first, other_inputs = cut_inputs.second;
				if (gate_inputs.empty() && (int)other_inputs.size() >= order)
				{
					if (debug_relax)
						log("      Breaking would result in a (k+1)-LUT.\n");
					continue;
				}

				pool<RTLIL::SigBit> elim_fanin_luts;
				for (auto gate_input : gate_inputs)
				{
					if (lut_edges_fw[gate_input].size() == 1)
					{
						log_assert(lut_edges_fw[gate_input][lut]);
						elim_fanin_luts.insert(gate_input);
					}
				}
				if (debug_relax)
				{
					if (!lut_nodes[lut_gate])
						log("      Breaking requires a new LUT.\n");
					if (!gate_inputs.empty())
					{
						log("      Breaking eliminates LUT inputs");
						for (auto gate_input : gate_inputs)
							log(" %s", log_signal(gate_input));
						log(".\n");
					}
					if (!elim_fanin_luts.empty())
					{
						log("      Breaking eliminates fan-in LUTs");
						for (auto elim_fanin_lut : elim_fanin_luts)
							log(" %s", log_signal(elim_fanin_lut));
						log(".\n");
					}
				}
				r_ex = (lut_nodes[lut_gate] ? 0 : -1) + elim_fanin_luts.size();

				pool<pair<RTLIL::SigBit, RTLIL::SigBit>> maybe_mergeable_luts;

				// Try to merge LUTv with one of its successors.
				RTLIL::SigBit last_lut_succ;
				int fanout = 0;
				for (auto lut_succ : lut_edges_fw[lut])
				{
					if (lut_nodes[lut_succ])
					{
						fanout++;
						last_lut_succ = lut_succ;
					}
				}
				if (fanout == 1)
					maybe_mergeable_luts.insert({lut, last_lut_succ});

				// Try to merge LUTv with one of its predecessors.
				for (auto lut_pred : other_inputs)
				{
					int fanout = 0;
					for (auto lut_pred_succ : lut_edges_fw[lut_pred])
						if (lut_nodes[lut_pred_succ] || lut_pred_succ == lut_gate)
							fanout++;
					if (fanout == 1)
						maybe_mergeable_luts.insert({lut_pred, lut});
				}

				// Try to merge LUTw with one of its predecessors.
				for (auto lut_gate_pred : lut_edges_bw[lut_gate])
				{
					int fanout = 0;
					for (auto lut_gate_pred_succ : lut_edges_fw[lut_gate_pred])
						if (lut_nodes[lut_gate_pred_succ] || lut_gate_pred_succ == lut_gate)
							fanout++;
					if (fanout == 1)
						maybe_mergeable_luts.insert({lut_gate_pred, lut_gate});
				}

				r_im = 0;
				for (auto maybe_mergeable_pair : maybe_mergeable_luts)
				{
					log_assert(lut_edges_fw[maybe_mergeable_pair.first][maybe_mergeable_pair.second]);
					pool<RTLIL::SigBit> unique_inputs;
					for (auto fst_lut_pred : lut_edges_bw[maybe_mergeable_pair.first])
						if (lut_nodes[fst_lut_pred])
							unique_inputs.insert(fst_lut_pred);
					for (auto snd_lut_pred : lut_edges_bw[maybe_mergeable_pair.second])
						if (lut_nodes[snd_lut_pred])
							unique_inputs.insert(snd_lut_pred);
					unique_inputs.erase(maybe_mergeable_pair.first);
					if ((int)unique_inputs.size() <= order)
					{
						if (debug_relax)
							log("      Breaking may allow merging %s and %s.\n",
							    log_signal(maybe_mergeable_pair.first), log_signal(maybe_mergeable_pair.second));
						r_im++;
					}
				}

				int lut_gate_depth;
				if (lut_nodes[lut_gate])
					lut_gate_depth = lut_depths[lut_gate];
				else
				{
					lut_gate_depth = 0;
					for (auto lut_gate_pred : lut_edges_bw[lut_gate])
						lut_gate_depth = max(lut_gate_depth, lut_depths[lut_gate_pred] + 1);
				}
				if (lut_depths[lut] >= lut_gate_depth + 1)
					r_slk = 0;
				else
				{
					int depth_delta = lut_gate_depth + 1 - lut_depths[lut];
					if (depth_delta > lut_slacks[lut])
					{
						if (debug_relax)
							log("      Breaking would increase depth by %d, which is more than available slack.\n", depth_delta);
						continue;
					}

