diff options
author | Eddie Hung <eddie@fpgeh.com> | 2019-09-30 16:33:40 -0700 |
---|---|---|
committer | Eddie Hung <eddie@fpgeh.com> | 2019-09-30 16:33:40 -0700 |
commit | e529872b0170ba269db2d00c96108c86b260e864 (patch) | |
tree | f11a17dbd61b5f5519c7b693c800870e58556bcf /techlibs | |
parent | 5e9ae90cbba4e9c2abfe5d6a1b90c2256aae1615 (diff) | |
download | yosys-e529872b0170ba269db2d00c96108c86b260e864.tar.gz yosys-e529872b0170ba269db2d00c96108c86b260e864.tar.bz2 yosys-e529872b0170ba269db2d00c96108c86b260e864.zip |
Remove need for $currQ port connection
Diffstat (limited to 'techlibs')
-rw-r--r-- | techlibs/xilinx/abc_map.v | 69 | ||||
-rw-r--r-- | techlibs/xilinx/cells_sim.v | 160 |
2 files changed, 118 insertions, 111 deletions
diff --git a/techlibs/xilinx/abc_map.v b/techlibs/xilinx/abc_map.v index 6a0e18abe..4eec77df9 100644 --- a/techlibs/xilinx/abc_map.v +++ b/techlibs/xilinx/abc_map.v @@ -33,34 +33,35 @@ // behaviour) with: // (a) a special $__ABC_FF_ in front of the FD*'s output, indicating to abc9 // the location of its basic D-Q flop -// (b) a special \$currQ connection that feeds back into the (combinatorial) -// FD* cell to facilitate clock-enable behaviour -- note that \$currQ -// isn't a real input port, it is one that is understood only by abc9 +// (b) a special TECHMAP_REPLACE_.$currQwire that will be used for feedback +// into the (combinatorial) FD* cell to facilitate clock-enable behaviour module FDRE (output reg Q, input C, CE, D, R); parameter [0:0] INIT = 1'b0; parameter [0:0] IS_C_INVERTED = 1'b0; parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_R_INVERTED = 1'b0; - wire \$nextQ ; + wire $nextQ; FDRE #( .INIT(INIT), .IS_C_INVERTED(IS_C_INVERTED), .IS_D_INVERTED(IS_D_INVERTED), .IS_R_INVERTED(IS_R_INVERTED) ) _TECHMAP_REPLACE_ ( - .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .R(R) + .D(D), .Q($nextQ), .C(C), .CE(CE), .R(R) ); - \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q)); + wire _TECHMAP_REPLACE_.$currQ = Q; + \$__ABC_FF_ abc_dff (.D($nextQ), .Q(Q)); endmodule module FDRE_1 (output reg Q, input C, CE, D, R); parameter [0:0] INIT = 1'b0; - wire \$nextQ ; + wire $nextQ; FDRE_1 #( .INIT(|0), ) _TECHMAP_REPLACE_ ( - .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .R(R) + .D(D), .Q($nextQ), .C(C), .CE(CE), .R(R) ); - \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q)); + wire _TECHMAP_REPLACE_.$currQ = Q; + \$__ABC_FF_ abc_dff (.D($nextQ), .Q(Q)); endmodule module FDCE (output reg Q, input C, CE, D, CLR); @@ -68,28 +69,30 @@ module FDCE (output reg Q, input C, CE, D, CLR); parameter [0:0] IS_C_INVERTED = 1'b0; parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_CLR_INVERTED = 1'b0; - wire \$nextQ , \$currQ ; + wire $currQ, $nextQ; FDCE #( .INIT(INIT), .IS_C_INVERTED(IS_C_INVERTED), .IS_D_INVERTED(IS_D_INVERTED), .IS_CLR_INVERTED(IS_CLR_INVERTED) ) _TECHMAP_REPLACE_ ( - .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .CLR(CLR) + .D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(CLR) ); - \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ )); - \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(CLR ^ IS_CLR_INVERTED), .Y(Q)); + wire _TECHMAP_REPLACE_.$currQ = Q; + \$__ABC_FF_ abc_dff (.D($nextQ), .Q($currQ)); + \$__ABC_ASYNC abc_async (.A($currQ), .S(CLR ^ IS_CLR_INVERTED), .Y(Q)); endmodule module FDCE_1 (output reg Q, input C, CE, D, CLR); parameter [0:0] INIT = 1'b0; - wire \$nextQ , \$currQ ; + wire $nextQ, $currQ; FDCE_1 #( .INIT(INIT) ) _TECHMAP_REPLACE_ ( - .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .CLR(CLR) + .D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(CLR) ); - \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ )); - \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(CLR), .Y(Q)); + wire _TECHMAP_REPLACE_.