1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
|
/*
* Cisco Meraki MR18 board support
*
* Copyright (C) 2015 Chris Blake <chrisrblake93@gmail.com>
* Copyright (C) 2015 Christian Lamparter <chunkeey@googlemail.com>
* Copyright (C) 2015 Thomas Hebb <tommyhebb@gmail.com>
*
* Based on Cisco Meraki GPL Release r23-20150601 MR18 Device Config
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*/
#include <linux/platform_device.h>
#include <linux/ath9k_platform.h>
#include <linux/platform/ar934x_nfc.h>
#include <linux/platform_data/phy-at803x.h>
#include <asm/mach-ath79/ath79.h>
#include <asm/mach-ath79/ar71xx_regs.h>
#include <linux/leds-nu801.h>
#include <linux/pci.h>
#include "common.h"
#include "dev-eth.h"
#include "pci.h"
#include "dev-gpio-buttons.h"
#include "dev-leds-gpio.h"
#include "dev-nfc.h"
#include "dev-wmac.h"
#include "machtypes.h"
#define MR18_GPIO_LED_POWER_WHITE 18
#define MR18_GPIO_LED_POWER_ORANGE 21
#define MR18_GPIO_BTN_RESET 17
#define MR18_KEYS_POLL_INTERVAL 20 /* msecs */
#define MR18_KEYS_DEBOUNCE_INTERVAL (3 * MR18_KEYS_POLL_INTERVAL)
#define MR18_WAN_PHYADDR 3
/* used for eth calibration */
#define MR18_OTP_BASE (AR71XX_APB_BASE + 0x130000)
#define MR18_OTP_SIZE (0x2000) /* just a guess */
#define MR18_OTP_MEM_0_REG (0x0000)
#define MR18_OTP_INTF2_REG (0x1008)
#define MR18_OTP_STATUS0_REG (0x1018)
#define MR18_OTP_STATUS0_EFUSE_VALID BIT(2)
#define MR18_OTP_STATUS1_REG (0x101c)
#define MR18_OTP_LDO_CTRL_REG (0x1024)
#define MR18_OTP_LDO_STATUS_REG (0x102c)
#define MR18_OTP_LDO_STATUS_POWER_ON BIT(0)
static struct gpio_led MR18_leds_gpio[] __initdata = {
{
.name = "mr18:white:power",
.gpio = MR18_GPIO_LED_POWER_WHITE,
.active_low = 1,
}, {
.name = "mr18:orange:power",
.gpio = MR18_GPIO_LED_POWER_ORANGE,
.active_low = 0,
},
};
static struct gpio_keys_button MR18_gpio_keys[] __initdata = {
{
.desc = "reset",
.type = EV_KEY,
.code = KEY_RESTART,
.debounce_interval = MR18_KEYS_DEBOUNCE_INTERVAL,
.gpio = MR18_GPIO_BTN_RESET,
.active_low = 1,
},
};
static struct led_nu801_template tricolor_led_template = {
.device_name = "mr18",
.name = "tricolor",
.num_leds = 1,
.cki = 11,
.sdi = 12,
.lei = -1,
.ndelay = 500,
.init_brightness = {
LED_OFF,
LED_OFF,
LED_OFF,
},
.default_trigger = "none",
.led_colors = { "red", "green", "blue" },
};
static struct led_nu801_platform_data tricolor_led_data = {
.num_controllers = 1,
.template = &tricolor_led_template,
};
static struct platform_device tricolor_leds = {
.name = "leds-nu801",
.id = -1,
.dev.platform_data = &tricolor_led_data,
};
static int mr18_extract_sgmii_res_cal(void)
{
void __iomem *base;
unsigned int reversed_sgmii_value;
unsigned int otp_value, otp_per_val, rbias_per, read_data;
unsigned int rbias_pos_or_neg;
unsigned int sgmii_res_cal_value;
int res_cal_val;
base = ioremap_nocache(MR18_OTP_BASE, MR18_OTP_SIZE);
if (!base)
return -EIO;
__raw_writel(0x7d, base + MR18_OTP_INTF2_REG);
__raw_writel(0x00, base + MR18_OTP_LDO_CTRL_REG);
while (__raw_readl(base + MR18_OTP_LDO_STATUS_REG) &
