aboutsummaryrefslogtreecommitdiffstats
path: root/target/linux/ramips/patches-3.18/0037-USB-phy-add-ralink-SoC-driver.patch
Commit message (Expand)AuthorAgeFilesLines
* CC: kernel: update kernel 3.18 to version 3.18.23Hauke Mehrtens2015-11-011-2/+2
* ramips: remove debug code from usb phy driverJohn Crispin2015-10-021-5/+3
* kernel: update 3.18 to 3.18.14Jonas Gorski2015-05-211-2/+2
* ralink: add 3.18 supportJohn Crispin2015-02-091-0/+201
id='n97' href='#n97'>97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
\section{Yosys by example -- Synthesis}

\begin{frame}
\sectionpage
\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Typical Phases of a Synthesis Flow}

\begin{frame}{\subsecname}
\begin{itemize}
\item Reading and elaborating the design
\item Higher-level synthesis and optimization
\begin{itemize}
\item Converting {\tt always}-blocks to logic and registers
\item Perform coarse-grain optimizations (resource sharing, const folding, ...)
\item Handling of memories and other coarse-grain blocks
\item Extracting and optimizing finite state machines
\end{itemize}
\item Convert remaining logic to bit-level logic functions
\item Perform optimizations on bit-level logic functions
\item Map bit-level logic gates and registers to cell library
\item Write results to output file
\end{itemize}
\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Reading the design}

\begin{frame}[fragile]{\subsecname}
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
read_verilog file1.v
read_verilog -I include_dir -D enable_foo -D WIDTH=12 file2.v
read_verilog -lib cell_library.v

verilog_defaults -add -I include_dir
read_verilog file3.v
read_verilog file4.v
verilog_defaults -clear

verilog_defaults -push
verilog_defaults -add -I include_dir
read_verilog file5.v
read_verilog file6.v
verilog_defaults -pop
\end{lstlisting}
\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Design elaboration}

\begin{frame}[fragile]{\subsecname}
During design elaboration Yosys figures out how the modules are hierarchically
connected. It also re-runs the AST parts of the Verilog frontend to create
all needed variations of parametric modules.

\bigskip
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
# simplest form. at least this version should be used after reading all input files
#
hierarchy

# recommended form. fails if parts of the design hierarchy are missing, removes
# everything that is unreachable from the top module, and marks the top module.
#
hierarchy -check -top top_module
\end{lstlisting}
\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{The {\tt proc} command}

\begin{frame}[fragile]{\subsecname}
The Verilog frontend converts {\tt always}-blocks to RTL netlists for the
expressions and ``processes'' for the control- and memory elements.

\medskip
The {\tt proc} command transforms this ``processes'' to netlists of RTL
multiplexer and register cells.

\medskip
The {\tt proc} command is actually a macro-command that calls the following
other commands:

\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
proc_clean      # remove empty branches and processes
proc_rmdead     # remove unreachable branches
proc_init       # special handling of "initial" blocks
proc_arst       # identify modeling of async resets
proc_mux        # convert decision trees to multiplexer networks
proc_dff        # extract registers from processes
proc_clean      # if all went fine, this should remove all the processes
\end{lstlisting}

\medskip
Many commands can not operate on modules with ``processes'' in them. Usually
a call to {\tt proc} is the first command in the actual synthesis procedure
after design elaboration.
\end{frame}

\begin{frame}[fragile]{\subsecname{} -- Example 1/3}
\begin{columns}
\column[t]{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/proc_01.v}
\column[t]{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/proc_01.ys}
\end{columns}
\hfil\includegraphics[width=8cm,trim=0 0cm 0 0cm]{PRESENTATION_ExSyn/proc_01.pdf}
\end{frame}

\begin{frame}[t, fragile]{\subsecname{} -- Example 2/3}
\vbox to 0cm{\includegraphics[width=\linewidth,trim=0cm 0cm 0cm -2.5cm]{PRESENTATION_ExSyn/proc_02.pdf}\vss}
\vskip-1cm
\begin{columns}
\column[t]{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/proc_02.v}
\column[t]{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/proc_02.ys}
\end{columns}
\end{frame}

\begin{frame}[t, fragile]{\subsecname{} -- Example 3/3}
\vbox to 0cm{\includegraphics[width=\linewidth,trim=0cm 0cm 0cm -1.5cm]{PRESENTATION_ExSyn/proc_03.pdf}\vss}
\vskip-1cm
\begin{columns}
\column[t]{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/proc_03.ys}
\column[t]{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/proc_03.v}
\end{columns}
\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{The {\tt opt} command}

\begin{frame}[fragile]{\subsecname}
The {\tt opt} command implements a series of simple optimizations. It also
is a macro command that calls other commands:

\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
opt_expr                # const folding and simple expression rewriting
opt_merge -nomux        # merging identical cells

do
    opt_muxtree         # remove never-active branches from multiplexer tree
    opt_reduce          # consolidate trees of boolean ops to reduce functions
    opt_merge           # merging identical cells
    opt_rmdff           # remove/simplify registers with constant inputs
    opt_clean           # remove unused objects (cells, wires) from design
    opt_expr            # const folding and simple expression rewriting
while [changed design]
\end{lstlisting}

The command {\tt clean} can be used as alias for {\tt opt\_clean}. And {\tt ;;}
can be used as shortcut for {\tt clean}. For example:

\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
proc; opt; memory; opt_expr;; fsm;;
\end{lstlisting}
\end{frame}

\begin{frame}[t, fragile]{\subsecname{} -- Example 1/4}
\vbox to 0cm{\includegraphics[width=\linewidth,trim=0cm 0cm 0cm -0.5cm]{PRESENTATION_ExSyn/opt_01.pdf}\vss}
\vskip-1cm
\begin{columns}
\column[t]{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/opt_01.ys}
\column[t]{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/opt_01.v}
\end{columns}
\end{frame}

\begin{frame}[t, fragile]{\subsecname{} -- Example 2/4}
\vbox to 0cm{\includegraphics[width=\linewidth,trim=0cm 0cm 0cm 0cm]{PRESENTATION_ExSyn/opt_02.pdf}\vss}
\vskip-1cm
\begin{columns}
\column[t]{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/opt_02.ys}
\column[t]{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/opt_02.v}
\end{columns}
\end{frame}

\begin{frame}[t, fragile]{\subsecname{} -- Example 3/4}
\vbox to 0cm{\includegraphics[width=\linewidth,trim=0cm 0cm 0cm -2cm]{PRESENTATION_ExSyn/opt_03.pdf}\vss}
\vskip-1cm
\begin{columns}
\column[t]{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/opt_03.ys}
\column[t]{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/opt_03.v}
\end{columns}
\end{frame}

\begin{frame}[t, fragile]{\subsecname{} -- Example 4/4}
\vbox to 0cm{\hskip6cm\includegraphics[width=6cm,trim=0cm 0cm 0cm -3cm]{PRESENTATION_ExSyn/opt_04.pdf}\vss}
\vskip-1cm
\begin{columns}
\column[t]{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/opt_04.v}
\column[t]{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/opt_04.ys}
\end{columns}
\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{When to use {\tt opt} or {\tt clean}}

\begin{frame}{\subsecname}
Usually it does not hurt to call {\tt opt} after each regular command in the
synthesis script. But it increases the synthesis time, so it is favourable
to only call {\tt opt} when an improvement can be achieved.

\bigskip
The designs in {\tt yosys-bigsim} are a good playground for experimenting with
the effects of calling {\tt opt} in various places of the flow.

\bigskip
It generally is a good idea to call {\tt opt} before inherently expensive
commands such as {\tt sat} or {\tt freduce}, as the possible gain is much
higher in this cases as the possible loss.

\bigskip
The {\tt clean} command on the other hand is very fast and many commands leave
a mess (dangling signal wires, etc). For example, most commands do not remove
any wires or cells. They just change the connections and depend on a later
call to clean to get rid of the now unused objects. So the occasional {\tt ;;}
is a good idea in every synthesis script.
\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{The {\tt memory} command}

\begin{frame}[fragile]{\subsecname}
In the RTL netlist, memory reads and writes are individual cells. This makes
consolidating the number of ports for a memory easier. The {\tt memory}
transforms memories to an implementation. Per default that is logic for address
decoders and registers. It also is a macro command that calls other commands:

\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
# this merges registers into the memory read- and write cells.
memory_dff

# this collects all read and write cells for a memory and transforms them
# into one multi-port memory cell.
memory_collect

# this takes the multi-port memory cell and transforms it to address decoder
# logic and registers. This step is skipped if "memory" is called with -nomap.
memory_map
\end{lstlisting}