					if (debug_relax)
					{
						log("      Breaking increases depth of LUT by %d.\n", depth_delta);
						if (lut_critical_outputs.at(lut).size())
						{
							log("      Breaking decreases slack of outputs");
							for (auto lut_critical_output : lut_critical_outputs.at(lut))
							{
								log(" %s", log_signal(lut_critical_output));
								log_assert(lut_slacks[lut_critical_output] > 0);
							}
							log(".\n");
						}
					}
					r_slk = lut_critical_outputs.at(lut).size() * depth_delta;
				}

				int p = 100 * (r_alpha * r_ex + r_beta * r_im + r_gamma) / (r_slk + 1);
				if (debug_relax)
					log("    Potential for breaking node %s: %d (Rex=%d, Rim=%d, Rslk=%d).\n",
					    log_signal(lut_gate), p, r_ex, r_im, r_slk);
				potentials[lut][lut_gate] = p;
			}
		}
	}

	bool relax_depth_for_bound(bool first, int depth_bound, dict<RTLIL::SigBit, pool<RTLIL::SigBit>> &lut_critical_outputs)
	{
		int initial_count = GetSize(lut_nodes);

		for (auto node : lut_nodes)
		{
			lut_slacks[node] = depth_bound - (lut_depths[node] + lut_altitudes[node]);
			log_assert(lut_slacks[node] >= 0);
		}
		if (debug)
		{
			dump_dot_lut_graph(stringf("flowmap-relax-%d-initial.dot", depth_bound), GraphMode::Slack);
			log("  Dumped initial slack graph to `flowmap-relax-%d-initial.dot`.\n", depth_bound);
		}

		dict<RTLIL::SigBit, dict<RTLIL::SigBit, int>> potentials;
		for (int break_num = 1; ; break_num++)
		{
			update_breaking_node_potentials(potentials, lut_critical_outputs);

			if (potentials.empty())
			{
				log("  Relaxed to %d (+%d) LUTs.\n", GetSize(lut_nodes), GetSize(lut_nodes) - initial_count);
				if (!first && break_num == 1)
				{
					log("  Design fully relaxed.\n");
					return true;
				}
				else
				{
					log("  Slack exhausted.\n");
					break;
				}
			}

			RTLIL::SigBit breaking_lut, breaking_gate;
			int best_potential = INT_MIN;
			for (auto lut_gate_potentials : potentials)
			{
				for (auto gate_potential : lut_gate_potentials.second)
				{
					if (gate_potential.second > best_potential)
					{
						breaking_lut = lut_gate_potentials.first;
						breaking_gate = gate_potential.first;
						best_potential = gate_potential.second;
					}
				}
			}
			log("  Breaking LUT %s to %s LUT %s (potential %d).\n",
			    log_signal(breaking_lut), lut_nodes[breaking_gate] ? "reuse" : "extract", log_signal(breaking_gate), best_potential);

			if (debug_relax)
				log("    Removing breaking gate %s from LUT.\n", log_signal(breaking_gate));
			lut_gates[breaking_lut].erase(breaking_gate);

			auto cut_inputs = cut_lut_at_gate(breaking_lut, breaking_gate);
			pool<RTLIL::SigBit> gate_inputs = cut_inputs.first, other_inputs = cut_inputs.second;

			pool<RTLIL::SigBit> worklist = lut_gates[breaking_lut];
			pool<RTLIL::SigBit> elim_gates = gate_inputs;
			while (!worklist.empty())
			{
				auto lut_gate = worklist.pop();
				bool all_gate_preds_elim = true;
				for (auto lut_gate_pred : edges_bw[lut_gate])
					if (!elim_gates[lut_gate_pred])
						all_gate_preds_elim = false;
				if (all_gate_preds_elim)
				{
					if (debug_relax)
						log("    Removing gate %s from LUT.\n", log_signal(lut_gate));
					lut_gates[breaking_lut].erase(lut_gate);
					for (auto lut_gate_succ : edges_fw[lut_gate])
						worklist.insert(lut_gate_succ);
				}
			}
			log_assert(!lut_gates[breaking_lut].empty());