MR18_OTP_LDO_STATUS_POWER_ON);
__raw_readl(base + MR18_OTP_MEM_0_REG + 4);
while (!(__raw_readl(base + MR18_OTP_STATUS0_REG) &
MR18_OTP_STATUS0_EFUSE_VALID));
read_data = __raw_readl(base + MR18_OTP_STATUS1_REG);
iounmap(base);
if (!(read_data & 0x1fff))
return -ENODEV;
if (read_data & 0x00001000)
otp_value = (read_data & 0xfc0) >> 6;
else
otp_value = read_data & 0x3f;
if (otp_value > 31) {
otp_per_val = 63 - otp_value;
rbias_pos_or_neg = 1;
} else {
otp_per_val = otp_value;
rbias_pos_or_neg = 0;
}
rbias_per = otp_per_val * 15;
if (rbias_pos_or_neg == 1)
res_cal_val = (rbias_per + 34) / 21;
else if (rbias_per > 34)
res_cal_val = -((rbias_per - 34) / 21);
else
res_cal_val = (34 - rbias_per) / 21;
sgmii_res_cal_value = (8 + res_cal_val) & 0xf;
reversed_sgmii_value = (sgmii_res_cal_value & 8) >> 3;
reversed_sgmii_value |= (sgmii_res_cal_value & 4) >> 1;
reversed_sgmii_value |= (sgmii_res_cal_value & 2) << 1;
reversed_sgmii_value |= (sgmii_res_cal_value & 1) << 3;
printk(KERN_INFO "SGMII cal value = 0x%x\n", reversed_sgmii_value);
return reversed_sgmii_value;
}
#define QCA955X_PLL_ETH_SGMII_SERDES_REG 0x004c
#define QCA955X_PLL_ETH_SGMII_SERDES_LOCK_DETECT BIT(2)
#define QCA955X_PLL_ETH_SGMII_SERDES_PLL_REFCLK BIT(1)
#define QCA955X_PLL_ETH_SGMII_SERDES_EN_PLL BIT(0)
#define QCA955X_GMAC_REG_SGMII_SERDES 0x0018
#define QCA955X_SGMII_SERDES_RES_CALIBRATION BIT(23)
#define QCA955X_SGMII_SERDES_RES_CALIBRATION_MASK 0xf
#define QCA955X_SGMII_SERDES_RES_CALIBRATION_SHIFT 23
#define QCA955X_SGMII_SERDES_LOCK_DETECT_STATUS BIT(15)
static void mr18_setup_qca955x_eth_serdes_cal(unsigned int sgmii_value)
{
void __iomem *ethbase, *pllbase;
u32 t;
ethbase = ioremap_nocache(QCA955X_GMAC_BASE, QCA955X_GMAC_SIZE);
pllbase = ioremap_nocache(AR71XX_PLL_BASE, AR71XX_PLL_SIZE);
/* To Check the locking of the SGMII PLL */
t = __raw_readl(ethbase + QCA955X_GMAC_REG_SGMII_SERDES);
t &= ~(QCA955X_SGMII_SERDES_RES_CALIBRATION_MASK <<
QCA955X_SGMII_SERDES_RES_CALIBRATION_SHIFT);
t |= (sgmii_value & QCA955X_SGMII_SERDES_RES_CALIBRATION_MASK) <<
QCA955X_SGMII_SERDES_RES_CALIBRATION_SHIFT;
__raw_writel(t, ethbase + QCA955X_GMAC_REG_SGMII_SERDES);
__raw_writel(QCA955X_PLL_ETH_SGMII_SERDES_LOCK_DETECT |
QCA955X_PLL_ETH_SGMII_SERDES_PLL_REFCLK |
QCA955X_PLL_ETH_SGMII_SERDES_EN_PLL,
pllbase + QCA955X_PLL_ETH_SGMII_SERDES_REG);
ath79_device_reset_clear(QCA955X_RESET_SGMII_ANALOG);
ath79_device_reset_clear(QCA955X_RESET_SGMII);
while (!(__raw_readl(ethbase + QCA955X_GMAC_REG_SGMII_SERDES) &
QCA955X_SGMII_SERDES_LOCK_DETECT_STATUS));
iounmap(ethbase);
iounmap(pllbase);
}
static struct ath9k_platform_data pci_main_wifi_data = {
.led_pin = -1,
};
static struct ath9k_platform_data pci_scan_wifi_data = {
.led_pin = -1,
};
static int mr18_dual_pci_plat_dev_init(struct pci_dev *dev)
{
/* The PCIE devices are attached to different busses but they
* both share the same slot number. Checking the PCI_SLOT vals
* does not work.