\bigskip
Usually it is preferred to use architecture-specific RAM resources for memory.
For example:

\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
memory -nomap; techmap -map my_memory_map.v; memory_map
\end{lstlisting}
\end{frame}

\begin{frame}[t, fragile]{\subsecname{} -- Example 1/2}
\vbox to 0cm{\includegraphics[width=0.7\linewidth,trim=0cm 0cm 0cm -10cm]{PRESENTATION_ExSyn/memory_01.pdf}\vss}
\vskip-1cm
\begin{columns}
\column[t]{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/memory_01.ys}
\column[t]{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/memory_01.v}
\end{columns}
\end{frame}

\begin{frame}[t, fragile]{\subsecname{} -- Example 2/2}
\vbox to 0cm{\hfill\includegraphics[width=7.5cm,trim=0cm 0cm 0cm -5cm]{PRESENTATION_ExSyn/memory_02.pdf}\vss}
\vskip-1cm
\begin{columns}
\column[t]{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{6pt}{8pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/memory_02.v}
\column[t]{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/memory_02.ys}
\end{columns}
\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{The {\tt fsm} command}

\begin{frame}[fragile]{\subsecname{}}
The {\tt fsm} command identifies, extracts, optimizes (re-encodes), and
re-synthesizes finite state machines. It again is a macro that calls
a series of other commands:

\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
fsm_detect          # unless got option -nodetect
fsm_extract

fsm_opt
clean
fsm_opt

fsm_expand          # if got option -expand
clean               # if got option -expand
fsm_opt             # if got option -expand

fsm_recode          # unless got option -norecode

fsm_info

fsm_export          # if got option -export
fsm_map             # unless got option -nomap
\end{lstlisting}
\end{frame}

\begin{frame}{\subsecname{} -- details}
Some details on the most important commands from the {\tt fsm\_*} group:

\bigskip
The {\tt fsm\_detect} command identifies FSM state registers and marks them
with the {\tt (* fsm\_encoding = "auto" *)} attribute, if they do not have the
{\tt fsm\_encoding} set already. Mark registers with {\tt (* fsm\_encoding =
"none" *)} to disable FSM optimization for a register.

\bigskip
The {\tt fsm\_extract} command replaces the entire FSM (logic and state
registers) with a {\tt \$fsm} cell.

\bigskip
The commands {\tt fsm\_opt} and {\tt fsm\_recode} can be used to optimize the
FSM.

\bigskip
Finally the {\tt fsm\_map} command can be used to convert the (optimized) {\tt
\$fsm} cell back to logic and registers.
\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{The {\tt techmap} command}

\begin{frame}[t]{\subsecname}
\vbox to 0cm{\includegraphics[width=12cm,trim=-15cm 0cm 0cm -20cm]{PRESENTATION_ExSyn/techmap_01.pdf}\vss}
\vskip-0.8cm
The {\tt techmap} command replaces cells with implementations given as
verilog source. For example implementing a 32 bit adder using 16 bit adders:

\vbox to 0cm{
\vskip-0.3cm
\lstinputlisting[basicstyle=\ttfamily\fontsize{6pt}{7pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/techmap_01_map.v}
}\vbox to 0cm{
\vskip-0.5cm
\lstinputlisting[xleftmargin=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=verilog]{PRESENTATION_ExSyn/techmap_01.v}
\lstinputlisting[xleftmargin=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/techmap_01.ys}
}
\end{frame}

\begin{frame}[t]{\subsecname{} -- stdcell mapping}
When {\tt techmap} is used without a map file, it uses a built-in map file
to map all RTL cell types to a generic library of built-in logic gates and registers.

\bigskip
\begin{block}{The built-in logic gate types are:}
{\tt \$\_NOT\_ \$\_AND\_ \$\_OR\_ \$\_XOR\_ \$\_MUX\_}
\end{block}