$currQ = Q; + \$__ABC_FF_ abc_dff (.D($nextQ), .Q($currQ)); + \$__ABC_ASYNC abc_async (.A($currQ), .S(CLR), .Y(Q)); endmodule module FDPE (output reg Q, input C, CE, D, PRE); @@ -97,28 +100,30 @@ module FDPE (output reg Q, input C, CE, D, PRE); parameter [0:0] IS_C_INVERTED = 1'b0; parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_PRE_INVERTED = 1'b0; - wire \$nextQ , \$currQ ; + wire $nextQ, $currQ; FDPE #( .INIT(INIT), .IS_C_INVERTED(IS_C_INVERTED), .IS_D_INVERTED(IS_D_INVERTED), .IS_PRE_INVERTED(IS_PRE_INVERTED), ) _TECHMAP_REPLACE_ ( - .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .PRE(PRE) + .D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(PRE) ); - \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ )); - \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(PRE ^ IS_PRE_INVERTED), .Y(Q)); + wire _TECHMAP_REPLACE_.$currQ = Q; + \$__ABC_FF_ abc_dff (.D($nextQ), .Q($currQ)); + \$__ABC_ASYNC abc_async (.A($currQ), .S(PRE ^ IS_PRE_INVERTED), .Y(Q)); endmodule module FDPE_1 (output reg Q, input C, CE, D, PRE); parameter [0:0] INIT = 1'b0; - wire \$nextQ , \$currQ ; + wire $nextQ, $currQ; FDPE_1 #( .INIT(INIT) ) _TECHMAP_REPLACE_ ( - .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .PRE(PRE) + .D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(PRE) ); - \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ )); - \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(PRE), .Y(Q)); + wire _TECHMAP_REPLACE_.$currQ = Q; + \$__ABC_FF_ abc_dff (.D($nextQ), .Q($currQ)); + \$__ABC_ASYNC abc_async (.A($currQ), .S(PRE), .Y(Q)); endmodule module FDSE (output reg Q, input C, CE, D, S); @@ -126,26 +131,28 @@ module FDSE (output reg Q, input C, CE, D, S); parameter [0:0] IS_C_INVERTED = 1'b0; parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_S_INVERTED = 1'b0; - wire \$nextQ ; + wire $nextQ; FDSE #( .INIT(INIT), .IS_C_INVERTED(IS_C_INVERTED), .IS_D_INVERTED(IS_D_INVERTED), .IS_S_INVERTED(IS_S_INVERTED) ) _TECHMAP_REPLACE_ ( - .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .S(S) + .D(D), .Q($nextQ), .C(C), .CE(CE), .S(S) ); - \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q)); + wire _TECHMAP_REPLACE_.$currQ = Q; + \$__ABC_FF_ abc_dff (.D($nextQ), .Q(Q)); endmodule module FDSE_1 (output reg Q, input C, CE, D, S); parameter [0:0] INIT = 1'b0; - wire \$nextQ ; + wire $nextQ; FDSE_1 #( .INIT(|0), ) _TECHMAP_REPLACE_ ( - .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .S(S) + .D(D), .Q($nextQ), .C(C), .CE(CE), .S(S) ); - \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q)); + wire _TECHMAP_REPLACE_.$currQ = Q; + \$__ABC_FF_ abc_dff (.D($nextQ), .Q(Q)); endmodule module RAM32X1D ( diff --git a/techlibs/xilinx/cells_sim.v b/techlibs/xilinx/cells_sim.v index 3aa686e81..7ab28b0aa 100644 --- a/techlibs/xilinx/cells_sim.v +++ b/techlibs/xilinx/cells_sim.v @@ -258,31 +258,31 @@ module FDRE ( parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_R_INVERTED = 1'b0; initial Q <= INIT; - wire \$currQ ; - reg \$nextQ ; - always @* if (R == !IS_R_INVERTED) \$nextQ = 1'b0; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ; + wire $currQ; + reg $nextQ; + always @* if (R == !IS_R_INVERTED) $nextQ = 1'b0; else if (CE) $nextQ = D ^ IS_D_INVERTED; else $nextQ = $currQ; `ifdef _ABC // `abc9' requires that complex flops be split into a combinatorial // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) // In order to achieve clock-enable behaviour, the current value // of the sequential output is required which Yosys will - // connect to the special `\$currQ' wire. + // connect to the special `$currQ' wire. // Special signal indicating clock domain // (used to partition the module so that `abc9' only performs // sequential synthesis (reachability analysis) correctly on // one domain at a time) - wire [1:0] \$abc9_clock = {C, IS_C_INVERTED}; + wire [1:0] $abc9_clock = {C, IS_C_INVERTED}; // Special signal indicating control domain // (which, combined with this spell type, encodes to `abc9' // which flops may be merged together) - wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED}; - always @* Q = \$nextQ ; + wire [3:0] $abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED}; + always @* Q = $nextQ; `else - assign \$currQ = Q; + assign $currQ = Q; generate case (|IS_C_INVERTED) - 1'b0: always @(posedge C) Q <= \$nextQ ; - 1'b1: always @(negedge C) Q <= \$nextQ ; + 1'b0: always @(posedge C) Q <= $nextQ; + 1'b1: always @(negedge C) Q <= $nextQ; endcase endgenerate `endif endmodule @@ -297,29 +297,29 @@ module FDRE_1 ( ); parameter [0:0] INIT = 1'b0; initial Q <= INIT; - wire \$currQ ; - reg \$nextQ ; - always @* if (R) Q <= 1'b0; else if (CE) Q <= D; else \$nextQ = \$currQ ; + wire $currQ; + reg $nextQ; + always @* if (R) Q <= 1'b0; else if (CE) Q <= D; else $nextQ = $currQ; `ifdef _ABC // `abc9' requires that complex flops be split into a combinatorial // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) // In order to achieve clock-enable behaviour, the current value // of the sequential output is required which Yosys will - // connect to the special `\$currQ' wire. + // connect to the special `$currQ' wire. // Special signal indicating clock domain // (used to partition the module so that `abc9' only performs // sequential synthesis (reachability analysis) correctly on // one domain at a time) - wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; + wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; // Special signal indicating control domain // (which, combined with this spell type, encodes to `abc9' // which flops may be merged together) - wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */}; - always @* Q = \$nextQ ; + wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */}; + always @* Q = $nextQ; `else - assign \$currQ = Q; - always @(negedge C) Q <= \$nextQ ; + assign $currQ = Q; + always @(negedge C) Q <= $nextQ; `endif endmodule @@ -341,15 +341,15 @@ module FDCE ( parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_CLR_INVERTED = 1'b0; initial Q <= INIT; - wire \$currQ ; - reg \$nextQ ; - always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ; + wire $currQ; + reg $nextQ; + always @* if (CE) Q <= D ^ IS_D_INVERTED; else $nextQ = $currQ; `ifdef _ABC // `abc9' requires that complex flops be split into a combinatorial // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) // In order to achieve clock-enable behaviour, the current value // of the sequential output is required which Yosys will - // connect to the special `\$currQ' wire. + // connect to the special `$currQ' wire. // Since this is an async flop, async behaviour is also dealt with // using the $_ABC_ASYNC box by abc_map.v @@ -357,19 +357,19 @@ module FDCE ( // (used to partition the module so that `abc9' only performs // sequential synthesis (reachability analysis) correctly on // one domain at a time) - wire [1:0] \$abc9_clock = {C, IS_C_INVERTED}; + wire [1:0] $abc9_clock = {C, IS_C_INVERTED}; // Special signal indicating control domain // (which, combined with this spell type, encodes to `abc9' // which flops may be merged together) - wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED}; - always @* Q = \$nextQ ; + wire [3:0] $abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED}; + always @* Q = $nextQ; `else - assign \$currQ = Q; + assign $currQ = Q; generate case ({|IS_C_INVERTED, |IS_CLR_INVERTED}) - 2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ; - 2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ; - 2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ; - 2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ; + 2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= $nextQ; + 2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= $nextQ; + 2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= $nextQ; + 2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= $nextQ; endcase endgenerate `endif endmodule @@ -384,15 +384,15 @@ module FDCE_1 ( ); parameter [0:0] INIT = 1'b0; initial Q <= INIT; - wire \$currQ ; - reg \$nextQ ; - always @* if (CE) Q <= D; else \$nextQ = \$currQ ; + wire $currQ; + reg $nextQ; + always @* if (CE) Q <= D; else $nextQ = $currQ; `ifdef _ABC // `abc9' requires that complex flops be split into a combinatorial // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) // In order to achieve clock-enable behaviour, the current value // of the sequential output is required which Yosys will - // connect to the special `\$currQ' wire. + // connect to the special `$currQ' wire. // Since this is an async flop, async behaviour is also dealt with // using the $_ABC_ASYNC box by abc_map.v @@ -400,15 +400,15 @@ module FDCE_1 ( // (used to partition the module so that `abc9' only performs // sequential synthesis (reachability analysis) correctly on // one domain at a time) - wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; + wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; // Special signal indicating control domain // (which, combined with this spell type, encodes to `abc9' // which flops may be merged together) - wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */}; - always @* Q = \$nextQ ; + wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */}; + always @* Q = $nextQ; `else - assign \$currQ = Q; - always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else Q <= \$nextQ ; + assign $currQ = Q; + always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else Q <= $nextQ; `endif endmodule @@ -430,15 +430,15 @@ module FDPE ( parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_PRE_INVERTED = 1'b0; initial Q <= INIT; - wire \$currQ ; - reg \$nextQ ; - always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ; + wire $currQ; + reg $nextQ; + always @* if (CE) Q <= D ^ IS_D_INVERTED; else $nextQ = $currQ; `ifdef _ABC // `abc9' requires that complex flops be split into a combinatorial // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) // In order to achieve clock-enable behaviour, the current value // of the sequential output is required which Yosys will - // connect to the special `\$currQ' wire. + // connect to the special `$currQ' wire. // Since this is an async flop, async behaviour is also dealt with // using the $_ABC_ASYNC box by abc_map.v @@ -446,19 +446,19 @@ module FDPE ( // (used to partition the module so that `abc9' only performs // sequential synthesis (reachability analysis) correctly on // one domain at a time) - wire [1:0] \$abc9_clock = {C, IS_C_INVERTED}; + wire [1:0] $abc9_clock = {C, IS_C_INVERTED}; // Special signal indicating control domain // (which, combined with this spell type, encodes to `abc9' // which flops may be merged together) - wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED}; - always @* Q = \$nextQ ; + wire [3:0] $abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED}; + always @* Q = $nextQ; `else - assign \$currQ = Q; + assign $currQ = Q; generate case ({|IS_C_INVERTED, |IS_PRE_INVERTED}) - 2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ; - 2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ; - 2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ; - 2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ; + 2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= $nextQ; + 2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= $nextQ; + 2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= $nextQ; + 2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= $nextQ; endcase endgenerate `endif endmodule @@ -473,15 +473,15 @@ module FDPE_1 ( ); parameter [0:0] INIT = 1'b1; initial Q <= INIT; - wire \$currQ ; - reg \$nextQ ; - always @* if (CE) Q <= D; else \$nextQ = \$currQ ; + wire $currQ; + reg $nextQ; + always @* if (CE) Q <= D; else $nextQ = $currQ; `ifdef _ABC // `abc9' requires that complex flops be split into a combinatorial // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) // In order to achieve clock-enable behaviour, the current value // of the sequential output is required which Yosys will - // connect to the special `\$currQ' wire. + // connect to the special `$currQ' wire. // Since this is an async flop, async behaviour