*/
switch (dev->bus->number) {
case 0:
dev->dev.platform_data = &pci_main_wifi_data;
break;
case 1:
dev->dev.platform_data = &pci_scan_wifi_data;
break;
}
return 0;
}
static void __init mr18_setup(void)
{
int res;
/* NAND */
ath79_nfc_set_ecc_mode(AR934X_NFC_ECC_SOFT_BCH);
ath79_register_nfc();
/* even though, the PHY is connected via RGMII,
* the SGMII/SERDES PLLs need to be calibrated and locked.
* Or else, the PHY won't be working for this platfrom.
*
* Figuring this out took such a long time, that we want to
* point this quirk out, before someone wants to remove it.
*/
res = mr18_extract_sgmii_res_cal();
if (res >= 0) {
/* Setup SoC Eth Config */
ath79_setup_qca955x_eth_cfg(QCA955X_ETH_CFG_RGMII_EN |
(3 << QCA955X_ETH_CFG_RXD_DELAY_SHIFT) |
(3 << QCA955X_ETH_CFG_RDV_DELAY_SHIFT));
/* MDIO Interface */
ath79_register_mdio(0, 0x0);
mr18_setup_qca955x_eth_serdes_cal(res);
/* GMAC0 is connected to an Atheros AR8035-A */
ath79_init_mac(ath79_eth0_data.mac_addr, NULL, 0);
ath79_eth0_data.mii_bus_dev = &ath79_mdio0_device.dev;
ath79_eth0_data.phy_if_mode = PHY_INTERFACE_MODE_RGMII;
ath79_eth0_data.phy_mask = BIT(MR18_WAN_PHYADDR);
ath79_eth0_pll_data.pll_1000 = 0xa6000000;
ath79_eth0_pll_data.pll_100 = 0xa0000101;
ath79_eth0_pll_data.pll_10 = 0x80001313;
ath79_register_eth(0);
} else {
printk(KERN_ERR "failed to read EFUSE for ethernet cal\n");
}
/* LEDs and Buttons */
platform_device_register(&tricolor_leds);
ath79_register_leds_gpio(-1, ARRAY_SIZE(MR18_leds_gpio),
MR18_leds_gpio);
ath79_register_gpio_keys_polled(-1, MR18_KEYS_POLL_INTERVAL,
ARRAY_SIZE(MR18_gpio_keys),
MR18_gpio_keys);
/* Clear RTC reset (Needed by SoC WiFi) */
ath79_device_reset_clear(QCA955X_RESET_RTC);
/* WiFi */
ath79_register_wmac_simple();
pci_main_wifi_data.eeprom_name = "pci_wmac0.eeprom";
pci_scan_wifi_data.eeprom_name = "pci_wmac1.eeprom";
ath79_pci_set_plat_dev_init(mr18_dual_pci_plat_dev_init);
ath79_register_pci();
}
MIPS_MACHINE(ATH79_MACH_MR18, "MR18", "Meraki MR18", mr18_setup);
|