			pool<RTLIL::SigBit> directly_affected_nodes = {breaking_lut};
			for (auto gate_input : gate_inputs)
			{
				if (debug_relax)
					log("    Removing LUT edge %s -> %s.\n", log_signal(gate_input), log_signal(breaking_lut));
				remove_lut_edge(gate_input, breaking_lut, &directly_affected_nodes);
			}
			if (debug_relax)
				log("    Adding LUT edge %s -> %s.\n", log_signal(breaking_gate), log_signal(breaking_lut));
			add_lut_edge(breaking_gate, breaking_lut, &directly_affected_nodes);

			if (debug_relax)
				log("  Updating slack and potentials.\n");

			pool<RTLIL::SigBit> indirectly_affected_nodes = {};
			update_lut_depths_altitudes(directly_affected_nodes, &indirectly_affected_nodes);
			update_lut_critical_outputs(lut_critical_outputs, indirectly_affected_nodes);
			for (auto node : indirectly_affected_nodes)
			{
				lut_slacks[node] = depth_bound - (lut_depths[node] + lut_altitudes[node]);
				log_assert(lut_slacks[node] >= 0);
				if (debug_relax)
					log("    LUT %s now has depth %d and slack %d.\n", log_signal(node), lut_depths[node], lut_slacks[node]);
			}

			worklist = indirectly_affected_nodes;
			pool<RTLIL::SigBit> visited;
			while (!worklist.empty())
			{
				auto node = worklist.pop();
				visited.insert(node);
				potentials.erase(node);
				// We are invalidating the entire output cone of the gate IR node, not just of the LUT IR node. This is done to also invalidate
				// all LUTs that could contain one of the indirectly affected nodes as a *part* of them, as they may not be in the output cone
				// of any of the LUT IR nodes, e.g. if we have a LUT IR node A and node B as predecessors of node C, where node B includes all
				// gates from node A.
				for (auto node_succ : edges_fw[node])
					if (!visited[node_succ])
						worklist.insert(node_succ);
			}

			if (debug)
			{
				dump_dot_lut_graph(stringf("flowmap-relax-%d-break-%d.dot", depth_bound, break_num), GraphMode::Slack);
				log("  Dumped slack graph after break %d to `flowmap-relax-%d-break-%d.dot`.\n",  break_num, depth_bound, break_num);
			}
		}

		return false;
	}

	void optimize_area(int depth, int optarea)
	{
		dict<RTLIL::SigBit, pool<RTLIL::SigBit>> lut_critical_outputs;
		update_lut_depths_altitudes();
		update_lut_critical_outputs(lut_critical_outputs);

		for (int depth_bound = depth; depth_bound <= depth + optarea; depth_bound++)
		{
			log("Relaxing with depth bound %d.\n", depth_bound);
			bool fully_relaxed = relax_depth_for_bound(depth_bound == depth, depth_bound, lut_critical_outputs);

			if (fully_relaxed)
				break;
		}
	}

	void pack_cells(int minlut)
	{
		ConstEval ce(module);
		for (auto input_node : inputs)
			ce.stop(input_node);

		pool<RTLIL::SigBit> mapped_nodes;
		for (auto node : lut_nodes)
		{
			if (node_origins.count(node))
			{
				auto origin = node_origins[node];
				if (origin.cell->getPort(origin.port).size() == 1)
					log("Packing %s.%s.%s (%s).\n",
					    log_id(module), log_id(origin.cell), origin.port.c_str(), log_signal(node));
				else
					log("Packing %s.%s.%s [%d] (%s).\n",
					    log_id(module), log_id(origin.cell), origin.port.c_str(), origin.offset, log_signal(node));
			}
			else
			{
				log("Packing %s.%s.\n", log_id(module), log_signal(node));
			}

			for (auto gate_node : lut_gates[node])
			{
				log_assert(node_origins.count(gate_node));

				if (gate_node == node)
					continue;

				auto gate_origin = node_origins[gate_node];
				if (gate_origin.cell->getPort(gate_origin.port).size() == 1)
					log("  Packing %s.%s.%s (%s).\n",
					    log_id(module), log_id(gate_origin.cell), gate_origin.port.c_str(), log_signal(gate_node));
				else
					log("  Packing %s.%s.%s [%d] (%s).\n",
					    log_id(module), log_id(gate_origin.cell), gate_origin.port.c_str(), gate_origin.offset, log_signal(gate_node));
			}

			vector<RTLIL::SigBit> input_nodes(lut_edges_bw[node].begin(), lut_edges_bw[node].end());
			RTLIL::Const lut_table(State::Sx, max(1 << input_nodes.size(), 1 << minlut));
			unsigned const mask = 1 << input_nodes.size();
			for (unsigned i = 0; i < mask; i++)
			{
				ce.push();
				for (size_t n = 0; n < input_nodes.size(); n++)
					ce.set(input_nodes[n], ((i >> n) & 1) ? State::S1 : State::S0);