\bigskip
\begin{block}{The register types are:}
{\tt \$\_SR\_NN\_ \$\_SR\_NP\_ \$\_SR\_PN\_ \$\_SR\_PP\_ \\
\$\_DFF\_N\_ \$\_DFF\_P\_ \\
\$\_DFF\_NN0\_ \$\_DFF\_NN1\_ \$\_DFF\_NP0\_ \$\_DFF\_NP1\_ \\
\$\_DFF\_PN0\_ \$\_DFF\_PN1\_ \$\_DFF\_PP0\_ \$\_DFF\_PP1\_ \\
\$\_DFFSR\_NNN\_ \$\_DFFSR\_NNP\_ \$\_DFFSR\_NPN\_ \$\_DFFSR\_NPP\_ \\
\$\_DFFSR\_PNN\_ \$\_DFFSR\_PNP\_ \$\_DFFSR\_PPN\_ \$\_DFFSR\_PPP\_ \\
\$\_DLATCH\_N\_ \$\_DLATCH\_P\_}
\end{block}
\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{The {\tt abc} command}

\begin{frame}{\subsecname}
The {\tt abc} command provides an interface to ABC\footnote[frame]{\url{http://www.eecs.berkeley.edu/~alanmi/abc/}},
an open source tool for low-level logic synthesis.

\medskip
The {\tt abc} command processes a netlist of internal gate types and can perform:
\begin{itemize}
\item logic minimization (optimization)
\item mapping of logic to standard cell library (liberty format)
\item mapping of logic to k-LUTs (for FPGA synthesis)
\end{itemize}

\medskip
Optionally {\tt abc} can process registers from one clock domain and perform
sequential optimization (such as register balancing).

\medskip
ABC is also controlled using scripts. An ABC script can be specified to use
more advanced ABC features. It is also possible to write the design with
{\tt write\_blif} and load the output file into ABC outside of Yosys.
\end{frame}

\begin{frame}[fragile]{\subsecname{} -- Example}
\begin{columns}
\column[t]{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/abc_01.v}
\column[t]{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/abc_01.ys}
\end{columns}
\includegraphics[width=\linewidth,trim=0 0cm 0 0cm]{PRESENTATION_ExSyn/abc_01.pdf}
\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Other special-purpose mapping commands}

\begin{frame}{\subsecname}
\begin{block}{\tt dfflibmap}
This command maps the internal register cell types to the register types
described in a liberty file.
\end{block}

\bigskip
\begin{block}{\tt hilomap}
Some architectures require special driver cells for driving a constant hi or lo
value. This command replaces simple constants with instances of such driver cells.
\end{block}

\bigskip
\begin{block}{\tt iopadmap}
Top-level input/outputs must usually be implemented using special I/O-pad cells.
This command inserts this cells to the design.
\end{block}
\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Example Synthesis Script}

\begin{frame}[fragile]{\subsecname}
\begin{columns}
\column[t]{4cm}
\begin{lstlisting}[basicstyle=\ttfamily\fontsize{6pt}{7pt}\selectfont, language=ys]
# read and elaborate design
read_verilog cpu_top.v cpu_ctrl.v cpu_regs.v
read_verilog -D WITH_MULT cpu_alu.v
hierarchy -check -top cpu_top

# high-level synthesis
proc; opt; fsm;; memory -nomap; opt

# substitute block rams
techmap -map map_rams.v

# map remaining memories
memory_map

# low-level synthesis
techmap; opt; flatten;; abc -lut6
techmap -map map_xl_cells.v

# add clock buffers
select -set xl_clocks t:FDRE %x:+FDRE[C] t:FDRE %d
iopadmap -inpad BUFGP O:I @xl_clocks

# add io buffers
select -set xl_nonclocks w:* t:BUFGP %x:+BUFGP[I] %d
iopadmap -outpad OBUF I:O -inpad IBUF O:I @xl_nonclocks

# write synthesis results
write_edif synth.edif
\end{lstlisting}
\column[t]{6cm}
\vskip1cm
\begin{block}{Teaser / Outlook}
\small\parbox{6cm}{
The weird {\tt select} expressions at the end of this script are discussed in
the next part (Section 3, ``Advanced Synthesis'') of this presentation.}
\end{block}
\end{columns}
\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Summary}

\begin{frame}{\subsecname}
\begin{itemize}
\item Yosys provides commands for each phase of the synthesis.
\item Each command solves a (more or less) simple problem.
\item Complex commands are often only front-ends to simple commands.
\item {\tt proc; opt; fsm; opt; memory; opt; techmap; opt; abc;;}
\end{itemize}

\bigskip
\bigskip
\begin{center}
Questions?
\end{center}

\bigskip
\bigskip
\begin{center}
\url{http://www.clifford.at/yosys/}
\end{center}
\end{frame}