is also dealt with // using the $_ABC_ASYNC box by abc_map.v @@ -489,15 +489,15 @@ module FDPE_1 ( // (used to partition the module so that `abc9' only performs // sequential synthesis (reachability analysis) correctly on // one domain at a time) - wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; + wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; // Special signal indicating control domain // (which, combined with this spell type, encodes to `abc9' // which flops may be merged together) - wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */}; - always @* Q = \$nextQ ; + wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */}; + always @* Q = $nextQ; `else - assign \$currQ = Q; - always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else Q <= \$nextQ ; + assign $currQ = Q; + always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else Q <= $nextQ; `endif endmodule @@ -519,31 +519,31 @@ module FDSE ( parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_S_INVERTED = 1'b0; initial Q <= INIT; - wire \$currQ ; - reg \$nextQ ; - always @* if (S == !IS_S_INVERTED) \$nextQ = 1'b1; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ; + wire $currQ; + reg $nextQ; + always @* if (S == !IS_S_INVERTED) $nextQ = 1'b1; else if (CE) $nextQ = D ^ IS_D_INVERTED; else $nextQ = $currQ; `ifdef _ABC // `abc9' requires that complex flops be split into a combinatorial // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) // In order to achieve clock-enable behaviour, the current value // of the sequential output is required which Yosys will - // connect to the special `\$currQ' wire. + // connect to the special `$currQ' wire. // Special signal indicating clock domain // (used to partition the module so that `abc9' only performs // sequential synthesis (reachability analysis) correctly on // one domain at a time) - wire [1:0] \$abc9_clock = {C, IS_C_INVERTED}; + wire [1:0] $abc9_clock = {C, IS_C_INVERTED}; // Special signal indicating control domain // (which, combined with this spell type, encodes to `abc9' // which flops may be merged together) - wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED}; - always @* Q = \$nextQ ; + wire [3:0] $abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED}; + always @* Q = $nextQ; `else - assign \$currQ = Q; + assign $currQ = Q; generate case (|IS_C_INVERTED) - 1'b0: always @(posedge C) Q <= \$nextQ ; - 1'b1: always @(negedge C) Q <= \$nextQ ; + 1'b0: always @(posedge C) Q <= $nextQ; + 1'b1: always @(negedge C) Q <= $nextQ; endcase endgenerate `endif endmodule @@ -558,29 +558,29 @@ module FDSE_1 ( ); parameter [0:0] INIT = 1'b1; initial Q <= INIT; - wire \$currQ ; - reg \$nextQ ; - always @* if (S) \$nextQ = 1'b1; else if (CE) \$nextQ = D; else \$nextQ = \$currQ ; + wire $currQ; + reg $nextQ; + always @* if (S) $nextQ = 1'b1; else if (CE) $nextQ = D; else $nextQ = $currQ; `ifdef _ABC // `abc9' requires that complex flops be split into a combinatorial // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) // In order to achieve clock-enable behaviour, the current value // of the sequential output is required which Yosys will - // connect to the special `\$currQ' wire. + // connect to the special `$currQ' wire. // Special signal indicating clock domain // (used to partition the module so that `abc9' only performs // sequential synthesis (reachability analysis) correctly on // one domain at a time) - wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; + wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; // Special signal indicating control domain // (which, combined with this spell type, encodes to `abc9' // which flops may be merged together) - wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */}; - always @* Q = \$nextQ ; + wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */}; + always @* Q = $nextQ; `else - assign \$currQ = Q; - always @(negedge C) Q <= \$nextQ ; + assign $currQ = Q; + always @(negedge C) Q <= $nextQ; `endif endmodule |