				RTLIL::SigSpec value = node, undef;
				if (!ce.eval(value, undef))
				{
					string env;
					for (auto input_node : input_nodes)
						env += stringf("  %s = %s\n", log_signal(input_node), log_signal(ce.values_map(input_node)));
					log_error("Cannot evaluate %s because %s is not defined.\nEvaluation environment:\n%s",
					          log_signal(node), log_signal(undef), env.c_str());
				}

				lut_table[i] = value.as_bool() ? State::S1 : State::S0;
				ce.pop();
			}

			RTLIL::SigSpec lut_a, lut_y = node;
			for (auto input_node : input_nodes)
				lut_a.append(input_node);
			lut_a.append(RTLIL::Const(State::Sx, minlut - input_nodes.size()));

			RTLIL::Cell *lut = module->addLut(NEW_ID, lut_a, lut_y, lut_table);
			mapped_nodes.insert(node);
			for (auto gate_node : lut_gates[node])
			{
				auto gate_origin = node_origins[gate_node];
				lut->add_strpool_attribute(ID::src, gate_origin.cell->get_strpool_attribute(ID::src));
				packed_count++;
			}
			lut_count++;
			lut_area += lut_table.size();

			if ((int)input_nodes.size() >= minlut)
				log("  Packed into a %d-LUT %s.%s.\n", GetSize(input_nodes), log_id(module), log_id(lut));
			else
				log("  Packed into a %d-LUT %s.%s (implemented as %d-LUT).\n", GetSize(input_nodes), log_id(module), log_id(lut), minlut);
		}

		for (auto node : mapped_nodes)
		{
			auto origin = node_origins[node];
			RTLIL::SigSpec driver = origin.cell->getPort(origin.port);
			driver[origin.offset] = module->addWire(NEW_ID);
			origin.cell->setPort(origin.port, driver);
		}
	}

	FlowmapWorker(int order, int minlut, pool<IdString> cell_types, int r_alpha, int r_beta, int r_gamma,
	              bool relax, int optarea, bool debug, bool debug_relax,
	              RTLIL::Module *module) :
		order(order), r_alpha(r_alpha), r_beta(r_beta), r_gamma(r_gamma), debug(debug), debug_relax(debug_relax),
		module(module), sigmap(module), index(module)
	{
		log("Labeling cells.\n");
		discover_nodes(cell_types);
		label_nodes();
		int depth = map_luts();

		if (relax)
		{
			log("\n");
			log("Optimizing area.\n");
			optimize_area(depth, optarea);
		}

		log("\n");
		log("Packing cells.\n");
		pack_cells(minlut);
	}
};

static void split(std::vector<std::string> &tokens, const std::string &text, char sep)
{
	size_t start = 0, end = 0;
	while ((end = text.find(sep, start)) != std::string::npos) {
		tokens.push_back(text.substr(start, end - start));
		start = end + 1;
	}
	tokens.push_back(text.substr(start));
}

struct FlowmapPass : public Pass {
	FlowmapPass() : Pass("flowmap", "pack LUTs with FlowMap") { }
	void help() override
	{
		//   |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
		log("\n");
		log("    flowmap [options] [selection]\n");
		log("\n");
		log("This pass uses the FlowMap technology mapping algorithm to pack logic gates\n");
		log("into k-LUTs with optimal depth. It allows mapping any circuit elements that can\n");
		log("be evaluated with the `eval` pass, including cells with multiple output ports\n");
		log("and multi-bit input and output ports.\n");
		log("\n");
		log("    -maxlut k\n");
		log("        perform technology mapping for a k-LUT architecture. if not specified,\n");
		log("        defaults to 3.\n");
		log("\n");
		log("    -minlut n\n");
		log("        only produce n-input or larger LUTs. if not specified, defaults to 1.\n");
		log("\n");
		log("    -cells <cell>[,<cell>,...]\n");
		log("        map specified cells. if not specified, maps $_NOT_, $_AND_, $_OR_,\n");
		log("        $_XOR_ and $_MUX_, which are the outputs of the `simplemap` pass.\n");
		log("\n");
		log("    -relax\n");
		log("        perform depth relaxation and area minimization.\n");
		log("\n");
		log("    -r-alpha n, -r-beta n, -r-gamma n\n");
		log("        parameters of depth relaxation heuristic potential function.\n");
		log("        if not specified, alpha=8, beta=2, gamma=1.\n");
		log("\n");
		log("    -optarea n\n");
		log("        optimize for area by trading off at most n logic levels for fewer LUTs.\n");
		log("        n may be zero, to optimize for area without increasing depth.\n");
		log("        implies -relax.\n");
		log("\n");
		log("    -debug\n");
		log("        dump intermediate graphs.\n");
		log("\n");
		log("    -debug-relax\n");
		log("        explain decisions performed during depth relaxation.\n");
		log("\n");
	}
	void execute(std::vector<std::string> args, RTLIL::Design *design) override
	{
		int order = 3;
		int minlut = 1;
		vector<string> cells;
		bool relax = false;
		int r_alpha = 8, r_beta = 2, r_gamma = 1;
		int optarea = 0;
		bool debug = false, debug_relax = false;

		size_t argidx;
		for (argidx = 1; argidx < args.size(); argidx++)
		{
			if (args[argidx] == "-maxlut" && argidx + 1 < args.size())
			{
				order = atoi(args[++argidx].c_str());
				continue;
			}
			if (args[argidx] == "-minlut" && argidx + 1 < args.size())
			{
				minlut = atoi(args[++argidx].c_str());
				continue;
			}
			if (args[argidx] == "-cells" && argidx + 1 < args.size())
			{
				split(cells, args[++argidx], ',');
				continue;
			}
			if (args[argidx] == "-relax")
			{
				relax = true;
				continue;
			}
			if (args[argidx] == "-r-alpha" && argidx + 1 < args.size())
			{
				r_alpha = atoi(args[++argidx].c_str());
				continue;
			}
			if (args[argidx] == "-r-beta" && argidx + 1 < args.size())
			{
				r_beta = atoi(args[++argidx].c_str());
				continue;
			}
			if (args[argidx] == "-r-gamma" && argidx + 1 < args.size())
			{
				r_gamma = atoi(args[++argidx].c_str());
				continue;
			}
			if (args[argidx] == "-optarea" && argidx + 1 < args.size())
			{
				relax = true;
				optarea = atoi(args[++argidx].c_str());
				continue;
			}
			if (args[argidx] == "-debug")
			{
				debug = true;
				continue;
			}
			if (args[argidx] == "-debug-relax")
			{
				debug = debug_relax = true;
				continue;
			}
			break;
		}
		extra_args(args, argidx, design);

		pool<IdString> cell_types;
		if (!cells.empty())
		{
			for (auto &cell : cells)
				cell_types.insert(cell);
		}
		else
		{
			cell_types = {ID($_NOT_), ID($_AND_), ID($_OR_), ID($_XOR_), ID($_MUX_)};
		}

		const char *algo_r = relax ? "-r" : "";
		log_header(design, "Executing FLOWMAP pass (pack LUTs with FlowMap%s).\n", algo_r);

		int gate_count = 0, lut_count = 0, packed_count = 0;
		int gate_area = 0, lut_area = 0;
		for (auto module : design->selected_modules())
		{
			FlowmapWorker worker(order, minlut, cell_types, r_alpha, r_beta, r_gamma, relax, optarea, debug, debug_relax, module);
			gate_count += worker.gate_count;
			lut_count += worker.lut_count;
			packed_count += worker.packed_count;
			gate_area += worker.gate_area;
			lut_area += worker.lut_area;
		}

		log("\n");
		log("Packed %d cells (%d of them duplicated) into %d LUTs.\n", packed_count, packed_count - gate_count, lut_count);
		log("Solution takes %.1f%% of original gate area.\n", lut_area * 100.0 / gate_area);
	}
} FlowmapPass;

PRIVATE_NAMESPACE_END